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Abstract-We derive a simple analytical model for the field and temperature dependence of Shockley- 
Read-Hall lifetimes in silicon from a microscopic level, where the capture of carriers at recombination 
centers is assumed to be a multiphonon process. Strong electric fields, as often present in modern devices, 
cause trap assisted tunneling, i.e. the multiphonon recombination path is no longer purely vertical in a 
band diagram, but has a horizontal branch at an effective energy which is given by the maximum of the 
transition probability. Applying reasonable approximations we calculate this effective recombination path 
as a function of field strength and temperature. Field enhancement factors of the inverse carrier lifetimes 
are then presented that require no integration, iteration or higher mathematical functions. The anisotropy 
and multi-valley nature of the silicon conduction band is carefully taken into account. We discuss all 
approximations and physical effects by means of the gold acceptor level. The model is able to describe 
the pre-breakdown behaviour of trap tunneling leakage and is suitable for the implementation into 
simulation packages. 

NOTATION 

Airy function and its derivative 
electron and hole capture rates (cm3 s-l) 
energy (eV) 
activation energy for capture. with and with- 
out electric field, resp. (eV) 
conduction and valence band edges, resp. 
(eV) 
quasi Fermi levels of electrons and holes, 
resp. (ev) 
energy level of the recombination center (eV) 
transition energy with and without electric 
field, resp. (eV) 
field strength (V cm-‘) 
ith component of the field strength (V cm-‘) 
electrooptical function S(Y) = Ai’* - 
YAi?Y) 
Rose function 
electron and hole distribution functions, 
resp. 
trap occupation probabilities 
field enhancement factors for electron and 
hole lifetimes, resp. 
degeneracy factors of the recombination 
center for empty and occupied state, resp. 
effective phonon energy (eV) 
electrooptical energies for electron and hole 
tunneling, resp. (ev) 
modified Bessel function of order I 
Roltxmann constant 
number of phonons 
multiphonon transition probabilities for 
electron and hole capture, resp. 
electron tunneling mass in field direction 
transverse and longitudinal effective masses 
of electrons, resp. 
effective hole mass 
concentration profile of the recombination 
centers (~m-~) 

WE) 
CF 

CR 
0 0 

PC? P” 

5, Tr.0, C(x) 

electron density, hole density (cm-9 
intrinsic density (cm-)) 
electron and hole density of a nondegenerate 
semiconductor, if the Fermi level coincides 
with the trap level (apart from a degeneracy 
factor) (cm-9 
net Shockley-Read-Hall recombination rate 
(cm-3 s-’ ) 
Huang-Rhys factor 
absolute temperature (K) 
bound-to-band tunneling probabilities for 
electrons and holes, resp. 
thermal weight function 
combined energy determining E, (eV) 
lattice relaxation energy (eV) 
dimensionless zero-field densities of band 
states for conduction and valence band, resp. 
SRH lifetimes (v = n electrons, v =p holes) 
6) 

1. INTRODU(X’ION 

Shockley-Read-Hall (SRH) and phonon-assisted 
band-to-band Auger recombination are the two im- 
portant recombination processes in silicon. For non- 
degenerately doped material the SRH mechanism is 
generally dominant, and therefore, controls the car- 
rier lifetime. High doping concentrations in modem 
devices not only favour Auger recombination, but 
also cause tunneling generation (reverse bias) and 
tunneling recombination (forward bias) in regions of 
sufficient large field strength. Tunneling transitions in 
the bulk are either phonon-assisted band-to-band or 
trap assisted (bound-to-band). Whereas the former 
are of second order due to the indirect gap, the latter 
are of first order because of the strong localization of 
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the bound state, but require a noticeable density of 
recombination centers in order to yield a macroscopic 
effect. From a quantum mechanical point of view 
there is no reason to consider trap-assisted tunneling 
independent from SRH recombination. The thermal 
capture and emission of carriers are enhanced by the 
field, since tunnel transitions at an energy below the 
thermal barrier height occur-in the extreme case at 
the trap level itself (pure trap tunneling). Thus, 
tunneling results in an effective lowering of the ther- 
mal barrier. On the other hand, the same process can 
be explained in terms of phonon-assisted bound-to- 
band tunneling, the only difference being the tran- 
sition inducing interaction operator used. The 
concept of field-enhanced multiphonon transitions 
(induced by electron-phonon coupling) seems to be 
more realistic for silicon even at the operating tem- 
perature of liquid nitrogen (LN,). This leads to the 
picture of field dependent SRH lifetimes, which are 
no longer constant in the device. A theory, based on 
the microscopic process of multiphonon recombina- 
tion, was outlined in [l]. 

