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Abstract

Topic of this thesis is the development and extension of three-dimensional quantum ballistic
transport simulators for the modeling of nanowire and planar field effect transistors (FETs) at
the nanometer scale, as well as the investigation of band structure effects by various atomistic
methods in order to improve the effective mass approximation (EMA) being at the base of the
present simulators.
The accurate description of strongly confined nanostructures, with typical dimensions below
5 nm, requires approaches which go beyond the EMA. The empirical tight-binding method
(ETB) is widely appreciated since the related computational burden is notably smaller compared
to other approaches such as the empirical pseudopotential method (EPM). On the other hand,
the EPM yields a more physical picture of the charge density and the related computational
burden is still small compared to fully ab-initio approaches. Detailed comparisons between the
EMA, ETB, and EPM are carried out for various nanostructures. For this purpose, and for
a future use within a quantum transport simulator, a fully scalable band structure calculator
for bulk, nanowires, and wells based on the EPM is provided. A popular nonparabolicity (NP)
model for the improvement of the EMA is reconsidered, i.e. adapted, for the case of nanowires
and quantum wells. The parametrization of the present NP models is accomplished by means of
the ETB.
The scattering matrix algorithm (SMA) for the description of quantum transport within the
Landauer-Büttiker framework as well as related numerical issues are thoroughly reviewed. For the
description of nanowires with arbitrary cross sectional shapes, the finite element method (FEM)
is implemented within the SMA. The parallelization of time consuming routines is accomplished
by means of OpenMP and the MPI for the use on large scale compute clusters. Extensive
calculations in order to investigate the impact of band structure effects on transfer characteristics
of planar and nanowire FETs of various shapes are carried out. For this purpose, the NP models
are implemented by means of a spectral method. Furthermore, detailed comparisons with a
full-band tight-binding quantum transport simulator are carried out in order to validate the NP
models.
Finally, inelastic scattering processes and NP are taken simultaneously into account for the
simulation of nanowire FETs.
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Zusammenfassung

In dieser Dissertation werden dreidimensionale ballistische Transportsimulatoren auf quanten-
mechanischer Basis entwickelt und erweitert. Sie dienen der Modellierung von Nanowire- und
planaren Feld-Effekt-Transistoren (FETs) im Längenbereich von wenigen Nanometern, sowie
der Untersuchung von Bandstruktur-Effekten mit verschiedenen Methoden. Letztere verbessern
die gängige Effektivmassen-Approximation (EMA), die auch den vorliegenden Simulatoren zu
Grunde liegt.
Die genaue Beschreibung der elektronischen Struktur von Bauelementen mit typischen Abmes-
sungen im Bereich von 5 nm erfordert Methoden, die über die EMA hinausgehen. Hier ist die em-
pirische Tight-Binding-Methode (ETB) sehr populär, da der mit ihr verbundene Rechenaufwand
erheblich kleiner ist als bei anderen Verfahren, wie z.B. der empirischen Pseudo-Potential-
Methode (EPM). Allerdings liefert die EPM eine physikalisch genauere Beschreibung der Ladungsträgerdichte,
und der Rechenaufwand bleibt im Vergleich zu ab-initio-Methoden immer noch gering. Detail-
lierte Vergleiche zwischen EMA, ETB und EPM werden anhand verschiedener Nanostrukturen
durchgeführt. Dazu wurde ein vollständig parallelisiertes Bandstruktur-Programm für Bulk,
Wires und Wells basierend auf der EPM implementiert, das zukünftig in Transportsimulatoren
eingesetzt werden kann. Ein weit verbreitetes Nichtparabolizitätsmodell (NP) zur Verbesserung
der EMA wird auf Nanowires und Wells angepasst, wobei die Parametrisierung mithilfe der
ETB-Methode erfolgt.
Der Streumatrix-Algorithmus (SMA) zur Beschreibung des Quantentransports im Rahmen des
Landauer-Büttiker-Formalismus, sowie damit verbundene numerische Probleme werden tiefer
analysiert. Für die Modellierung von Nanowires mit beliebigen Querschnittsflächen wird die
Finite-Elemente-Methode im SMA benutzt. Die Parallelisierung von zeitaufwändigen Routinen
wird mittels OpenMP und MPI für die Verwendung auf Grossrechnern bewerkstelligt. Um-
fangreiche Berechnungen von Transfer-Kennlinien verschiedener Nanowire- und planarer FETs
verdeutlichen den Einfluss der Bandstruktur-Effekte. Dazu wurden die entwickelten NP-Modelle
unter Benutzung einer spektralen Methode implementiert. Detaillierte Vergleiche mit einem
atomistischen Tight-Binding-Transportsimulator ermöglichen die Validierung der NP-Modelle.
Schliesslich werden gleichzeitig NP-Effekte und inelastische Streuprozesse bei der Simulation von
Nanowire FETs berücksichtigt.
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Chapter 1

Introduction

Integrated circuits (ICs) are present in almost all electronic equipment used in the domestic or
industrial field. Compared to the ICs back in the 1960’s comprising around 50 components,
nowadays high-end-processors such as graphic processing units (GPUs) contain up to 2.1 × 109

transitors on a surface of less than 6cm2. This astonishing integration density is the result of
long lasted research on the field of miniaturization giving rise to indespensable methods such
as photo-lithography. A concurrent trend to improve the performance, beside miniaturization,
consists in an increment of the microprocessor area or an optimization of the available resources
by altering the circuit design. However, the stringent limits for the chip area often exclude these
two alternatives thus highlighting the importance of miniaturization.

In virtue of the ITRS 2005 [1], sub-10-nm channel-length FETs will be manufactured in the year
2016 for the HP22 technology node while 5-nm channel lengths will be required for the HP14 node
in year 2020. Silicon-on-insulator (SOI) transistors with comparable dimensions [2] are hard to
fabricate and are known to suffer from severe short-channel effects due to a reduced electrostatic
control by the gate contact. Gate leakage currents caused by the reduced thickness of the oxide
layer further aggravate the circumstances. Nanoelectronic research is partially concerned with
the development of novel device architectures to overcome these shortcomings and thus to exploit
the limit of CMOS technology. Promising materials and device components such as graphene
or carbon nanotubes represent also hot topics in this field beside emerging approaches such as
spintronics.

A superior electrostatic control can be straightforwardly achieved by adding further gate contacts
to a device such as in the case of triple-gate or gate-all-around nanowire field effect transistors
(FETs). Nanowires are attractive not only from an electrostatic point of view [3], but also due to
their capability to act both as FET and wire connector. Realizations of nanowires consisting of
various materials such as Si[4], GaAs[5], or Ge[6] with different cross sectional shapes and channel
orientations have been reported in the literature as well as nanowire FETs with a triangular [7],
rectangular [8], or cylindrical [9] nanowire as channel.

Technology computer aided design (TCAD) can be used to support the fabrication of such novel
devices by means of preliminary simulations to investigate their features and performance lim-
its. The use of quantum mechanics is mandatory for the description of these devices since the
typical dimensions are of the order of the de Broglie wave length. The effective mass approxi-
mation (EMA) is a widely used approach within nowadays quantum transport simulators since
the implementation is rather simple and computation times are kept within reasonable limits.
Many-body effects due to Coulomb interaction are typically accounted for by the Hartree ap-
proximation. The finite difference (FD) method on a tensorial grid is a popular choice for the
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2 CHAPTER 1. INTRODUCTION

discretization of the Schrödinger and Poisson equation. Particularily in the case of nanowires
with complex surfaces, the finite element method (FEM) provides more flexibility than the FD.
However, the EMA is intended for situations, where the variation of an external perturbation is
small compared to the lattice periodicity of the considered material. This prerequisite is clearly
violated for nanowires with small (typically ≤ 5 nm) diameters. In this regime, fully atomistic
quantum transport simulators are more accurate and corresponding results notably differ from
the ones obtained by the EMA. The latter shortcomings of the EMA are referred to as band
structure effects. Atomistic approaches to quantum transport range from empirical tight-binding
(ETB) methods to fully ab-initio appraches. However, the considerable computational burden
caused by these methods is the main reason why the EMA remains attractive. Nonparabolicity
(NP) models gained a lot of attention since they aim at improving the EMA while keeping a
comparable simulation efficiency. In this work, TCAD tools are developed (extended) in order
to include suitable NP models for a more accurate description of aggressively scaled nanowire
and planar FETs. The focus in this work is laid on band structure effects instead of scattering
phenomenons without the intention to underrate the latter effect.
This work is organized as follows. In chapter 2 some important simplifications for the treatment
of the inhomogeneous electron gas are briefly reviewed such as the Born Oppenheimer and the
Hartree approximation for the treatment of the electronic system. The Hartree approximation
is used within the quantum transport frameworks employed in this work in order to partially
account for many-body effects.
Chapter 3 is concerned with the band structure calculation of bulk materials and nanostruc-
tures by means of different approaches. The ETB and the empirical pseudopotential method
(EPM) are described and comparisons between the ETB and EPM are carried out for the case of
nanowires and quantum wells. The EMA is revised and results are compared to atomistic data.
A widely used NP model being able to capture several band structure effects is considered and
appropriately modified for the case of nanowires and quantum wells. This modification is crucial
for the implementation of NP whithin the present quantum transport framework.
Topic of chapter 4 is the elaboration of algorithmic, numerical, and implementational details
concerning the present quantum transport simulator based on the EMA and the Landauer-
Büttiker theory. The FEM for the solution of the Poisson and Schrödinger equation within
the scattering matrix algorithm (SMA) is thouroughly described. In a corresponding appendix,
some notes on the SMA for arbitrarily oriented nanowire FETs are given. A spectral method is
employed in order to include NP within the SMA. The chapter ends with an investigation of the
impact of band structute effects on transfer characteristics of nanowire and planar FETs.
The parametrization of the present NP models is accomplished by means of band structures
derived from tight-binding models as described in chapter 5. Transfer characteristcs of nanowire
FETs obtained by means of the NP model are compared to results from a TB-NEGF simulator.
Finally, the combined effects of NP and scattering are investigated in chapter 6 after a short
survey of NEGF for quantum transport.
Beside the notable improvements provided for the SIMNAD software such as OpenMP paral-
lelization of time-consuming routines and the inclusion state-of-the-art libraries for linear and
eigenvalue problems, the TCAD tools provided in this work comprise a bulk, well, and wire EPM
band structure calculator as well as a fully MPI parallelized quantum transport simulator based
on the FEM.