Experimentally, strong evidence for tunnel leakage 
currents in MOSFETs, trench DRAMS and bipolar 
transistors was found in recent years. An anoma- 
lously high non-ideal base current in forward-bias at 
LN2 was reported by Woo et aZ.[2]. Del Alamo et 
aZ.[3] investigated bipolar devices with a base donor 
level ranging from 8.8 x 10” to 4.0 x lOI cm-3. For- 
ward Z-V curves of the pz+-rr+ emitter-base junc- 
tions showed a strong, exponential-like increase in 
the current at room temperature as the base doping 
level was raised beyond a5 x 10’s cme3. The ob- 
served effect could be fitted with a simple tunneling 
expression which did not allow, however, to dis- 
tinguish between interband and trap-assisted tunnel- 
ing. Hurkx et aZ.[4] also observed an anomalous 
reduced temperature dependence and increased non- 
ideality factors in the temperature range from 77 to 
300 K with an inverse dependence of the non-ideality 
factor on temperature. To describe the trap tunneling 
effect, they introduced “enlarged (field dependent) 
carrier concentrations” and field enhancement fac- 
tors for the intrinsic densities into the SRH formula. 
The latter were adopted from Vincent et aZ.[5]. A 
better model was suggested by Voldman et aZ.[6]. 
They extracted field enhancement factors from the 
inverse carrier lifetimes in accordance with a strict 
theory. Various models of bound-to-band tunneling 
then were applied to explain the p +-doped gate-diode 
leakage in planar MOSFETs. 

In this paper we develop the theory of field en- 
hanced multiphonon recombination (see [1]) to a 
simplified model of field-dependent SRH lifetimes. 
All approximations will be discussed together with 
the resulting limitations of the validity range of the 
model. In Section 2 we derive general expressions for 
the field enhancement factors. Using the high and low 
temperature approximations of multiphonon theory, 
these expressions are transformed then in Section 3 in 

such a way that no integrations, iterations or higher 
mathematical functions are necessary. Section 4 is 
devoted to the temperature dependence of zero-field 
lifetimes. We discuss the results in Section 5. 

2. FIELD ENHANCEMENT FACTORS FOR 

THE LIFETIMES 

We assume single-level recombination centers with 
a concentration N,(x) and (thermal) binding energy 
E, measured from the conduction band minimum. 
The level E,(x) - E, will be used as energy zero in the 
following. We neglect a possible Poole-Frenkel effect, 
i.e. the lowering of the Coulombic barrier tail in a 
strong electric field, if the deep center is charged[8]. 
We experienced that in a SRH model including trap 
tunneling the Poole-Frenkel effect can be absorbed 
by minor changes in the model parameters, because 
at strong fields the dominant recombination paths are 
deeper in the gap, where the barrier width is only little 
affected by the Coulomb potential. Nevertheless, the 
bound state field effect (Poole-Frenkel effect) can 
dominate the field dependence at lower field 
strengths. 

The net rate of recombination at those centers is 
given by the well known SRH formula[7] 

R$H(X) = 
np{ 1 - exp[ -EF*ni$]} 

I ’ 

(1) 

where EF,n - EFp is the difference of the quasi Fermi 
potentials, andfl+’ are the trap occupation probabil- 
ities 

~,~=[l+~exp~-~~EF,~}~’ (2) 

&,, -degeneracy factors of the empty and occupied 
trap level, respectively). Equation (1) holds for Fermi 
statistics. In the following we will restrict ourselves to 
the Boltzmann case. Furthermore, we replace the 
degeneracy factors by unity. With the usual defi- 
nitions 

n, = n(f,:; - 1), p, =p(f;,’ - 1))’ (3) 

eqn (1) then turns to the more familiar form 

RSRH _ 
np -nf 

net - 1 

r,(x)]n +nJ+W)b +P,I’ 
(4) 

The Q,(x) are called SRH lifetimes 

f,(x) = k”(x)~t(x)l-‘~ qx> = [cp(x)~,(xr’. (5) 

Aside from the density of recombination centers they 
depend on the capture rates c,,,(x). The whole infor- 
mation about field and temperature dependence of 
the lifetimes is contained in these capture rates. 

The rate eqn (1) is not based on any concrete 
capture mechanism, but only on the occupation 
statistics of electrons and holes. A theory for the 
lifetimes requires the process of energy transfer to be 
specified. Various mechanisms are possible: radiative, 
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Auger, cascade, plasmon interaction, defect reactions 
and so on. Probably the most important and most 
often met case is the nonradiative multiphonon re- 
combination, where the electronic energy is trans- 
ferred into lattice vibrations. Since the gap of silicon 
is much larger than the largest phonon energy, the 
capture of a carrier will be accompanied by the 
emission of many phonons. Only those centers which 
localize the captured carrier to a few elementary cells 
are capable for a sufficient strong electron-phonon 
coupling, which on the other hand is the precondition 
for multiphonon transitions. In silicon this strong 
localization of the deep level wave function has the 
favourable effect that no additional collision partner 
is necessary in any kind of SRH process (including 
bound-to-band tunneling), since the strong localiz- 
ation in real space causes a sufficient spread of the 
wave function in k-space. Therefore, off-diagonal 
matrix elements are first order quantities. 

The microscopic description of field dependent 
capture rates c,,(x) is based both on standard multi- 
phonon theory[9-181 and on the theory of Bloch 
electrons in a strong electric field[l%34]. If these 
theories are combined[35,36], one obtains a theory of 
phonon-assisted trap tunneling, or field-enhanced 
multiphonon recombination, depending on whether 
the electric field or the electron-phonon coupling is 
considered the transition inducing force. This differ- 
entiation becomes important, when approximations 
of the general expressions are to be found. One can 
show for deep centers in silicon at room tempera- 
ture[37] that at least in the pre-breakdown range the 
capture should be essentially a multiphonon process, 
i.e. phonon-induced and accompanied by the emis- 
sion of some phonons. Hence, pure trap tunneling 
(horizontal path without phonon assistance) is rather 
unlikely. 

The theory of field dependent lifetimes was out- 
lined in [1] allowing for inhomogeneous fields. Here 
we should get rid of all complications in order to 
achieve a tractable expression for the purpose of 
device simulation. Therefore, the electric field is 
considered constant over a distance of the order of an 
interband tunnel length around the trap. Together 
with the above mentioned assumption that enough 
phonons are emitted during the capture, the restric- 
tion to the constant field approximation enables the 
necessary simplifications that will be discussed below. 

As shown in [1], the inverse SRH lifetimes are given 

by 

f,‘(x) = ?~~N,(x)~,~~p~(lK(l)d.(l, xM(0, (6) 

<pi(x) = *,;divJx); 

x ,FO PW)[l -f,(Ol~d, X)~“U). (7) 

Here,&(l) denote the electron distribution functions 
for conduction and valence band, p&(I) are dimen- 
sionless zero-field densities of band states, S,,(I, x) 

is the bound-to-band tunneling probability, and 
M&1) the multiphonon transition probability. The 
average is performed by a sum over the numbers of 
phonons that are emitted during the capture. The 
physical interpretation of these expressions is 
straightforward: field and temperature dependence of 
the carrier lifetimes are determined by the average of 
the carrier densities n and p with the product of the 
corresponding probability distributions, which orig- 
inate from the quasi-exact treatment of the diagonal 
coupling terms of the Hamiltonian. The expressions 
(6) and (7) for the SRH lifetimes are very general; 
other recombination mechanisms could be described 
by simply replacing the multiphonon transition prob- 
ability M,,“(I) by its equivalent. 

The off-diagonal matrix elements enter the con- 
stants r “;,’ which must be considered as fit parameters. 
Fortunately, we don’t need them explicitly for our 
model. To see this, we “switch off’ the field effect, i.e. 
we replace the tunneling probability S,(I, x) by unity 
to get the inverse lifetimes Q;‘(x, F = 0) for neutral 
regions. If we introduce these quantities into eqns (6) 
and (7), we can write 

f;‘(x) = Q;‘(x, F = O)g,[F(x)] 

with field enhancement factors g, [F(x)] 

(8) 

g,[F(x)] = ‘yo (9) 

As eqns (9) and (10) show, these field enhancement 
factors again are given by mean values: the tunneling 
probability is averaged with the product of distribu- 
tion function and multiphonon transition probability. 

Now we can give the explicit expressions for M,,“(f) 
and S,,(1, x). As already indicated by the sums over 
phonon numbers, the Einstein model is used for the 
phonons, which means that the phonon spectrum of 
silicon is replaced by one effective mode with energy 
hw,. Such a treatment is standard in multiphonon 
theory to restrict the number of parameters to a 
minimum. On the other hand, it often seems to be just 
the local modes connected with the electronic defect 
that couple effectively to the bound carrier, which 
gives the use of the Einstein model a certain justifica- 
tion. Since energy can only be exchanged in amounts 
of a multiple of hw,, the effective phonon energy is 
the natural unit on the energy scale. 

The multiphonon transition probability M,(I) for 
nonradiative transitions is given by 

M ([) u T SY 
C,” = 7 exp[-S(2f, + l)] 

x exp g; I,(2s&GZX)). 
( > 

(11) 



1588 A. SCHENK 

Here Z, labels the modified Bessel function of order 
Z,fa = [exp(hw,/kT) - 11-l is the Bose function, and 
S the Huang-Rhys factor, which is a measure of the 
coupling strength of the diagonal electron-phonon 
coupling. The upper sign in the prefactor refers to 
electrons, the lower to holes. This prefactor stands 
instead of unity in the case of radiative multiphonon 
transitions. It shows a certain artefact of the theory 
that will be discussed later. It can not be excluded 
that coupling strength and effective phonon energy 
have different values for the two different capture 
processes. We will assume that the difference between 
the thermal cross sections of electrons and holes is 
mainly due to the off-diagonal coupling terms, which 
determine the constants r,A, and therefore, use the 
same values of S and ho,, for both capture processes. 

effective mass, respectively. For hole tunneling we 
assumed that the hole tunneling mass m, is isotropic. 
This mass must be regarded as the major uncertainty 
in the description of tunneling in semiconductors. 
Silicon has not only warped E(k)-surfaces, but de- 
generate bands of light and heavy holes at k = 0. A 
strong electric field will remove this degeneracy and 
change the curvature of the bands in the vicinity of 
the Z-point. Since it is nearly impossible to calculate 
the consequences of this effect on the tunneling 
probability (see [38] for an attempt), we will use the 
value of the light hole mass (mu, = O.l6m,) in our 
model[39,40]. 