Chapter 2

Inhomogeneous Electron Gas

2.1 Introduction

The behavior of charge carriers in semiconductor devices reaching the nanometer scale is best
described by means of quantum mechanics. Particularly in strongly confined systems, the
Schrödinger equation has to account for many-particle effects as the Coulomb repulsion be-
tween electrons becomes non-negligible. A gas consisting of N electrons of mass me interacting
by means of Coulomb repulsion and being subjected to a background potential V (~r) is referred
to as the inhomogeneous electron gas (IEG). The Hamiltonian of the IEG reads

Hel =
N∑

j=1

[
− ~

2

2me
∆j + V (~rj)

]
+

e2

8πǫ0

1...N∑

i,j
i6=j

1

|~ri − ~rj |
, (2.1)

where the coordinate ~rj = (xj , yj , zj) describes the j-th electron and ∆j = (∂2/∂x2
j ) + (∂2/∂y2

j )

+ (∂2/∂z2
j ). If V (~rj) does not depend on ~rj the system is referred to as the homogeneous electron

gas. The Hamiltonian (2.1) can be modified to include the spin degree of freedom , and therefore,
the spin-orbit coupling as well as any further relativistic correction which is not considered in this
work. Three approaches for the solution of the IEG problem are given by the Hartree method,
Hartree-Fock method, and density functional theory [10, 11], respectively. Generally, the electron
gas is an integral part of a system consisting of many atoms whose positively charged cores
generate the background potential V (~r). In this case, the ability to formulate an Hamiltonian
for the electronic system alone, and thus treating the ionic cores as if they were frozen, is provided
by the Born-Oppenheimer approximation (BOA). This simplification is of crucial importance not
only for electronic systems in semiconductors and shall be discussed thoroughly.

First, the full quantum many-body problem describing electrons and atomic cores is introduced.
Subsequently, the BOA is described and a simplified solution for the resulting equations is illus-
trated. Finally, the Hartree approximation for solving the IEG problem 1 will be addressed.

1The Hartree approximation is widely used within nowadays quantum transport simulators including the
framework described in this work.
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4 CHAPTER 2. INHOMOGENEOUS ELECTRON GAS

2.2 The Born-Oppenheimer Approximation

2.2.1 Full Many-Body Problem

A system consisting of M atomic cores 2 of mass Mj located at the positions {~Rj}j=1,2,...,M and
N electrons located at {~ri}i=1,2,...,N is now considered. For simplicity, the abbreviations

X = (~R1, ~R2, . . . , ~RM )

x = (~r1, ~r2, . . . , ~rN )

for cores and electrons, respectively, are employed. The full Hamiltonian reads

H(x,X) = Hel(x,X) + Tion(X) (2.2)

with
Hel(x,X) = Tel(x) + Vel−ion(x,X) + Vel−el(x) + Vion−ion(X). (2.3)

The operators

Tion(X) =

M∑

j=1

− ~
2

2Mj

∂2

∂ ~R2
j

Tel(X) =

N∑

i=1

− ~
2

2me

∂2

∂~r2i

denote the kinetic energy of the electrons and cores respectively. The term

Vion−ion(X) =
e2

8πǫ0

1...M∑

i,j
i6=j

ZiZj

|~Ri − ~Rj |
(2.4)

is the potential energy of the ions with Zi being the number of protons of the i-th ion and

Vel−el(x) =
e2

8πǫ0

1...N∑

i,j
i6=j

1

|~ri − ~rj |
(2.5)

is the potential energy of the electrons. Finally, the interaction between the electrons and the
ions is described by

Vel−ion(x,X) =

N∑

i=1

M∑

j=1

Φion
j (~ri), (2.6)

where

Φion
j (~r) = − e2

4πǫ0

Zj

|~r − ~Rj |
(2.7)

is the Coulomb potential of the j-th ion. The Schrödinger equation in the product Hilbert space
H = Hel ⊗Hion reads

H(x,X)Ψ(x,X) =
[
Hel(x,X) + Tion(X)

]
Ψ(x,X)

= EΨ(x,X), (2.8)

where Hel is the Hilbert space relative to the configuration space of the electrons x and Hion

relative to X.
2The terms core and ion will be used interchangeably.
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2.2.2 Approximation

The wave function Ψ(x,X) from Eq. (2.8) can be written as

Ψ(x,X) =
∑

ν

φν(x,X)χν(X), (2.9)

with {φν(x,X)}ν being the eigensolutions of the electronic problem

Hel(x,X)φν(x,X) = Eel
ν (X)φν(x,X) (2.10)

for a fixed X. Equation (2.10) corresponds to the IEG problem (2.1) with an appropriate V (~r).
The ansatz (2.9) is used in Eq. (2.8). Based on the assumption that the electron mass is much
smaller than any of the core masses, the mixing between different ν in Eq. (2.9) due to Tion can
be neglected [10, 11] and Eq. (2.8) simplifies to

[
Tion(X) + Eel

µ (X)
]
χµ(X) = Eχµ(X) (2.11)

for the different ν. For instance, an eigensolution of Eq. (2.8) is given by Ψ(x,X) = φν(x,X)χν(X).
The Eel

ν (X) acts as a potential energy in the vibrational problem (2.11) including the effect of
V ion−ion(X). The subsequent solution of the electronic (2.10) and vibrational problem (2.11) is
actually referred to as the BOA or adiabatic approximation. For a discussion on non-adiabatic
phenomena, i.e. effects which can not be reproduced within the BOA, such as the electron-phonon
interaction, see Ref. [10].

2.2.3 Solution

In general, where no analytic dependence of Eel
µ on X can be found, a solution of Eqs. (2.11)

and (2.10) can be accomplished by numerically solving the electronic problem for a finite set of
{X} and use the discretized Eel

µ for the solution of the ionic problem. Except for very simple

cases such as the H2 molecule it is obvious that the sampling of Eel
µ (X) represents a non-trivial

task. A more simplified scheme is based on a classical description of the atomic cores. Given an
initial configuration Xinit, the forces

−F (X0) ≡
∂Eel

ν (X)

∂X

∣∣∣∣
X=X0

(2.12)

are used to propagate the cores during a small time step. The iterative application of this
procedure, as summarized in Fig. (2.1), leads to a quantum mechanical description of molecular
dynamics (MD), where the motion of the cores is usually described by the ground state energy
Eel

g (X) of the electronic system. This represents an improvement compared to the purely classical
motion of electrons and atomic cores. At some point the cores are supposed to rest at the positions
X0 defined by

F (X0) = 0. (2.13)

The calculation of the atomic forces without knowing the dependence of Eel
ν on X can be ac-

complished by the Hellmann-Feynman theorem

−F (X) =
∂Eel

ν (X)

∂X
= 〈φν ,X|∂H

el

∂X
|φν ,X〉, (2.14)

where 〈x|φν ,X〉 = φν(x,X). Of course, modern MD simulators are much more involved than
the procedure scheched above, especially when a finite temperature is taken into account, and
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X
init

X
(i)

Assemble the Hamiltonian
of the electronic problem
Hel(x,X(i))φ(x,X(i)) =
Eel(X(i))φ(x,X(i)) and com-
pute the ground state φg.

Compute the forces F (X(i))
by means of the Hellmann-
Feynman theorem: −F (X(i)) =

〈φg,X
(i)| eHel(x,X(i))|φg,X

(i)〉

|F (X(i))| ≤ tol Done

X
(i) = X

(n+1) Compute a new configuration
X

(n+1) by means of F (X(i)).

No

Yes

Figure 2.1: Minimization procedure to find the rest positions X0 of the atomic cores defined
in Eq. (2.13). The Hellmann-Feynman theorem (2.14) is used to compute of the forces on the

atomic cores. The abbreviation H̃el(x,X) = (∂Hel)/(∂X) is used.
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the electronic energy is rather complicated having many local minima. For more details see
Refs. [12, 13]. Energy minimizations allow to investigate important physical quantities such as
the crystal structure of solids for instance.
The atomic cores being trapped at some positions, i.e. the rest positions found by a minimization
procedure for instance, is the picture that will be retained within the ballistic quantum transport
framework described in chapter 4. Obviously, the atomic cores are never perfectly at rest but
rather oscillate around the positions X0. Further details on these lattice vibrations can be found
in Ref. [10]. Furthermore, the impact of an applied voltage bias due to electric contacts, such as
in semiconductor devices, on the positions of the atomic cores is ignored.

2.3 The Hartree Approximation

A direct solution of the electronic problem

Hel(x)φ(x) = Eelφ(x) (2.15)

can be accomplished by expanding the solution φ in an orthonormal basis {ψµ}µ of Hel

φ(x) =
∑

µ

cµψµ(x). (2.16)

The X-dependence in Hel,Eel, and φ is omitted for simplicity. Using the expansion (2.16) in
Eq. (2.15), multiplying on the left by ψ∗

ν , and integrating over x yields an algebraic eigenvalue
problem. This approach, also referred to as exact diagonalization, is rather impracticable es-
pecially when a large number of electrons is considered as the resulting matrices can not be
diagonalized within reasonable time limits even on large scale computers. As mentioned in
Sec. (2.1), the DFT and the Hartree Fock method are two widely used approaches to tackle
the electronic problem. A simpler approach is given by the Hartree approximation. Within this
approximation, the ansatz for the total wave function reads

φ(x) = φ(~r1, ~r1, . . . , ~rN ) = ψ1(~r1)ψ2(~r2) . . . ψN (~rN ). (2.17)

The single particle states ψi are obtained by minimizing the functional

〈φ|Hel|φ〉

= 〈φ|
N∑

i=1


−

~
2

2me
∆~ri

+

M∑

k=1

Φion
k (~r) +

e2

8πǫ0

N∑

j=1
j 6=i

1

|~ri − ~rj |


 |φ〉

=

N∑

i=1

∫
ψ∗

i (~ri)

[
− ~

2

2me
∆~ri

+

M∑

k=1

Φion
k (~r)

]
ψi(~ri)d~ri

+
e2

8πǫ0

1...N∑

i,j
i6=j

∫ ∫ |ψi(~ri)|2|ψj(~rj)|2
|~ri − ~rj |

d~rid~rj (2.18)

under the constraint that the single electron wave functions are normalized

δ

δψ∗
i


〈φ|Hel|φ〉 −

N∑

j=1

ǫj

∫
|ψj(~rj)|2d~rj


 = 0 i = 1 . . . N, (2.19)
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with {ǫj}j being Lagrange multipliers. The resulting equations, i.e. the Hartree equations, read

[
− ~

2

2me
∆ + Vi(~r)

]
ψi(~r) = ǫiψi(~r) (2.20)

with

Vi(~r) =
e2

4πǫ0

N∑

j=1
j 6=i

∫ |ψj(~r′)|2

|~r − ~r′|
d~r′

︸ ︷︷ ︸

+Vc(~r). (2.21)

V
(i)
H (~r)

The term V
(i)
H (~r) is referred to as the Hartree potential and Vc(~r) =

∑M
k=1 Φion

k (~r) is the crystal
potential. In a generalized sense, the ψi(~r) may be understood as single-electron states [10].