Inserting (12), (13) and Boltzmann factors for&(Z) 
into (9) and (10) gives for the field enhancement 
factors 

rrC(Z-S)2exp -$$ Z,(z) 1 
E, - Iho, 

&P - 

tLW)l= ‘3o 1 1 i - x,y,* ( > h*i.ll 

3 1 (I - S)2exp -$$ Z,(z)Jitrw,--E, 
1 I 

’ 

I>,’ 
hl 

gp [F(x )I = 

(14) 

(1% 

The bound-to-band tunneling transitions are 
direct, first order processes due to the above men- 
tioned delocalization of the bound state in k-space. 
The constant field approximation is used, which is 
much better fulfilled for trap tunneling than for 
band-to-band tunneling, again due to the strong 
localization of the bound state in real space. There- 
fore, the transition rate only depends on the local 
field strength at x. Apart from a field independent 
factor, the tunneling probability then is determined 

by 
YJ,x)= 1 

i = x,y.z 

~“(l,x)=Jzg9 Eg-f;-‘hwo . ( > (12) 
” 

In eqn (12) 9 denotes the electrooptical function 
Pb) = Ai’2(_v) - y Ai2(v), and 8, the electrooptical 
frequency, 8, = (e2F2/2hm,)‘13. The mass m,,, is the 
electron tunneling mass in field direction, which 
differs for the three pairs of equivalent conduction 
band valleys (i = x, y, z) 

4 
mi*’ = 1 - (1 - m,/ml)Ff(x)/F2(x) ’ (13) 

Fi(x) is the ith field component in a coordinate 
system with axes parallel to the [lOO]-directions. The 
masses m, and m, are the transverse and longitudinal 

We have introduced the abbreviation 

z = 2SJfrn (16) 

for the argument of the Bessel function. 
The further calculation is performed only for 

g.[F(x)]. Results can be immediately applied to 
g,[F(x)] by minor changes that are obvious from eqns 
(14) and (15). 

The sum in the numerator of (14) is split into two 
partial sums below and above the band edge, respect- 
ively 

(17) 

Because the asymptotic behaviour of the function 
T(JJ) for large negative arguments is given by 

lim flQ) = t6, 
y--co 

(18) 

the partial sum above the band edge in the numerator 
together with the denominator of eqn (14) tends to 
unity for vanishing electric field. For nonvanishing 
field the value is smaller than unity, since density of 
states is spread over the gap by the field. We take 
advantage of the fact that this deviation from unity 
is negligible for small field strengths and unimportant 
for large fields, where the enhancement factor be- 
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comes much greater than unity. Consequently, we This relation cannot be fulfilled, if the field strength 
can write for all field strengths is so small that the most contributing transitions 

&[m)l= 1 + i”[W)l (19) 
occur close to the band edge, i.e. for those phonon 
numbers I* which lead to E, - Pho, x h8, I. On the 

with other hand, (24) is related to the first condition (21). 

We are now able to use approximate expressions for Extremely large fields, which give an electrooptical 
the tunneling probability at energies below the band energy h1!9~,,, comparable to the trap depth E, (and 
edge, keeping the correct zero-field limits for g, and therefore very small phonon numbers Z*) are ex- 

i” L?“(O) = 1, &l(O) = 01. eluded by (24) as well. 
With (24) we may use the asymptotic form of the 

3. SIMPLIFIED MODELS electrooptical function 9 for large positive argu- 

The first basic assumption for a simplification of 
ments (WKB approximation) 

the field enhancement factor &, which has already 
been mentioned above, is 

1% 1. (21) 

For the sum in the numerator of (20) this implies that 
x exp[ -tr+r]. 

transitions near or even at the trap level Et must The denominator in the prefactor gives rise 

(25) 

to a 
remain negligible. This is a constraint to the tempera- divergency, if the WKB approximation breaks down. 
ture and field strength and restricts the simplified The field enhancement factor (20) becomes with 
model, roughly speaking, to the pre-breakdown range (21)_(25) 

1 6 
dE(E -Sfiwo)*exp 

L?n P(x)1 = 
8 0 s 

z~,h~~(z)i=~,,~exp[-~~~~] 
t 

3 m 
s 

dE(E - She,)* exp ZEIhyl(z),/~ 
El 

(26) 

at a given temperature. With the relation (21) we may 
replace the sums in (20) by integrals 

and use the asymptotic form of the modified Bessel 
function for large orders 

I> . (23) 
The second basic assumption excludes both too small 
and too strong electric fields 

Et - lhw, 

h@,,, g l. 

where the asymptotic form (23) of ZEjloO(z) has to be 
inserted. 

The integrand in the numerator is determined by 
the overlap of an exponentially decaying function 
originating from the decreasing multiphonon tran- 
sition probability (the process is as less probable as 
more phonons are involved), and an exponentially 
rising function, which describes the increasing tunnel- 
ing probability as the energy approaches the band 
edge. The resulting bell-shaped curve has its maxi- 
mum between trap level and band edge. The position 
of that maximum, which we denote by E, in the 
following, is mainly determined by the exponential 
terms. It moves to the trap level with rising field 
strength or decreasing temperature (coupling 
strength), and it moves to the band edge with decreas- 
ing field strength or rising temperature (coupling 
strength). This maximum determines the most 
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probable transition energy, and therefore the most performed with the line shape function only, i.e. 
probable recombination path. Figure 1 illustrates the without (I - S)2/S in eqn (11). It is interesting to note 
change of the recombination path with field strength. that the factor does not appear in a two-phonon 