The Hartree potential V
(i)
H (~r) can then be interpreted as the sum of the Coulomb potentials

of all electrons except the i-th. Obviously, as the Hartree potential depends on the single-
electron states, the Hartree equations have to solved in a self-consistent way. Assuming that
the number of electrons N in the system is macroscopically large, as in the case of a solid for
instance, and that the wave functions of the electrons are widely spread over the considered
region, no significant difference can be expected if the sum over j in Eq. (2.21) is extended to
include the term j = i. In this way the i-dependence of the Hartree potential is eliminated,
where the resulting error is of order of magnitude 1/N . The conditions (2.19) collapse to a
single Schrödinger equation 3 yielding the eigensystem {ǫ(ν), ψ(ν)}ν . It remains to specify a
representative configuration of the ψi which enter the product ansatz (2.17). The existence of
such a configuration implies that external perturbations do not notably change the state of the
electron gas. From an energy point of view then, a reasonable choice would be to use the ground
state configuration of the N -particle system. At zero temperature the first N states, i.e. the
energetically lowest, are considered to construct this state, where ǫ(N) is referred to as the Fermi
energy. The configuration-dependence of the Hartree potential is strongly affected by the kind of
one-particle states involved. Plane-wave-like states of ideal crystals for instance are expected to
yield a weaker configuration-dependence than localized states of real semiconductors including
perturbations [10].
The Hartree potential is finally given by

VH(~r) =
e

4πǫ0

∫
e

N∑

ν=1

|ψν(~r′)|2

︸ ︷︷ ︸

1

|~r − ~r′|d~r
′

ρ(~r′) (2.22)

with ρ(~r′) being the electron density. The Hartree equation is then solved by the iterative
procedure described in Fig. (2.2). Instead of using Eq. (2.22) which implies an integration in
three dimensions, the Hartree potential can be calculated by means of Poisson’s equation

−∆VH(~r) =
n(~r)

ǫ0
(2.23)

In this way the presence of electric contacts in semiconductor devices can be accounted for by
suitable boundary conditions for Eq. (2.23). In particular, a given voltage on the gate contact is

3This implies that the different ψi in Eq. (2.17) are orthonormal. Furthermore, by ensuring that the ψi are
different in Eq. (2.17), the exclusion principle is partially accounted for.
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φinit

φ(n) Compute the charge density
ρ(n)(~r) = e

PN
ν=1 |ψ

(n)
ν (~r′)|2

Compute the Hartree potential
by means of Poisson’s equa-
tion −∆V

(n)
H (~r) = ρ(n)(~r)/ǫ0.

Boundary conditions dictated
by electric contacts.

Mixing of V
(n)

H and V
(n−1)

H .

Assemble the Hartree equation
and compute φ(n+1)

φ(n) = φ(n+1) Convergence ? DoneNo
Yes

Figure 2.2: Iteration scheme for the self-conistent solution of the Hartree equations. The iteration
cycle usually requires advanced damping schemes which are thouroughly discussed in chapter 4.
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described by a Dirichlet condition

VH(~r) = Vg, ~r ∈ gate (2.24)

while the source and drain contacts require more specific treatment as explained in chapter 4.
The calculation of the electron density ρ(~r) at finite temperatures is addressed in Sec. 3.8.

2.4 Summary

The stationary Schrödinger equation describing a system of electrons and atomic cores is pre-
sented at the beginning of this chapter. An important approximation due to Born and Oppen-
heimer notably simplifies this problem which is almost intractable in its full form especially in
the presence of many particles. The problem reduces to the solution of a Schrödinger equation
for the electronic system depending on the configuration of the atomic cores. Subsequently, the
electronic spectrum can be used to compute the properties of the cores. However, the motion of
the cores is not further addressed. The Hartree approximation for the solution of the electronic
problem is described which will be employed within the transport framework described in chap-
ter 4. This approximation requires an iteration procedure to reach self-consistency between the
potential and the density. The presence of electric contacts can be straightforwardly included
within this approximation.



Chapter 3

Band Structure Effects

3.1 Introduction

Several simplifications were outlined in the previous chapter leading to a simplified description
of electrons moving in the presence of a fixed ionic background. The electronic problem

[
− ~

2

2me
∆ + U(~r)

]

︸ ︷︷ ︸
ψ(~r) = ǫψ(~r) (3.1)

H

with U(~r) being the sum of the potential Vc(~r) generated by the ionic cores and a mean field
potential describing the interactions between the electrons, is the starting point for further sim-
plifications needed for the simulation of semiconductor devices. The case of an infinite crystal
is considered first, followed by a description of the empirical tight-binding (ETB) and the em-
pirical pseudopotential method (EPM). These two methods are used to compute the energies of
carriers in nanostructures. Subsequently, the effective mass approximation (EMA) is introduced
and applied to specific examples. Comparisons to tight-binding and pseudopotential methods
are carried out in order to investigate the shortcomings of the effective mass approximation 1.
Nonparabolicity models for quantized structures are introduced, followed by some details on the
calculation of charge densities in thermodynamic equilibrium.

3.2 Infinite Crystal (Bulk)

The description of a crystal structure starts with the choice of a Bravais lattice [14]

Γ ≡
{
A~n | ~n ∈ Z

3
}

(3.2)

where A ≡ (~a1|~a2|~a3) consists of three linearly independent column vectors ~a1, ~a2, and ~a3. A
unit cell

Ωc ≡ {λ1~a1 + λ2~a2 + λ3~a3 | λi ∈ [0, 1), i = 1, 2, 3} (3.3)

of the Bravais lattice (3.2) can be defined which, translated through all vectors in Γ, fills the
whole space without overlaps. The unit cell contains a basis of atoms which is translated together
with the cell to generate the entire crystal. Of course, other unit cells can be defined with an

1These shortcomings are referred to as band structure effects.

11
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appropriate atomic basis to describe the same crystal structure. The definition (3.2) implies that
the crystal is infinitely large. This idealization can be used for actual crystals which, of course,
have a finite dimension but are large enough such that the majority of atoms do not feel the
presence of the surface 2. Given a Bravais lattice (3.2), the corresponding reciprocal lattice is
defined by

Γ̃ ≡
{
B~n | ~n ∈ Z

3
}
, (3.4)

where B = 2πA−T = (~b1|~b2|~b3). A function f(~r) which is periodic with respect to the Bravais
lattice (3.2) can be expanded in terms of plane waves

f(~r) =
∑

~G∈eΓ

f̂(~G)ei ~G~r (3.5)

with

f̂(~G) =
1

|Ωc|

∫

Ωc

f(~r)e−i ~G~r. (3.6)

When a material crystallizes in a given structure, the potential generated by the atomic cores

Vc(~r) =

∞∑

j=1

Φion
j (~r) (3.7)

is periodic with respect to a Bravais lattice (3.2) and the potential U(~r) is assumed to have the
same periodicity of the crystal potential Vc(~r).
The eigenstates ψ of the Hamiltonian (3.1) can then be chosen to have the form of a plane wave
times a function with the periodicity of the Bravais lattice, i.e.

ψ(~r) → ψ(~k, ~r) = ei~k~ru(~k, ~r), (3.8)

where
u(~k, ~r + ~R) = u(~k, ~r) ∀~R ∈ Γ. (3.9)

Accordingly, the wave vector ~k enters the energy ǫ → ǫ(~k). This statement is known as Bloch
theorem and the property

ψ(~k, ~r + ~R) = ei~k ~Rψ(~k, ~r + ~R) (3.10)

is referred to as Bloch condition3. For a proof see Ref. [14]. The energy and the wave function
have the following important properties

ψ(~k + ~G,~r) = ψ(~k, ~r) (3.11)

ǫ(~k + ~G) = ǫ(~k) (3.12)

for all ~G ∈ Γ̃. Using the ansatz (3.8) for the Schrödinger problem (3.1) yields
[
− ~

2

2me
(~∇ + i~k)2 + U(~r)

]
ψ(~k, ~r) = ǫ(~k)ψ(~k, ~r) (3.13)

which is solved on Ωc with periodic boundary conditions (3.9). The wave vector ~k is varied over
a primitive unit cell of the reciprocal lattice, i.e.

Ω̃c ≡ {λ1
~b1 + λ2

~b2 + λ3
~b3 | λi ∈ [0, 1), i = 1, 2, 3} (3.14)

2The term bulk is often used to describe such crystals.
3Using wave functions of the form (3.8) within the DFT or Hartree aproximation guarantees that the potential

U(~r) possesses the periodicity of the Bravais lattice.
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for instance. Solving Eq. (3.8) for a fixed ~k yields the eigensystem {ǫn(~k), ψn(~k, ~r)} which is
labeled4 by the band index n. Usually, the Born-von Karman boundary conditions

ψn(~k, ~r + ~v)
!
= ψn(~k, ~r) ∀ ~v ∈ Γ ~N , (3.15)

where ~N = (N1, N2, N3) and

Γ ~N ≡ {n1N1~a1 + n2N2~a2 + n3N3~a3 | ni ∈ Z i = 1, 2, 3} . (3.16)

The lattice Γ ~N is a subset of Γ and can be characterized by a unit cell

Ω ~N ≡ {λ1N1~a1 + λ2N2~a2 + λ3N3~a3 | λi ∈ [0, 1), i = 1, 2, 3} (3.17)

being a multiple of Ωc. In this context it is useful to define the reduced lattice

Γred
~N

≡ {n1~a1 + n2~a2 + n3~a3 | ni = 0, . . . , Ni − 1 i = 1, 2, 3} . (3.18)

The condition (3.15) restricts the allowed wave vectors ~k in the reciprocal space to the set

Γ̃red
~N

≡
{
n1
~b1
N1

+
n2
~b2
N2

+
n3
~b3
N3

| ni = 0, . . . , Ni − 1 i = 1, 2, 3

}

(3.19)

which is a subset of

Γ̃ ~N ≡
{
n1
~b1
N1

+
n2
~b2
N2

+
n3
~b3
N3

| ni ∈ Z i = 1, 2, 3

}
. (3.20)

The cell Ω ~N is used to normalize the Bloch states

∫

Ω ~N

|ψn(~k, ~r)|2d~r = 1. (3.21)

The number N of allowed wave vectors ~k is equal to the number of cells Ωc in the reduced lattice
Γred

~N
, i.e. N = N1N2N3.

3.3 Methods

The calculation of the potential U(~r) from Eq. (3.1) often requires an iterative procedure to
achieve self-consistency. This is the case when DFT, Hartree, or the Hartree-Fock approximation
are used for instance to simplify the original many-particle problem (2.15). Other methods
implicitly assume the form (3.1) without being related to a simplification of the original many-
particle problem. The latter methods rely for instance upon experimental data to construct U(~r)
and do not require self-consistency. Consequently, these empirical approaches are particularily
interesting from a computational point of view. Two examples are given by the ETB and EPM
described in appendix A. The band structure of bulk silicon is computed by means of the
ETB and EPM and a comparison of characteristic quantities such as the band gap and effective
masses along different directions [10, 15] is given in Tab. 3.1. The band structures are plotted in
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Table 3.1: Effective masses and band gap of band structures computed by means of the param-
eterizations of Chelikowski et al. (Ch) and Wang et al. (Wa) given in Eqs. (A.17) and (A.18)
respectively and by means of the tight-binding (TB) formalism described in appendix A.0.1.
Two different cutoffs co ∈ {3.5, 4.5}[1/aB ] are used for the Wa case while co = 8π/aSi is used
for the Ch case. Conduction band masses and minimum are extracted at 0.85[ΓX] in the case
of the pseudopotentials. The experimental data is taken from Ref. [16] and references therein.