The value of the field enhancement factor depends model[43], if one distinguishes between accepting and 
only weakly on the non-exponential terms, which promoting modes. 
justifies two further approximations. We have already The second approximation refers to the factor 
mentioned that the factor (E - ShoO)* exhibits an (E, - E)-‘, which is related to the WKB approach 
artefact of the standard multiphonon theory[41]. If E (25). It strongly falsifies the tunneling probability at 
equals the lattice relaxation energy ~a = Sfn~,,, the small field strengths, but has only little influence on 
probability of thermally induced transitions vanishes. the result in the pre-breakdown range. Therefore, we 
This happens when in a configuration-coordinate replace it by a mean value 2/E,. 
diagram the lower potential parabola (bound state) Equation (26) then turns to 

crosses the upper parabola (band state) at its mini- 
mum. Then the lattice potential around the crossing 
point is completely anharmonic in contradiction to 
the requirements of first order perturbation theory. 
Extrinsic self-trapped centers[42] are a well known 
example. In a strong electric field the upper parabola 
is transformed into a continuum of such parabolas, 
which spread to lower energies with decreasing den- 
sity, so that the described situation is always present 
at a transition energy E = cR. As long as the lattice 
relaxation energy cR is small compared to the opti- 
mum transition energy E,,, the factor (E - Shw,)* is 
unproblematic. Nevertheless, we will replace it by 
unity, which actually means that the average (9) is 

T 

4 E,(x) - Et 
X X 

weak field strong field 

Fig. 1. Change of the most probable transition path with 
electric field strength. E,(x) denotes the conduction band 
edge at x, E,(x) - E, is the trap energy level and Aw,, the 

effective phonon energy. 

In order to make the model suitable for device 
simulation, we must avoid numerical integrations. 
Hence, we evaluate the integrals analytically and then 
compare the approximate results with the “exact” 
expression (27). We will use the fact that the inte- 
grands are bell-shaped and fall off exponentially at 
both sides. Therefore, the stationary phase method 
can be applied. The exponent is developed up to 
second order around its maximum, which determines 
the transition energy E,, 

J = 
I 

b dE exp(f(E)], 

AE) = (E,) + (E - E&YEo) 

+ (E - Ed* 
2 f”W. (28) 

The transition energy E,, is given by the zero of the 
first derivative of the exponent 

f’(E,,) = 0. (29) 

If we extend the limits of the integral a and b to - cc 
and co, respectively, the integral J is approximately 

J x exp[f(EO)] j:m dE exp[(E ~Eo)2_/“(E,,)] 

= explf(EtJl J 2x 
v”(E,), . (30) 

The main problem is to find the root E,, of eqn (29) 
which we need for the approximate solution (30). To 
solve that problem we examine two usual approaches 
of multiphonon theory-the high and low tempera- 
ture approximation. 
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3. I. High temperature approximation 

The integrals in the numerator and denominator of 
expression (27) for the field enhancement factor are 
determined by a thermal weight function 

W(E) = [E2 + (zhW0)2]-1/4 exp{Jw 

-&f&+j-qgJ]-&} C3’) 
with z defined in eqn (16). In the high temperature 
approximation one assumes 

kT 
z+2stlw. 

0 
(32) 

The thermal weight function (31) then becomes 

W(E) = $ST&J exp[ (E+Y] (33) 

with the lattice relaxation energy 6s = Shw,. If we 
insert this into eqn (27), we get for the field enhance- 
ment factor 

Here we have denoted with EL, the activation energy 
for capturing an electron from the conduction band 
edge (see Fig. 2): EO, = (Et - ~J*/4c,. Now, using 
(30) and (37)-(39) in eqn (34), the field enhancement 
factor in the high temperature approximation can be 
written as 

with E, given by eqn (35) and E,,(F) = 
(E, - Q2/4cR. The pre-breakdown behaviour is 
caused by the interplay of the three exponential 
factors. Their physical meaning is easily understood. 
The first exponent contains the difference of the 
activation energies for electron capture without and 

1 

&j” [F(x)] = i = x.Y3 

yjo’dEexp{ -w}exp{ -;rgr} 
3 jz dE exp{ -$$$bxpeln(E - 411 ’ (34) 

We first calculate the integral in the numerator. The 
root (29) can be found analytically and gives for the 
transition energy as a function of field strength and 
temperature 

&, = 2,&,/s - &] - ER (35) 

where we have used the abbreviation 

(36) 

The second derivative of the exponent which is 
responsible for the fall-off of the integrand, turns out 
to be 

f’(E,)= -L- 
1 

2%kT (h~9~,,, ),‘*dw; 
(37) 

where both terms can have the same order of magni- 
tude. If we proceed with the denominator as with the 
numerator, we get for the zero-field transition energy 
Eg, for the exponent g(E) of the integrand and its 
second derivative 

c,kT 
E;xE,+-, 

E,+c, 
(38) 

g(E:) 
E&t 4 1 x -kT-kT+21n , 

’ 
f (39) 

with electric field, respectively. A rising electric field 
lowers the effective activation energy for carrier cap- 
ture, since the effective trap depth for the thermal 
(vertical) transition is no longer E, but E, < E,. We 
illustrate both activation energies in Fig. 2. The 
second exponent describes an increase of occupation 
probability as the trap depth is effectively lowered by 

configuration coordinate 

Fig. 2. Lowering of the activation energy in a strong electric 
field. Q. denotes the crossing points of the adiabatic pokn- 
tial parabolas (electron capture), .zR is the lattice relaxation 

energy. 
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the electric field. The last exponential is the well 
known tunneling factor for the penetration of a 
triangular barrier, but with a field dependent tunnel- 
ing depth A = E, - E,, measured from the conduction 
band edge (compare Fig. 1). 