Quantity Ch Wa (3.5) Wa (4.5) TB experiment

m
[100]
lh 0.167 0.150 0.151 0.214 0.15

m
[111]
lh 0.097 0.092 0.093 0.144 0.11

m
[100]
hh 0.272 0.279 0.276 0.276 0.34

m
[111]
hh 0.671 0.682 0.662 0.734 0.69

ml 0.911 0.911 0.913 0.891 0.916
mt 0.195 0.200 0.200 0.201 0.19
Eg [eV] 1.056 1.165 1.173 1.131 1.124

L  Γ X U,K Γ
-15

-10

-5

0

5

10

E
n

er
g

y
 [

eV
]

PP
TB

Figure 3.1: Band structure of bulk silicon obtained by means of the empirical pseudopotential
(PP) method using the parametrization (A.17) and the present tight-binding (TB) method. A
comparison of characteristic quantities is given in Tab. 3.1.
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(a) (b)

x

z

y

Figure 3.2: Schematic representation of nanostructures confined in two (a) and one (b) direction.
The red polygons denote the unit cells of the structures which contain a basis of atoms. The
cells are translated along the arrows to obtain the entire structure.

Fig. 3.1. Conduction band effective masses are in good agreement with experimental data while
the agreement for the valence band masses is less obvious in some cases 5. An increment of the
cutoff co from 3.5/aB to 4.5/aB has a minor impact on the results obtained by the pseudopotential
of Wang et al.. This is of crucial importance for the simulation of nanostructures as shown in
Sec. 3.4.

Using co = 3.5/aB for the potential of Wang et al. (see appendix A) yields a Hamilton matrix
of size 181 × 181. The tight-binding method has the advantage that the matrices involved
in the band structure calculations are rather small, i.e. 20 × 20. On the other hand, within
the tight-binding formalism, the functional form of the basis set is undermined, since only the
empirically adjusted Hamilton matrix elements are used. Without explicit basis functions it
becomes difficult to describe the impact of the atomic geometry on the matrix elements or to
compare the real space representation of the Bloch states with results from other methods such
as ab-initio calculations. Furthermore, the small basis set suggests limited variational flexibility
compared to the continuous form factors used within the pseudopotential method.

3.4 Nanostructures

3.4.1 Overview

The critical dimensions of nowadays semiconductor devices have reached a regime where the
bulk picture described in Sec. 3.2 does not apply any longer. These semiconductor structures
can be generally divided in three classes - structures periodic in two dimensions (2D quantum
wells), those periodic in one dimension (1D quantum wires)6, and finally structures that are
periodic in zero dimensions (0D quantum dots). With respect to the 3D periodic bulk case,
these structures exhibit localization effects in one, two, and three dimensions, respectively. In
the case of wires and wells, a unit cell containing a basis of atoms similar to the bulk case can be
employed to describe the reduced periodicity as illustrated in Fig. 3.2. The use of the EPM to

4The solutions of Eq. (3.8) are usually referred to as Bloch states, Bloch functions, or Bloch waves while

the term band structure is used for ǫn(~k). Note that not all methods for band structure calculations require a
reduction of the problem (3.1) to Eq. (3.8).

5Minor deviations from the results given in Ref. [16] are observed which is probably due to different extraction
methods.

6The terms quantum wire and nanowire will be used interchangeably.
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(a) (b)

Figure 3.3: (a) The unit cell of a nanowire is periodically repeated to fill the whole space. This
generates an artificial array of nanowires giving rise to a potential which is periodic in three
dimensions. (b) Each cell contains a wire (dark area) which is surrounded by vacuum (arrows).

compute energies and states of wires and wells is described in the following 7. The treatment of
nanostructures within the semi-empirical sp3d5s∗ tight-binding framework is explained elsewhere
[17]. Quantum dots are not considered in this work.

3.4.2 Wire

The unit cell given in Fig. 3.2.a is specified by

Ωc = [0, a] × [0, L] × [0, L]. (3.22)

While the length a is fixed by the atomic structure of the wire, the lateral extension L can can
be set to any value provided that the entire atomic basis is contained in the cell 8. In order to
employ Bloch’s theorem for the calculation of the electronic states of the nanowire, a periodicity
in all three dimensions has to be recovered. This is achieved by constructing an artificial array
of nanowires as shown in Fig. 3.3 generating a potential U(~r) that is periodic with respect to Ωc.
The corresponding Brillouin zone in the reciprocal space reads

Ω̃c = [−π/a, π/a] × [−π/L, π/L] × [−π/L, π/L]. (3.23)

The presence of the artificial wire replicas is eliminated by enlarging the vacuum layer around the
atomic basis, i.e. L→ ∞. Consequently, the Brillouin zone (3.23) becomes quasi one-dimensional

and it is sufficient to consider ~k = (kx, 0, 0) with kx ∈ [−π/a, π/a]. For computational reasons, the
vacuum layer is increased until the energies on the trajectory kx ∈ [0, 2π/a] become independent
of the vacuum width. The Brillouin zone retains a certain width and the energies and the Bloch
states are assumed to be independent of ky and kz, i.e. ǫ(~k) ≃ ǫ(kx, 0, 0) and ψ(~k) ≃ ψ(kx, 0, 0).
The atomic structure of a typical silicon nanowire grown along the 〈100〉 direction is shown in
Fig. 3.4.a. Two possible wire cross sections with surfaces oriented along the 〈100〉 and 〈110〉
directions are given in Figs.3.4.b and 3.4.c respectively, both having a unit cell of length a = aSi.
The dangling bonds at the surface are terminated by hydrogen atoms in this particular case. A
continuous form factor for hydrogen is provided by Wang et al.

V̂ Wa
H (q) =

{
vSi(a1 + a2q + a3q

2 + a4q
3) q ≤ 2/aB

vSi(a5/q + a6/q
2 + a7/q

3 + a8/q
4) q > 2/aB

(3.24)

7The approach adopted in fully ab-initio methods is similar.
8A rectangular unit cell with a square cross section is not always the optimal choice. However, it simplifies

the formalism and does not restrict the shape of the nanowire cross section, i.e. the atomic basis.
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<100>

<100>

(a)

(c)(b)

<110>

<100>

Figure 3.4: (a) Silicon nanowire grown along the 〈100〉 direction. The cross sectional shape of
this wire can be square for instance with surfaces oriented along the 〈100〉 and 〈110〉 directions as
shown in (b) and (c) respectively. The green blocks are used to construct the skeleton of the wires
(red spheres). Bond lengths and orientations within the skeleton are identical to bulk silicon.
The dangling bonds are terminated by hydrogen (blue spheres) and the surface is deformed
as explained in Ref. [16]. This deformation affects the silicon skeleton in the vicinity of the
surfaces. Both unit cells have a length of a = aSi while the lateral extensions are L = 2.89nm
and L = 2.28nm for (b) and (c) respectively including a vacuum layer of 0.25nm.
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Figure 3.5: Band structures of silicon nanowires computed by means of the empirical pseudopo-
tential method explained in Sec 3.4.2. The dispersions of the wires from Figs. 3.4.b and 3.4.c
are given in (a) and (b), respectively. The energy scales are gauged such that the corresponding
bulk conduction band minimum is equal to zero.

where a1 = −0.1416Ry, a2 = 9.802 × 10−3a−1
B Ry, a3 = 6.231 × 10−2a−2

B Ry, a4 = −1.895 ×
10−2a−3

B Ry, a5 = 2.898×10−2aBRy, a6 = −0.3877a2
BRy, a7 = 0.9692a3

BRy, and a8 = −1.022a4
BRy.

Together with the form factor (A.18), the Fourier transform (A.12) of a wire unit cell (slab) con-
sisting of NH hydrogen and NSi silicon atoms is given by

Û(~G) =
1

|Ωc|

[
V̂ Wa

H (|~G|)
NH∑

i=1

e−i ~G~bi + V̂ Wa
Si (|~G|)

NH+NSi∑

i=NH+1

e−i ~G~bi

]
. (3.25)

The potential (3.25) is used in the secular problem (A.14) to compute the band structures of the
nanowires from Figs. 3.4.b and 3.4.c. A cutoff co = 3.5/aB is used for the calculations. These
band structures are plotted in Fig. 3.5. Contour plots of the potentials as well as the energetically
highest valence band state (HVS) and lowest conduction band state (LCS) are given in Fig. 3.6.
Using co = 3.5/aB , yields a secular problem of size 221352 for the 〈100〉 wire. As in the bulk case,
the tight-binding formalism involves Hamilton matrices of much more moderate sizes, i.e. 12802

for a comparable nanowire of the same orientation 9. Furthermore, within the tight-binding
formalism there is no need to account for the surrounding vacuum explicitly.

3.4.3 Well

The calculation of electronic states in semiconductor quantum wells is similar to the procedure
employed for nanowires. The unit cell shown in Fig. 3.2.b

Ωc = {(λ1a
x
1 + λ2a

y
1, λ1a

x
2 + λ2a

y
2, λ3L) | λi ∈ [0, 1], i = 1, 2, 3} (3.26)

is specified by means of two vectors a1 = (ax
1 , a

y
1) and a2 = (ax

2 , a
y
2) in the xy-plane and a height

L. The atomic structure of the quantum well fixes the vectors a1 and a2 while L is variable.
Figure 3.7 shows the artificial array of quantum well unit cells needed to generate the periodic
potential U(~r). A possible unit cell in the reciprocal space is given by

9More details on how the pseudopotential and tight-binding frameworks used in this work are compared can
be found in Sec. 3.6.3. This is not a straightforward task, as hydrogen is not explicitly parametrized within the
present tight-binding framework.
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LVS

POT

HVS

<100> <110>

Figure 3.6: Contour plots of the potential (POT) and the absolute square of the HVS and LCS
(see text) of the wires from Fig. 3.4.b and 3.4.c. The contours are computed for equally spaced
values, ten for the states and five for the potentials, between the maximum and minimum of the
corresponding quantity. Blue represents low values, red high.
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(a) (b)

Figure 3.7: Same as in Fig. 3.3 for the case of quantum wells. (a) Array of quantum well unit
cells. (b) Each unit cell contains a basis of the quantum well sandwiched between vacuum layers.

Ω̃c = {(λ1b
x
1 + λ2b

y
1, λ1b

x
2 + λ2b

y
2, λ32π/L) | λi ∈ [−0.5, 0.5], i = 1, 2, 3}, (3.27)

where bx1 = 2πay
2/d, b

y
1 = −2πay

1/d, b
x
2 = −2πax

2/d, b
y
2 = 2πax

1/d, and d = ax
1a

y
2 − ax

2a
y
1. These

reciprocal unit cells become quasi two-dimensional as the height L of the well, i.e. the vacuum
layer shown in Fig. 3.7.b, is increased to remove the artificial well replicas. The energies and Bloch
states are computed for kz = 0, assuming that these quantities are approximately independent
of kz even though a finite height L is retained for computational reasons.
Two typical silicon quantum well structures with surfaces perpendicular to the 〈100〉 and 〈110〉
direction are shown in Fig. 3.8. The unit vectors in the xy−plane are {a1 = (−aSi, aSi)/2,a2 =
(aSi, aSi)/2} and {a1 = (aSi, 0),a2 = (0, aSi/

√
2)} for the 〈100〉 and 〈110〉 case respectively.

The pseudopotential is constructed according to Eq. (3.25) using the same parameterizations
employed for the wire case in Sec. 3.4.2, i.e. Eqs. (A.18) and (3.24), and the potential is used
within the secular problem (A.14). The two-dimensional band structures of the quantum wells
shown in Fig. 3.8 are given in Fig. 3.9 while one-dimensional cuts are plotted in Fig. 3.10. In
both cases, co = 3.5/aB has been employed. The size of the secular problem for the 〈100〉 case is
20292 while the tight-binding framework generates a 1702 matrix for a well of comparable height.