It should be mentioned that the result for hole 
capture follows from (40), if Et is replaced by Es - E,, 
Q,,, by O,, and cR by the corresponding value for hole 
capture. The advantage of the high temperature 
approximation is, besides its physical transparency, 
that only two parameters of the recombination center 
are necessary for each lifetime-the energy level, and 
the lattice relaxation energy. The drawback is the well 
known fact that the prerequisite (32) actually holds 
“after the crystal has already smelted”. We will 
discuss the quality of the high temperature approxi- 
mation in the next subsection. 

3.2. Low temperature approximation 

In contrast to (32) the low temperature approxi- 
mation is defined by 

(41) get 

f’(Eo) = -A- 
l 

(45) 
0 0 (i=i,,, ))“JGZ . The thermal weight function now takes the form 

9 0.5 -(.‘.<.. 
Si:Au 

s \‘. \‘., 6 0.4 - ,;_ low-temperature 
\‘. 

$ 

,__ approximation 
\‘_ 

5 0.3 - 

s 

/” v. .‘. 

high-temper&k, 
:E 0.2 _ approxlmrtion 

I 
‘1 

“_ 
E 0.1 -. -.,.. 

-2’..... ._ ‘......_ 

--__ 
0.0 . ’ 

0.2 0.4 0.6 0.0 1.0 1.2 1.4 

Electric Field [W/cm] 

Fig. 3. Transition energy, measured from the trap level, as 
function of the electric field. Parameters: E, = 0.55 eV, 

S = 3.5, hw, = 0.068 eV, T = 300 K. 

pre-breakdown range. Hence, because there is no 
significant difference for the function E,,(F) in both 
approximations, we can avoid the iteration of 
eqn (44), and use the analytical solution (35) instead. 
For the second derivative of the upper exponent we 

W(E)= E-1’2exp The zero-field transition energy Ei in the denomi- 
nator is also solution of an implicit relation 

x exp[ -&1n(i)]. (42) 

Inserting into eqn (27) gives for the field enhancement 
1 =2vr$+lne)]. (46) 

factor 

c (hQ, ,,)3’2 4 

g” [F(x)] = i = xgJ 
4E,, s dEE-i~2exp{-~+&[l-&ln(E/eR)]-~(!$$~} 

3 dEE-“‘exp 
{kTAw,[ o ] 

-E +K 1 -Eln(E/sR) +iln(E - Et) 
} ’ (43) 

We again use the exponential term to determine the 
most probable transition energy Eo. The factor E-II2 

is pulled out of the integral at this energy. The same 
is done in the denominator. The root of the first 
derivative of the exponent in the numerator now is 
solution of the implicit equation 

A sufficient approximate root that is in agreement 
with the low temperature approach, is 

EOmE +kT 
ON f 2 . (47) 

Exponent and second derivative at this energy are 
given then by 

There is no satisfactory approximate solution to this 
equation in the field strength range of interest. The 
numerical solution for E, as function of field strength 
is shown in Fig. 3, using parameters of the gold 
acceptor in silicon[36,37,44,45], and is compared 
there with the result of the high temperature approxi- 
mation (35). A serious discrepancy is observed only 
beyond about 1.2 MV/cm, but there the validity of 
the basic assumption (21) already starts to fail, i.e. we 
must consider this field strength as the end of the 

g”(E!) 
2 

= -(kT)2. (48) 

If (30), (45), (47) and (48) are inserted into (43), the 
field enhancement factor in low temperature approxi- 
mation becomes 

x (h8,,,)3’4(Et - Eo)“4 3’2 

24% 
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x exp - 

E,-E,+ho,-kT+E,+kT/2 
-- 

ha0 2hw, ho0 

(49) 

The structure of that formula is quite similar to the 
result in the high temperature approximation. If we 
compare the three exponentials, we notice that only 
the first one is different. The activation law of the 
high temperature approximation is replaced by a less 
transparent factor depending not only on the lattice 
relaxation energy alone, but explicitly on the effective 
phonon energy. 

In Fig. 4 we compare the field enhancement factors 
of electron lifetimes, calculated in the different 
models with parameters of the gold acceptor in 
silicon. The dashed line represents the high tempera- 
ture approximation [eqn (4011, the dotted curve is the 
result of the low temperature approximation [eqn 
(49)], and the solid curve originates from the “exact” 
expression (27), where the integrals have been calcu- 
lated numerically using the original asymptotic form 
of the Bessel function (23). The agreement of the low 
temperature approach with the “exact” curve is excel- 
lent over the whole range of field strength, but even 
the high temperature approximation reproduces the 
general course quite well. The reason for the devi- 
ation of the latter is the strong violation of the 
precondition kT $ hw, for the example Si-Au 
(kT = 0.0258 eV, hw, = 0.068 ev). 

Because of the good agreement we will use eqn (49) 
for the further discussion. 

4. TEMPERATURE DEPENDENCE OF ZERO-FIELD 
LIFETIMES 

In order to study the temperature dependence of 
the SRH lifetimes, we must know the temperature 

Electric Field [W/cm] 

Fig. 4. Field enhancement factor as function of electric field 
in different approximations: high temwrature approxi- 
mation (dashed curve), low te&watuie approx&ation 
(dotted curve), and “exact” ean (27) (solid curve). For 

parameters sek Fig. ‘3.‘ 

behaviour of their zero-field part QJx, F = 0) [com- 
pare eqn (811. We go back to the general expression 
(6) for the electron lifetime (the expressions for hole 
lifetimes are straightforward) 

t^nl(x, F = 0) = T$%~(x)$ C p:(I)~,(l) 
cl>0 

x exp ~ (50) 

where we have inserted the Boltzmann factor for the 
distribution function and replaced the tunneling 
probability by unity. We assume that the off-diagonal 
matrix element, which is contained in r$, does only 
weakly depend on temperature, so that we can neglect 
this effect. We also neglect a possible temperature 
dependence of the trap energy level E,. Then we may 
proceed as in the previous section and use the high 
and low temperature approximation, respectively. 

4.1. High temperature approximation 

Retaining only the temperature dependent factors 
and using (33) we get 

i;i(T)~-$exp(~+-&)J‘,~dE 

x exp[ -w]exp[i ln(E - E,)], (51) 

and with (37)-(39) 

i;l(T)wTexp(-!$+&). (52) 

Equation (52) shows that in the high temperature 
approximation the zero-field lifetimes are thermally 
activated. Taking 300 K as reference temperature, we 
may write finally 

f”(T)=f”(300) 7 ( > 
xexpri,‘4)(l-$)]. (53) 

4.2. Low temperature approximation 

A better approximation is to use (42) in (50). 
Retaining again only the temperature dependent fac- 
tors, we have 

1 
+ f ln(E - E,) . (54) 

Proceeding as in the previous section, i.e. using (47) 
and (48), the temperature dependence of the inverse 
zero-field lifetime becomes 

f;‘(T) N T3j2 exp . (55) 
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Fig. 5. Temperature dependence of zero-field electron life- 
time in the low temperature approximation. z,, = lo-' s has 

been assumed for T = 300 K. 

The exponential factor can be neglected, since 
kT < hw, in accordance with the Iow temperature 
approach. Thus, we get finally 

Q (T)=2^ (300) II n 

The result is plotted in Fig. 5. As the temperature 
goes down, the zero-field SRH lifetimes increase, 
since the probability of thermal capture decreases. 
Whereas in the high temperature approach this effect 
is thermally activated, the temperature dependence in 
the low temperature approximation is much weaker. 
The T3’*-law should be much more realistic in silicon 
than the activation law (53), at least for the example 
under consideration. 

5. RESULTS AND DISCUSSION 

The further discussion will also be based on the 
extensively studied gold acceptor in silicon[45]. We 
use for the trap level E,= OSSeV, for the 
Huang-Rhys factor S = 3.5, and for the effective 
phonon energy hw,, = 0.068 eV. The latter value was 
suggested by Mott er a1.[46], and is close to the optical 
phonon energy. No temperature dependence of the 
thermal cross section was found[45], which supports 
the large value of hw,. Using this value, Morante 
et a[.[471 obtained a Huang-Rhys factor of 2.2-2.6. 

I 1 
0.0 0.1 0.2 0.3 0.4 0.5 

Energy [eV] 

Fig. 6. Comparison of the different approximations for the 
thermal weight function W(E). For parameters see Fig. 3. 

0.2 0.4 0.6 0.6 1.0 1.2 1.4 

Electric Field [MVkm] 

Fig. 7. Electron lifetime as function of the electric field for 
different field orientations. For parameters see Fig. 3. 

In [37] it was shown that the best fit to DLTS data 
in a two-phonon model with accepting and promot- 
ing modes gives the larger value S % 3.5. Because we 
have neglected the square of the crossing point 
(I T S)*/S in (1 1), in agreement with the consequences 
of two different phonon modes, we also use S = 3.5 
here. 

The field dependence of the SRH lifetimes is well 
described by field enhancement factors (8), calculated 
in the low temperature approximation of multi- 
phonon theory [eqn (4911. Despite the approximate 
analytical solution of the convolution integrals, and 
despite the approximate form of the multiphonon 
transition probability, the agreement with the more 
general factor (including numerical integration and a 
more exact thermal weight) is surprisingly good, as 
shown in Fig. 4. This can be understood, if the three 
expressions for the thermal weight function W(E) are 
compared among each other. We plotted these func- 
tions over the energy range between trap level and 
band edge in Fig. 6. Obviously, the deviation of the 
high temperature result for the field enhancement 
factor is caused by the rather strong deviation of the 
corresponding thermal weight function (33) from the 
“exact” one (3 1). Near the band edge all three curves 
coincide. Thus, the overlap with the zero-field density 
of states must result in equal values, independent of 
the applied approximation, giving also the same value 
for the denominator in the ratio which determines the 
field enhancement factor. On the other hand, the size 
of the field effect is determined by the numerator, 
which is overestimated by the thermal weight func- 
tion of the high temperature approximation. 