3.4.4 Computational Remarks

As mentioned in Secs. 3.4.2 and 3.4.3, the Hamilton matrices assembled within the EPM are
notably larger than the ones used in the tight-binding framework. While the eigenvalue problems
generated in the latter approach can be satisfactorily solved by means of a standard library. i.e.
the LAPACK [18] for instance, more advanced diagonalization algorithms have been developed to
efficiently simulate nanostructures described by pseudopotentials [19]. In this work, ScaLAPACK
[20] is used to compute the pseudopotential band structures of nanowires while quantum wells are
treated by means of LAPACK. Parallelization in the latter case is achieved by distributing the
different ~k’s among the the compute nodes. The diagonalization routines can be accellerated by
providing the exact indices of the desired eigenvalues. Generally, only a few eigenvalues around
the gap are required. Provided that the nanostructure is a semiconductor, the number of valence
bands is just half the number of electrons in the unit cell.

3.5 Effective Mass Approximation

The calculation of electronic states in semiconductor nanostructures as outlined in Sec. 3.4 is
related to a notable computational burden. A widely used simplification is given by the effective
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(a)

<100>

(b)

<110>

Figure 3.8: Unit cells of silicon quantum wells with surfaces perpendicular to the 〈100〉 (a)
and 〈110〉 direction (b). The green polygons are used to construct the skeleton of the wells
(red spheres) which is carved out of bulk silicon as in the wire case. Hydrogen (blue spheres)
passivation of the surface is explained in Ref. [16]. The height of the unit cells is L = 2.89 nm
and L = 2.29 nm for (a) and (b) respectively including a vacuum layer of 0.25 nm.

mass approximation (EMA) which has been originally introduced to describe an infinite crystal
subjected to an external perturbation Uext(~r)

[
− ~

2

2me
∆ + U(~r) + Uext(~r)

]
Ψ = EΨ, (3.28)

where U(~r) is the periodic crystal potential 10.The problem (3.28) is solved on the enlarged unit
cell Ω ~N from Eq. (3.17) and Born-von Karman boundary conditions (3.15) are used for Ψ(~r). In

the following, ~N is macroscopically large and omitted in the notation. The wave function Ψ(~r)
can be expanded in terms of Bloch states of the potential U(~r)

Ψ(~r) =
∑

n,~k∈eΓred

〈n,~k|Ψ〉ψn(~k, ~r) (3.29)

with 〈n,~k|Ψ〉 =
∫
Ω
ψ∗

n(~k, ~r)Ψ(~r)d~r . Using the ansatz (3.29) for the Schrödinger problem (3.28)
yields the secular equation

∑

n′,~k′∈eΓred

[
ǫn(~k)δn,n′δ~k,~k′

+ 〈n,~k|Uext|n′,~k′〉
]
〈n′,~k′|Ψ〉 = E〈n,~k|Ψ〉. (3.30)

The external potential Uext(~r) is assumed to be periodic with respect to the cell Ω and can be
expressed by means of plane waves

Uext(~r) =
∑

~k∈eΓinf

〈~k|Uext〉ei~k~r, (3.31)

10For a discussion on the mean field potentials describing the interactions between the electrons, see Ref. [10].
In the following, the periodic potential U(~r) is assumed to be unaffected by Uext(~r).
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(b)(a)

(c) (d)

k

k

y
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vb <100> cb <100>

vb <110> cb <110>

Figure 3.9: Two-dimensional band structures of silicon quantum wells computed by means of
the EPM explained in Sec 3.4.3. The valence bands (vb) of the wells shown in Figs. 3.8.a and
3.8.b are plotted in (a) and (c), respectively and the conduction bands are given in (b) and (d),
respectively. Plotted is the range (kx, ky) ∈ [−3π/aSi, 3π/aSi]

2. The white lines denote the unit
cells (3.27) which in this case coincide with the first Brillouin zones. Blue represents low energies,
red high energies.
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Figure 3.10: Band structure cuts of the silicon quantum wells shown in Figs. 3.8.a and 3.8.b
are plotted in (a) and (b) respectively. In both cases, the reciprocal space is cutted along the
cartesian kx-axis. A cut along the ky-axis for the 〈110〉 case is plotted in (c). The present EPM
has been employed for the calculations. Energies are gauged as in Fig. 3.5.
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where Γ̃inf ≡
{
B ~N~n | ~n ∈ Z

}
and 〈~k|Uext〉 = (1/Ω)

∫
Ω

exp(−i~k~r)Uext(~r)d~r. The EMA is based
on several prerequisites. The first is that the external potential has to be smooth compared to the
periodic potential U(~r). Quantitatively, this means that the main contributions to the sum (3.31)

come from wave vectors ~k inside the first Brillouin zone and the remaining coefficients 〈~k|Uext〉
for ~k’s outside the Brillouin zone are much smaller than the corresponding Fourier coefficients
of the crystal potential U(~r). The |〈~k|Uext〉| are roughly related to the change of the external

potential over the unit cell of the crystal which can be estimated as a|~∇Uext|. On the other
hand, the Fourier coefficients of the crystal potential can be estimated by a typical band energy,
i.e. the band gap, which yields the approximate condition a|~∇Uext| ≪ Eg for smoothness.
The second prerequisite is that the wave function Ψ(~r) can be approximated by a single energy
band n = b

Ψ(~r) =
∑

~k∈eΓred

〈b,~k|Ψ〉ψb(~k, ~r) ≡
∑

~k∈eΓred

F̂b(~k)ψb(~k, ~r) (3.32)

This single-band picture is consistent with the requirement of smoothness for the external po-
tential Uext(~r). A consequence of smoothness is namely that the mixing 〈n,~k|Uext|n′,~k′〉 ≃
δn,n′δ~k,~k′

〈n,~k|Uext|n,~k〉 is suppressed in Eq. (3.30). The band b is assumed to have an non-

degenerated extremum at ~k0 = 0 which can be expanded in second order in ~k

ǫb(~k) ≃ Eedge +
~

2

2me

~kT M~k +O(~k2), (3.33)

where M is referred to as the effective mass tensor. The function F̂b(~k) is essentially non-zero for

wave vectors ~k in the first Brillouin zone similar to Fourier coefficients of the external potential.
Finally, it is assumed that for these vectors ~k , the Bloch factor ub(~k, ~r) can be approximated by

ub(~k, ~r) ≃ ub(~k0, ~r). (3.34)

Using the approximation (3.34) in Eq. (3.32) yields

Ψ(~r) ≃ ub(~k0, ~r)
∑

~k∈eΓred

F̂b(~k)e
i~k~r

≡ ub(~k0, ~r)Fb(~r). (3.35)

The envelope function Fb(~r) is determined [10] by means of the effective mass equation
[
Eedge −

~
2

2me

~∇T M~∇ + U(~r)

]
Fb(~r) = EFb(~r). (3.36)

The extension to bands with multiple extrema located at ~k(i), i = 1, . . . , ν is straightforward [21].

Each extremum is related to an envelope function F
(i)
b (~r) and a corresponding effective mass

equation [
Eedge −

~
2

2me

~∇T M(i)~∇ + Uext(~r)

]
F

(i)
b (~r) = E(i)F

(i)
b (~r), (3.37)

where Eedge is the same for all extrema 11. The total wave function reads

Ψ(~r) =

ν∑

i=1

ψb(~k
(i), ~r)F

(i)
b (~r). (3.38)

11For a general Uext, the energies E(i) will have different values. On the other hand, if Uext is spherically
symmetric or has the symmetry of the crystal point group, the solutions to different extrema i will have the
same energy [21]. When open boundary conditions are employed, the energy spectrum is continuous for a general
potential and a common energy can be found for each extremum.



3.5. EFFECTIVE MASS APPROXIMATION 25

For the calculation of charge densities, the |Ψ|2 is important. As long as the region of interest
extends over several unit cells of the crystal, it is a good approximation to average the oscillating
Bloch factors within a cell. Furthermore, the mixing between different extrema in |Ψ|2 is omitted,
yielding

|Ψ|2 ≃
ν∑

i=1

|F (i)
b (~r)|2. (3.39)

As outlined above, the EMA and, hence Eq. (3.37), describes a single material subjected to
an external perturbation. In order to describe nanostructures consisting of several materials,
some modifications are necessary. A possible approach would be to employ a position-dependent
effective mass tensor and band edge in Eq. (3.37) which account for the local material, together
with suitable boundary conditions at the material interfaces [22]. More advanced envelope-
function theories are based on transfer matrices to describe the connection rules at the material
interfaces [23]. However, as the regular calculation of these matrices represents an extremely
tedious task, the use of the standard approach [22] is encouraged. The effective mass equation
becomes

[
− ~

2

2me

~∇T M(i)(~r)~∇+ Eedge(~r) + Uext(~r)︸ ︷︷ ︸ ]F
(i)
b (~r) = E(i)F

(i)
b (~r),

Ueff (~r) (3.40)

where Eedge(~r) is piecewise constant and determined by means of the local affinity χ(~r) and
band gap Eg(~r). Transitions from a material to the surrounding vacuum are approximated by
hard wall conditions, i.e. zero Dirichlet conditions. A further simplification is given by the
single-material approximation [24, 25, 26]. Within this approach, the effective mass tensor is
position-independent and determined by the material which hosts the majority of the envelope
function. This approximation is particularly suited for large band edge offsets and moderate
confinements.
The case of degenerate band extrema, i.e. beyond the single-band picture, has not been discussed
so far and will not be considered in this work. The k · p method for instance, accounts for
band degeneracies within an envelope function framework similar to the EMA and is thoroughly
described in Refs. [21, 10, 27].
The effective mass tensors related to the six minima of the silicon conduction band (see Fig. A.2)
are diagonal, i.e. M = diag(1/mx, 1/my, 1/mz). Examples for the masses are given in Tab. 3.1.
The entries of the six mass tensors are obtained by permuting the set {1/ml, 1/mt, 1/mt}. Within
the effective mass approximation, a silicon nanowire grown along the 〈100〉 direction, i.e. the
x direction for instance, can be described by a potential 12 Ueff (y, z) being independent of x.
Therefore, the general form of the corresponding envelope functions reads

F (~r) = eikxxψn(y, z), (3.41)

where ψn(y, z) is determined by means of the Schrödinger equation

[
− ~

2

2me

(
∂

∂y

1

my

∂

∂y
+

∂

∂z

1

mz

∂

∂z

)
+ Ueff (y, z)

]
ψ(y, z) = ǫψ(y, z) (3.42)

and E = ǫn + ~
2k2

x/(2memx) is the total energy. The special form of the kinetic operator in
Eq. (3.42), i.e. effective mass sandwiched between the derivatives, is particularly important
when the masses are position-dependent as this form ensures hermiticity of the Hamiltonian.

12This form for the effective potential can be used for any material and growth direction.
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Accordingly, for a silicon quantum well with 〈100〉 oriented surfaces, the solution of the envelope
equation has the form

F (~r) = ei(kxx+kyy)ψn(z), (3.43)

with [
− ~

2

2me

1

mz

∂2

∂z2
+ Ueff (z)

]
ψ(z) = ǫψ(z). (3.44)

and a total energy E = ǫn + (~2/2me)(k
2
x/mx + k2

y/my). In this case, the surfaces are perpen-
dicular to the z-axis.

3.6 Limitations of the EMA

3.6.1 Overview

The prerequisites which led to the effective mass equation (3.37), in particular the smoothness
of the external potential, become questionable in the case of very small nanostructures, where
the spatial inhomogeneities are of the order of the lattice constant. A quantitative comparison
to direct calculations 13 for specific systems shall give more insights regarding the suitability of
the EMA and suggest some efficient improvements.

3.6.2 Optical Lattice

An optical lattice is generated by superimposing two counterpropagating running-wave laser
beams of wavelength λ in all three spatial directions, yielding a static potential U(~r) with peri-
odicity a = λ/2

U(~r) = U0

3∑

i=1

sin2

(
2πxi

λ

)
, (3.45)

where U0 is the amplitude of the laser beam. The potential (3.45) can be used to confine cold
atoms. This system of trapped atoms resembles a crystal in the sense that the atoms move in
a periodic potential. Several interesting effects such as the quantum phase transition from the
superfluid to the Mott insulator phase in bosonic systems or ramping fermionic atoms across a
Feshbach resonance can be investigated (For more details see Ref. [28] and references therein.)

In this section, the optical lattice is used as a prototypic system to illustrate the shortcomings of
the EMA. The computation of the bandstructure of the optical lattice (3.45) is relatively easy, as
the corresponding Schrödinger equation separates in the three cartesian directions. It is therefore
sufficient to consider the one-dimensional problem

[
− ~

2

2me

∂2

∂x2
+ U0 sin2

(
2πx

λ

)]
ψ = ǫψ (3.46)

which is solved by means of a Bloch ansatz and a secular equation of the form (A.14) in one
dimension. The resulting eigenenergies ǫn(k) form the band structure of the optical lattice

E~n(~k) = ǫn1
(k1) + ǫn2

(k2) + ǫn3
(k3), (3.47)

where ~n = (n1, n2, n3) and ~k = (k1, k2, k3). A plot of ǫn(k) is given in Fig. 3.11. Increasing the
amplitude U0 results in a separation of the lowest band from all the others. The same holds
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Figure 3.11: Band structure of the one-dimensional optical lattice (3.46) for {a = 10aB , U0 =
0eV} (a) and {a = 10aB , U0 = 5eV} (b).

for the three-dimensional band structure E~n(~k). The effective mass equation is formulated for

the lowest band having a minimum located at ~k = 0 and an effective mass tensor of the form
M = diag(1/m0, 1/m0, 1/m0). The unit cell Ωc = [−Na/2, Na/2]3 is employed to describe the
optical lattice subjected to the perturbation

Ũext(~r) = Uext
0 [1 − χb(~r)] , (3.48)

where χb is unity on [−Nb/2, Nb/2]3 and zero elsewhere. The external potential is characterized
by the width d ≡

√
3Nb. In order to obtain a smooth confinement, the potential (3.48) undergoes

a convolution with a Gaussian mollifier

Uext(~r) ≡ 1

|Ωc|

∫

Ωc

Ũext(~r′)Fǫ(~r − ~r′)d~r′ (3.49)

Fǫ(~r) ≡
∑

~v∈Λ(Ωc)

|Ωc|
(2π)3/2ǫ3

exp

[
−1

2

(~r − ~v)2

ǫ2

]
, (3.50)

where Λ(Ωc) ≡ {Na~n|~n ∈ Z
3}. In the following

{N = 15, a = 10aB , ǫ = 0.2aB , U
ext
0 = 4.1eV, U0 = 0.5eV } (3.51)

with aB = 0.052nm. The resulting potentials U(~r) and Ueff (~r) are illustrated in Fig. 3.12. For
the parameter set (3.51), the effective mass m0 = 1.006 is close to unity and the band edge is
E0 ≡ E~0 = 0.79eV. The groundstate energies of the full Hamiltonian

ĤFull ≡ − ~
2

2me
∆ + U(~r) + Uext(~r) (3.52)

(3.53)

13The terms direct calculations or atomistic approach refer to methods which explicitly account for the periodic
background potential such as the tight-binding or pseudopotential framework. Comparisons to other envelope
theories such as the kp method [27] are not carried out in this work.
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Figure 3.12: Potentials U(~r) and Ueff (~r) from Eqs. (3.45) and (3.49) for the parameter set
(3.51). Plotted is a cut along the space diagonal of Ωc.

and of the effective mass Hamiltonian

ĤEMA ≡ − ~
2

2me

~∇M~∇T + Uext(~r) + E0︸ ︷︷ ︸ (3.54)

Ueff (~r) (3.55)

are computed for different widths d of the external potential and plotted in Fig. 3.13. For d .

2nm, the EMA notably overestimates the groundstate energy compared to the full solution while
in the remaining regime the agreement is quite satisfactory. The discrepancy for d . 2 reaches
some tenths of an eV and can be related to one or more prerequisites for the EMA which are not
fulfilled any longer such as the single-band picture or parabolicity14. Of course, these findings are
related to the specific choice (3.51) and can not be generalized. These parameters roughly mimic
silicon surrounded by an insulating material such as silicon dioxide. The qualitative behavior
of the discrepancy however is assumed to be transferable to other systems as shall be seen in
Secs. 3.6.3 and 3.6.4.
The groundstate energies of the Hamiltonians (3.52) and (3.54) are computed by means of the
usual procedure, i.e. using a Bloch ansatz and solving the secular problem. In this particular
case, the periodicity is broken in all three dimension and the secular problem has to be con-
sidered only at ~k = ~0 provided that Ωc is sufficiently large. In order to obtain well converged
groundstate energies, i.e. up to a meV, a notably larger plane wave basis set is required for the
full Hamiltonian (∼ 60000 plane waves) compared to the EMA case (∼ 36000) [29]. This is due
to strong oscillations of the optical lattice compared to the size of the unit cell or the width of

14The term parabolicity refers to the situation where a few Bloch states near the extremum of a single band
are sufficient to describe the solution of the full problem. In this regime, the parabolic approximation is a good
approximation to the band structure of the optical lattice. Conversely, nonparabolicity describes the case when
Bloch states far from the minimum become relevant. In this case, the parabolic approximation provides too much
dispersion around the extremum compared to the real band structure. More dispersion tendentiously yields higher
energies. The changeover from the parabolic to nonparabolic regime is assumed to precede the involvement of
further energy bands for the description of the full solution.
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Figure 3.13: Lowest eigenvalues of the Hamiltonians (3.52) and (3.52) as a function of the width
d =

√
3Nb. The dashed line denotes the edge E0 = 0.79eV.

the external potential.

3.6.3 Silicon Nanowire

Circular and square shaped silicon nanowires grown along the 〈100〉 direction are now considered
to investigate the suitability of the EMA. For each cross-sectional shape, a series of nanowires is
constructed by varying the diameter. The present empirical tight-binding and pseudopotential
method rely on different approaches to generate the wire structures and, more importantly,
passivate the surface. Some details on the wire generation in the pseudopotential case are given
in the caption of Fig. 3.4. Larger sized nanowires of these shapes can be obtained by increasing
the number of unit blocks (green cells) before the surface is passivated. For the tight-binding
case, a detailed description of the wire generation can be found in Ref. [17]. In particular, no
hydrogen is used and the silicon skeleton is not distorted in the vicinity of the surface15. Thus, a
direct comparison between the frameworks is not as straightforward as in the bulk case and it is
mandatory to define an effective geometry parameter which can be generically assigned to a wire
structure within both frameworks 16. For the square case, a possibility [31] would be to add an
atomic layer of vacuum to the silicon skeleton and measure the width. The approach [30] used
in this work employs a cylinder of length aSi made of silicon, whose diameter de is determined
by the condition

ρSiπ

(
de

2

)2

aSi
!
= NSi, (3.56)

15A tight-binding framework which explicitly employs hydrogen for the surface passivation is described in
Ref. [30].

16The effective parameter can then be used to formulate the Dirichlet boundary conditions for a comparison
with the EMA.
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Figure 3.14: Conduction band edges of circular (ci) and square silicon nanowires with surfaces
perpendicular to the 〈100〉 (sq100) and 〈110〉 (sq110) direction. Energies are computed by means
of the present tight-binding (TB) and pseudopotential (PP) framework (see text). The EMA
band edges Esq100(0, 1, 1) and Eci(0, 1, 1) for one of the ∆4 valleys are denoted by the solid and
dash-dot line respectively. Tight-binding results for the circular case by Niquet et al. [32] are
plotted as well (dashed line).

i.e. the bulk silicon density ρSi = 8/a3
Si times the volume of the cylinder yields the number of

silicon atoms NSi in the wire unit cell. The diameter

de = aSi

√
NSi

2π
(3.57)

is the effective geometry parameter which can be assigned to wires with any cross-sectional shape.
This procedure might seem counterintuitive for square nanowires. In this case, the wire can be
thought to have an effective width

le = de

√
π

2
= aSi

√
NSi

8
(3.58)

which yields the same cross-sectional area of a circle with diameter de.
The tight-binding framework is used to compute the band structures of circular and square
nanowires with surfaces perpendicular to the 〈100〉 direction (cf. Fig. 3.4.b). The dispersions of
square nanowires with 〈110〉 (cf. Fig. 3.4.c) and 〈100〉 oriented surfaces are computed by means
of the present EPM 17. For the latter approach, co = 3.5/aB and a vacuum width of 0.25nm has
been used. A plot of the resulting conduction band minima, i.e. the edges, is given in Fig. 3.14
as a function of the effective diameter de. The energies tend to zero for de → ∞ as they are
shifted by the corresponding bulk edges.
The effective mass equation for a silicon nanowire grown along the 〈100〉 direction reduces to
the two-dimensional Schrödinger problem (3.42) for the conduction band. The potential Ueff is

17Both, the tight-binding and pseudopotential approach will be referred to as the atomistic approaches in the
following.
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replaced by zero Dirichlet conditions at the effective boundary of the nanowire. For the square
case with 〈100〉 oriented surfaces, the total energy reads

Esq100(kx, n,m) =
~

2

2me

[
k2

x

mx
+
π2

l2e

(
n2

my
+
m2

mz

)]
(3.59)

with n,m = 1, 2, . . . and transverse eigenfucntions18

F sq100
kx,n,m(~r) = eikxx sin

(
nπy

le

)
sin

(
mπz

le

)
. (3.60)

An analytic expression for the total energy can be given in the circular case for my = mz = m:

Eci(kx, n,m) =
~

2

2me

(
k2

x

mx
+

4µ2
n,m

md2
e

)
(3.61)

with the transverse states expressed in radial coordinates (r, φ)