The anisotropy of the field effect of the electron 
lifetime is illustrated in Fig. 7. A lifetime of lo-’ s was 
chosen as the zero-field limit at room temperature. 
The numerical values for the tunneling mass follow 
from (13). In Table 1 we arranged the expressions for 
the resulting masses in (lOO)-, (llO)-, and (11 l)- 
direction. Using m, = O.l9m, and m, = 0.92m, one 
obtains mc,,,,j = 0.315m, and mc,,,) = 0.258m,. The 
field enhancement is dominated by the pair of valleys 
with the smallest mass. Thus, one could drop the term 
with m,,,, in the case of (lOO)-direction, and the two 
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Table 1. Electron tunneling Massey for different orientations of the electric field 

i=x i=y i=z 

(100) F; /F2 I 0 0 

ml. II ml ml 4 

tetm with qII, my,ll in the case of (1 IO)-direction, 
respectively. Figure 7 shows that the maximum differ- 
ence between the two extrema (100) and (111) is 
about a half order of magnitude only. In the light of 
the assumptions made so far and the uncertainty 
caused by the trap parameters, this difference is 
rather small. The reasons for that are the six conduc- 
tion band valleys of silicon, which effectively average 
the tunneling probability. 

The temperature dependence of the field enhanced 
electron lifetime is shown in Fig. 8 using the T-‘/*-law 
[eqn (56)] for the zero-field limits. As expected, there 
is a pronounced increase of the field effect at low- 
er temperatures. This emphasizes the crucial impor- 
tance of bound-to-band tunneling transitions at oper- 
ating temperature of liquid nitrogen (LN,). On the 
other hand, the range of validity of our model is 
further restricted when the temperature goes down, 
since the optimum transition energy E,, approaches 
the trap level, and the precondition 1% 1 (21) fails. 

An important point for the applicability of the 
model is the number and availability of the par- 
ameters. The supposed model (49) with E,, given by 
eqn (35), based on the low temperature approach, 
contains the following characteristic energies: 

U-thermal energy 
h@,-electrooptical energy 
&-trap energy level 
+-lattice relaxation energy 
Ao,-effective phonon energy 
E,-, = E&3,, +, E, , kT)-optimum transition energy. 

lo-3 ., 
Si:Au 411, 

,o_llL :a ;, , I 
0.2 0.4 0.6 0.6 1.0 1.2 1.4 

Electric Field [W/cm] 

Fig. 8. Electron lifetime as function of the electric field in 
(11 I)-direction for different temperatures. For parameters 

see Fig. 3. 
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The first energy is given by the temperature, the last 
one is only a function of the others. The electroopti- 
cal energy h8, = (e2h2F2/2m,)“3 is defined by the field 
strength F(x) and the tunneling mass m,. Hence, this 
energy is also given, apart from the uncertainty 
concerning the correct effective mass m, for the 
tunneling holes. The three remaining energies E,, Ed, 
and ho, are (in principle) available by DLTS for each 
kind of recombination centers. If nothing else is 
known about the nature of the traps, one has to 
proceed in a practical way. E, should be replaced by 
EJ2 then, because mid-gap centers are most efficient 
in recombination. The two remaining (physical) par- 
ameters ~a = 5%~~ and ho,, which are characteristic 
for an individual recombination center, may serve as 
fit parameters. Realistic values for silicon are: 
ho, zs 0.065 eV, .sR N [lo@-3001 meV. 

It is interesting to study the influence of cR and ho, 
on the field dependence of the lifetimes. We showed 
above that in the high temperature approximation the 
result [see eqn (40)] only depends on eR, while tro, 
does not occur explicitly. Hence, it is to be expected 
that even in the low temperature approach the result 
does not vary very strongly with ho,, if &a = SW, is 
kept constant. This is illustrated in Fig. 9. Keeping 
the lattice relaxation energy constant at a value of 
240 meV, and decreasing the phonon energy from 60 
to 24 meV results in a steeper course of the pre-break- 
down, but the maximum difference is not much more 
than one order of magnitude. 

The lattice relaxation energy cR has the major 
influence on the field effect of the lifetimes, as shown 

Si:Au clllr 

S=4,fbab=60meV 

0.2 0.4 0.6 6.6 1.6 1.2 1.4 
Electric Field [W/cm] 

Fig. 9. Electron lifetime as function of the electric field in 
(111 )-direction for constant lattice relaxation eenrgy cs, 
but different Huang-Rhys factor S and effective phonon 

energies hw,,. T = 360 K. 
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Fig. 10. Electron lifetime as function of the electric field in 
(11 I)-direction for different lattice relaxation energies ea. 

T=3OOK. 

in Fig. 10. As the electron-phonon coupling becomes 
weaker, tR decreases, and the lifetimes decrease faster 
with rising field strength. The onset of the field effect 
between 0.2 and 0.3 MV/cm is independent of the 
center parameters. Decreasing Lo has the same effect 
as decreasing temperature, therefore, the above made 
remark on the range of validity of the model also 
holds for the lattice relaxation energy. 

To conclude, the derived model for the field and 
temperature dependence of SRH lifetimes is a useful 
tool for the calculation of bound-to-band tunneling 
leakage phenomena in silicon devices. Because of its 
analytical simplicity it is suitable for the implemen- 
tation into device simulation programs. The three 
physical parameters of the model (E,, ta, and ho,), 
which are necessary to describe the recombination 
center and the coupling of its electronic wave func- 
tion of the lattice, may be reduced to actually one 
crucial parameter (cR), if no detailed information 
about the nature of the recombination centers is 
available. 
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