F ci
kx,n,m(~r) = eikxxJn

(
2µn,mr

de

)
einφ, (3.62)

where Jn(x) is the Bessel function of the first kind and order n and µn,m is the m-th zero of
Jn(x). Unfortunately, for the more interesting case my 6= mz, an analytical solution is not
straightforward [33] and therefore, the band edge has to be computed numerically (see Sec. 5.2).
The square nanowire with 〈110〉 surfaces as depicted in Fig. 3.4.c requires a rotation of the
two-dimensional effective mass tensor in Eq. (3.42) by π/4. Conversely, the form (3.42) can be
retained but the Dirichlet boundary has to be rotated by π/4. Both considerations yield the
same total energy Esq110 which is equal to Esq100. The energetically lowest conduction bands in
the square cases are given by Esq100(kx, 1, 1). The band edge is fourfold degenerate and related
to the four mass tensors (∆4) with my 6= mz. The two remaining mass tensors with my = mz

are referred to as the ∆2 valleys 19. The subband structure obtained by the atomistic approaches
shows some similarities. For this purpose, a closer look at the dispersion given in Fig. 3.5.a for
instance might be helpful. The conduction band minimum at kx = 0 is related to the effective
mass dispersion from the ∆4 valleys. Two further local minima of the conduction band located
at kx ≃ ±0.3π/aSi due to zone folding are related to the ∆2 valleys 20. These two minima
move towards the gamma point (kx = 0) as the wire diameter decreases. Note that zone folding
is not accounted for by the effective mass approximation, where all subbands are located at
kx = 0. Furthermore, in the atomistic approaches a splitting [31] of the four lowest conduction
bands can be observed while the effective mass model inherently assumes a perfect degeneracy
for the ∆4 valleys (circular and square case). This effect as well as the movement of the local
minima are not further discussed in this work. The observations made for the square wires can
be directly transferred to the circular case. In particular, the presence of ∆4 and ∆2 valleys and
the relations to the corresponding band structure. A plot of the band edges Esq100(0, 1, 1) and
Eci(0, 1, 1) for one of the ∆4 valleys are given in Fig. 3.14. The effective masses ml = 0.891 and
mt = 0.201 are taken from the TB case in Tab. 3.1. The EMA overestimates the band edge of
the atomistic approaches as already seen in the case of the optical lattice. Possible reasons are
mentioned in Sec. 3.6.2. However, for large diameters the atomistic results approach the effective

18Normalization is not considered yet.
19As a mass tensor is uniquely related to a minimum (valley), the terms will be used interchangeably.
20A more detailed discussion on zone folding in the case of silicon nanowires and the relation to the effective

mass subband structure is given in Refs. [32, 34].
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Table 3.2: Analytical fits (3.63) to the atomistic conduction band edges shown in Fig 3.14.

Wire type Kc [eVnm2] ac [nm] bc[nm2]

PP sq100 2.626 2.469 -0.886
PP sq110 1.561 -1.015 1.820
TB sq100 2.922 0.605 0.175
TB ci 2.5875 0.383 0.337

mass curve. The tight-binding results for square and circular wires are not supposed to collapse
on a single line since even in the EMA the band edges of a square and circular nanowire with
the same effective diameter are different as can be seen explicitely from Eqs. (3.59) and (3.61)
for my = mz. The same is assumed for my 6= mz. Conversely, the band edges of the 〈100〉 and
〈110〉 nanowires are supposed to match, which can be observed for the pseudopotential data at
large diameters. This is partially due to the surface modification in the 〈100〉 case which prevents
the wire from being perfectly square for small diameters. However, a notable discrepancy can
be observed between the tight-binding and pseudopotential data even at large diameters. In
particular, the pseudopotential approach still predicts notable band structure effects for large
diameters. Comparing with a fit provided by Ref. [32], which includes the present tight-binding
parametrization but employs a different passivation model, yields a good agreement with the
present tight-binding results for the circular case 21. A comparison with fully ab-initio simulations
might shed more light on the discrepancy between the tight-binding and pseudopotential results
22.

Analytic fits of the form [32]

ǫc(de) =
Kc

d2
e + acde + bc

(3.63)

for the atomistic band edges ǫc(de) shown in Fig. 3.14 are reported in Tab. 3.2. The form (3.63)
is more accurate than the widely used fit Kc/d

β
e when a large range of diameters is considered. It

behaves like 1/d2
e in large structures, thus being consistent with the effective mass approximation

which becomes more accurate in this regime.

Beside the overestimation of the subband energies, a further important band structure effect is the
distortion of the atomistic wire dispersions compared to the effective mass band structures [31].
In other words, the effective masses extracted from the minima of the atomistic conduction bands
located at kx ∈ {0,∼ ±0.3π/aSi} differ from the corresponding bulk values. These conduction
masses are extracted from the present band structures by means of

1

mc
=
me

~2

∂2

∂k2
x

E(kx)

∣∣∣∣
kx=0

, (3.64)

where E(kx) is the conduction band, and plotted in Fig. 3.15. As for the band edges, the
conduction masses increase for a decreasing diameter.

For a quantitative investigation of the suitability of the single-band picture in the case of silicon
nanowires, see Ref. [35].

21In Ref. [32] the nanowires are carved out of bulk silicon in a cylindrical shape.
22Since the bulk band structures agree fairly well (cf. Tab. 3.1), the source of discrepancy most probably resides

in the surface termination models.
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Figure 3.15: Conduction masses of the nanowires mentioned in the caption of Fig. 3.14. The
masses are extracted by means of Eq. (3.64). The dashed line denotes the bulk value mt = 0.201
(TB case in Tab. 3.1). For the TB sq100 and circular case, the conduction masses (3.80) computed
by means of the nonparabolicity (NP) model described in Sec. 3.7 are denoted by the solid and
dash-dot line respectively. See Sec. 5.2 for details on the extraction of the NP conduction mass.

3.6.4 Silicon Quantum Well

band structure effects for the case of the silicon quantum wells shown in Fig. 3.8 are investigated
by means of the present pseudopotential method (co = 3.5/aB). Similar to the wire case from
Sec. 3.6.3, conduction band edges and conduction masses will be compared to the effective
mass approach. To increase the height of the quantum wells, the silicon skeleton is enlarged by
employing a higher number of unit blocks (green cells in Fig. 3.8) before the surface is passivated.
The effective height he of the quantum well is determined by the condition

ρSihe|a1 × a2| !
= NSi, (3.65)

where a1 and a2 span the projection of the unit cell in the (x, y)-plane as explained in Sec. 3.4.3
and a1 × z2 is the cross product between v and w. This definition is equivalent to the one
used by Ref. [30]. Compared to the wire case, the conduction bands shown in Fig. 3.9 are
more complicated [36]. For the quantum well with 〈100〉 oriented surfaces, the minima of the
conduction band are located at k ≡ (kx, ky) = (±0.85,±0.85)2π/aSi and k = (0, 0), where
the global minimum is at the latter point. In the 〈110〉 case, two global minima are in k =
(0,±0.85/

√
2)2π/aSi while two further local minima can be found in k = (±0.15, 0)2π/aSi.

The position of the minima move towards zero as the well height decreases. This movement
is not accounted for during the measurement of the edges and masses. Figure 3.16 shows the
band edges of the quantum wells as a function of the effective height he. For large heights, the
pseudopotential data agrees fairly well with the tight-binding results from Ref. [30].

Analytical fits of the form (3.63) are computed for the band edges plotted in Fig. 3.16 and
reported in Tab. 3.3.
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Figure 3.16: Conduction band edges of silicon quantum wells with 〈100〉 and 〈110〉 oriented
surfaces. The corresponding energies computed by the EMA and tight-binding (TB) results by
Niquet et al. [30] are plotted as well.

Table 3.3: Analytical fits (3.63) to the conduction band edges plotted in Fig 3.16 (pseudopotential
data).

Well type Kc [eVnm2] ac [nm] bc[nm2]

100 0.093 2.068 1.541
110 0.955 0.814 -0.051
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The effective mass equation (3.44) yields the total energy

E(100)(kx, ky, n) =
~

2

2me

[
k2

x

mx
+
k2

y

my
+
π2

h2
e

n2

mz

]
(3.66)

and envelope functions

F
(100)
kx,ky,n(~r) = ei(kxx+kyy) sin

(
nπz

he

)
(3.67)

with n = 1, 2, . . . for the 〈100〉 well. In the 〈110〉 case, Eq. (3.41) has to be employed, whereas
the effective mass tensor is rotated by π/4

(
1√
2

− 1√
2

1√
2

1√
2

)(
1

my
0

0 1
mz

)(
1√
2

1√
2

− 1√
2

1√
2

)
(3.68)

and Ueff is replaced by Dirichlet conditions at z ∈ {0, he}. The total energy is

E(110)(kx, ky, n) =
~

2

2me

[
k2

x

mx
+

2k2
y

my +mz
+

π2

n2h2
e

my +mz

2mymz

]
(3.69)

with the envelope function

F
(110)
kx,ky,n(~r) = ei(kxx+kyy+γkyz) sin

(
nπz

he

)
, (3.70)

where γ = (my − mz)/(my + mz) and n = 1, 2, . . .. The relations between the minima of
the atomistic dispersions and the effective mass approximation can be straightforwardly derived
by zone folding considerations as in the wire case. The energy E(100)(0, 0, 1) with mz = mt

corresponds to the band edge of the 〈100〉 well, while E(110)(0, 0, 1) with my = ml and mz = mt

for instance yields the band edge of the 〈110〉 well. The edges obtained by the EMA are plotted
in Fig. 3.16, where ml = 0.918 and mt = 0.191 from Ref. [30] are employed.
As in the wire case, the conduction masses along the kx-direction can be extracted at the global
minima of the atomistic conduction bands. The masses extracted from the pseudopotential data
are plotted in Fig. 3.17 as a function of the effective height he. For the 〈100〉 case, the conduction
masses converge very quickly to the corresponding bulk value mt. The small peak in the 〈110〉
curve at he ≃ 3 nm is most probably due to the movement of the conduction band minimum
which is not accounted for during the measurement.
An investigation of silicon quantum wells within the k ·p framework and the linear combination of
bulk bands method can be found in Refs. [36, 25, 24]. In particular, a good agreement between
the kp method and the effective mass approximation has been observed for the conduction
band edges. Consideration on free-standing silicon quantum wells simulated by the empirical
pseudopotential method are given in Ref. [37].

3.7 Nonparabolicity

In Secs. 3.6.2, 3.6.3, and 3.6.4 two important band structure effects, i.e. shortcomings of the
EMA, have been highlighted, namely the overestimation of the subband energies and the un-
derestimation of the conduction masses. More advanced approaches have been mentioned such
as the k · p method or the linear combination of bulk bands. However, these methods still im-
ply a large computational burden compared to the EMA and their implementation within the
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Figure 3.17: Conduction masses of the quantum wells described in Sec. 3.6.4. The masses are
extracted by means of Eq. (3.64). The dashed line denotes the bulk value mt = 0.2 from the
Wa(3.5) case in Tab. 3.1.

transport framework employed in this work is not straightforward. It is therefore desirable to
preserve the simplicity of the effective mass approximation while being able to capture the main
band structure effects. For this purpose, the effective mass equation (3.36) is written in the more
general form 23

[
ǫb(−i~∇) + Uext(~r)

]
Fb(~r) = EFb(~r), (3.71)

where ǫb is the band containing the most relevant contributions to the full solution Ψ(~r) (see

Sec. 3.5). Using a more sophisticated approximation for ǫb(~k) than a simple parabola is expected
to reduce the energy overestimation when Bloch states far from the minimum become relevant.
For Uext ≡ 0, the Bloch states ψb(~k, ~r) are solutions of Eq. (3.71) to the eigenvalue ǫb(~k).
Equation. (3.71) can be efficiently solved in momentum space by fast Fourier transforms for
arbitrary potentials [38, 39]. A widely used nonparabolicity (NP) model for the conduction
bands of covalent semiconductors [40, 41] is given by the dispersion

ǫNP (~k) =
1

2α



√

1 + 4α
~2

2me

~kT M ~k − 1


+ Eedge, (3.72)

where α is referred to as the NP coefficient having the dimension of an inverse energy. Using the
dispersion (3.72) in Eq. (3.71) yields a Schrödinger equation of the form


 1

2α



√

1 − 4α
~2

2me

~∇T M ~∇− 1


+ Eedge

+Uext(~r)
]
F (~r) = EF (~r). (3.73)

23This form appears during the derivation of the effective mass equation [10]. Using the parabolic expansion
(3.33) one recovers Eq. (3.36).
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Equation (3.73) can be further simplified for the case of silicon nanowires grown along the 〈100〉
direction [42, ?], where M is diagonal and Uext(~r) → Uext(y, z) is independent on x. Using the
simple model potential

Uext(y, z) =

{
0, (y, z) ∈ [0,D]2

∞, otherwise
(3.74)

in Eq. (3.73) yields the spectrum

E(n,m, kx, α) ≡ 1

2α

[√
1 + 4α

(
ǫ‖ + ǫ⊥

)
− 1

]
+ Eedge

(3.75)

with n,m = 1, 2, . . ., ǫ‖(kx) ≡ ~
2k2

x/(2memx), and ǫ⊥(n,m) ≡ ~
2π2(n2/my +m2/mz)/(2meD

2).
The key assumption is that in small nanowires, the transverse confinement prevails against the
longitudinal energy, i.e. ǫ‖ ≪ ǫ⊥. This allows to expand the spectrum (3.75) in a Taylor series

E(n,m, kx, α) =
1

2α

[√
1 + 4αǫ⊥ − 1

]
+Eedge

+
ǫ‖√

1 + 4αǫ⊥
+O

[(
ǫ‖
ǫ⊥

)2
]
. (3.76)

The term ǫ‖/
√

1 + 4αǫ⊥ on the right hand side of Eq. (3.76) corresponds to a longitudinal kinetic
energy with a renormalized mass

mx → mx

√
1 + 4αǫ⊥. (3.77)

This finding is consistent with the observations made in Sec. 3.6.3 and 3.6.4, where the conduction
masses of the atomistic dispersions increase when the effective diameter is reduced. Neglecting
terms of order O[(ǫ‖/ǫ⊥)2] and fixing ǫ⊥ to ǫg⊥ ≡ ǫ⊥(1, 1) in the longitudinal kinetic energy term
in Eq. (3.76), yields

E(n,m, kx, α) ≈ 1

2α

[√
1 + 4αǫ⊥ − 1

]
+ Eedge +

ǫ‖√
1 + 4αǫg⊥

. (3.78)

A modified Schrödinger equation which reproduces the spectrum (3.78) reads

{
− ~

2

2memc

∂2

∂x2

+
1

2α

[√
1 − 4α

~2

2

(
∂

∂y

1

my

∂

∂y
+

∂

∂z

1

mz

∂

∂z

)
− 1

]

+Eedge + Uext(y, z)}F (~r) = EF (~r), (3.79)

where

mc ≡ mx

√
1 + 4αǫg⊥. (3.80)

The form (3.79) notably simplifies the implementation of NP 24 within the transport framework
described in chapter 4. The derivation of Eq. (3.79) can be repeated for Dirichlet conditions on
arbitrary boundaries with appropriate modifications of ǫ‖, ǫ⊥, and consequently ǫg⊥ and mc.

24The Hamiltonian in Eq. (3.79) is solely used within the single-material approximation in this work.
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In summary, the NP models derived in this section are able to capture the two bandstructure
effects observed in Secs. 3.6.3 and 3.6.4, namely the overestimation of the conduction band edge
and the underestimation of the conduction mass. Both effects can be contemporarily accounted
for by means of the NP coefficient, i.e. for an increasing α the conduction band edge decreases
and the conduction mass increases while for α→ 0 the results from the EMA are recovered. The
extraction of NP coefficients α by means of atomistic nanowire band structures is thouroughly
described in Sec. 5.2. Conversely, the use of bulk density of states for this extraction is shown
in Sec. 3.8.

A simplified Schrödinger equation including NP can be derived for the case of silicon quantum
wells with 〈100〉 oriented surfaces

{
− ~

2

2me

√
1 + 4αǫg⊥

(
1

mx

∂2

∂x2
+

1

my

∂2

∂y2

)

+
1

2α

[√
1 − 4α

~2

2me

(
∂

∂z

1

mz

∂

∂z

)
− 1

]

+Eedge + Uext(z)}F (~r) = EF (~r). (3.81)

Similar to the wire case, the effective masses in the free directions are increased due to NP. The
extraction of α for the well case is described in Sec. 5.2.

A Taylor expansion of the nonparabolic dispersion (3.72) has already been employed by Junge-
mann et. al. [43]. They simplify the nonparabolic dispersion to obtain a fully parabolic
Schrödinger equation for the case of silicon quantum wells. More recently, the unaltered disper-
sion (3.72) has been used for quantum wires [44] and dots [45]. Beside the present NP models,
improved effective mass theories [46] which employ a finite number of terms to approximate the
silicon conduction band have been successfully applied to well, wires, and dots.

3.8 Calculation of Charge Densities

3.8.1 Ideal Semiconductors

The electron density in an ideal crystal reads [10]

ρideal =
2

|Ω ~N |
∑

n,~k∈eΓred
~N

1

1 + e
ǫn(~k)−EF

kBT

=

∫

R

Gideal(E)f(E)dE (3.82)

with Γ̃red
~N

from Eq. (3.19). The density of states

Gideal(E) =
2

|Ω ~N |
∑

n,~k∈eΓred
~N

δ(E − ǫn(~k)) (3.83)

contains informations about the possible quantum states of the system while the information
about the statistical occupation of these states is exclusively contained in the Fermi distribution
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function f(E). In the macroscopic limit, i.e. for ~N → ∞, the density of states becomes [14]

Gideal(E) =
1

4π3

∑

n

∫

eΩc

δ(E − ǫn(~k))d~k (3.84)

=
1

4π3

∑

n

∫

Sn(E)

1

|∇~kǫn(~k)|
dS, (3.85)

where Sn(E) is a surface defined by the condition ǫn(~k) = E, dS is the corresponding surface

element, and Ω̃c is the unit cell (3.14) in the reciprocal lattice.
Within the EMA, the valleys of the conduction (c) and valence (v) bands of a semiconductor are
approximated by parabolic dispersions

ǫEMA
c/v (~k) = Ec/v ± ~

2

2me

~kT M
(i)
c/v
~k, (3.86)

where the M
(i)
c/v are the effective mass tensors of the ith valley and are generally dense. In the

case of silicon, the valence bands are warped in the vicinity of the maximum and an average is

necessary to obtain a parabolic approximation, i.e. the M
(i)
v , as mentioned in appendix A.0.2.

The densities of states of the dispersions (3.86) can be calculated analytically

GEMA,i
c/v (E) =

2

|Ω ~N |
∑

~k∈eΓ ~N

δ(E − ǫEMA,i
c/v (~k))

→ 1

4π3

∫

R3

δ

(
E − Ec/v ∓ ~

2

2me

~kT M
(i)
c/v
~k

)
d~k

=
1

2π2

√
det(|M(i)

c/v)|

(
2me

~2

) 3
2 √

|E − Ec/v|. (3.87)

In the presence of #c conduction band and #v valence band valleys, the total density of states
reads

GEMA
c/v (E) =

#c/v∑

i=1

GEMA,i
c/v (E)

≡ 1

2π2

(
2memc/v

~2

) 3
2 √

|E − Ec/v| (3.88)

The density of states effective mass mc/v collects the contributions of all valleys. Similarly, the
nonparabolic dispersion (3.72) can be used to compute the density of states of the conduction
band

GNP,i
c (E)

=
1

4π3

∫

R3

δ


E − Ec −

1

2α



√

1 + 4α
~2

2me

~kT M
(i)
c
~k − 1




 d~k

=
1

2π2

√
det(M

(i)
c )

(
2me

~2

) 3
2

[1 + 2α(E − Ec)]

×
√

(E − Ec)[1 + α(E − Ec)] (3.89)
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Figure 3.18: Density of states (B.4) of silicon obtained by means of the pseudopotential of Che-
likowski et al. described in appendix A.0.2. The corresponding parabolic (3.88) and nonparabolic
(3.90) densities of states are shown as well.

and consequently

GNP
c (E) =

#c∑

i=1

GNP,i
c (E)

=
1

2π2

(
2memc

~2

) 3
2

[1 + 2α(E − Ec)]

×
√

(E − Ec)[1 + α(E − Ec)]. (3.90)

A plot of G,GEMA
c/v ,GNP

c from Eqs. (B.4), (3.88), and (3.90) respectively can be found in Fig.
3.18 for the case of silicon. The pseudopotential of Chelikowski et al. described in appendix
A.0.2 is used to compute the band structure ǫn(~k) and consequently G(E) for a reciprocal space
discretization of M = 70 (see appendix B). These results are in quantitative agreement with
the data given in Ref. [47]. To be consistent with the pseudopotential calculations, mc = 1.06
and mv = 0.5 are used for GEMA

c and GEMA
v respectively. The NP coefficient α is obtained by

fitting the expression (3.88) to the approximate density of states (3.90). Employing a least square
minimization procedure on the range [Ec, Ec + 0.6eV] yields α = 0.51eV−1.

3.8.2 Doped Semiconductors

A fraction of the semiconductor atoms are now replaced by dopands providing single-ionizible
donor and acceptor levels EA and ED. With N−

A and N+
D being the concentrations of the

acceptors and donors respectively, the neutrality condition which fixes the Fermi energy EF

reads [10]

0 = nc − pv −N+
D +N−

A (3.91)
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with

nc =

∫ ∞

Ec

Greal
c (E)f(E)dE (3.92)

pv =

∫ Ev

−∞
Greal

v (E)[1 − f(E)]dE. (3.93)

Complete ionization of the dopands is assumed in Eq. (3.91). The density of states Greal
c/v of the

doped (real) semiconductor appearing in Eqs. (3.92) and (3.93) can be approximated [10] by
GEMA

c/v from Eq. (3.88). In this case, the electron density in the conduction band nc and the hole
density in the valence band pv become

nc = 2

(
memckBT

2π~

)3/2

F1/2

(
EF − Ec

kBT

)
(3.94)

and

pv = 2

(
memvkBT

2π~

)3/2

F1/2

(
Ev − EF

kBT

)
. (3.95)

The complete Fermi-Dirac integral Fj is defined as

Fj(x) =
1

Γ(j + 1)

∫ ∞

0

tjdt

exp(t− x) + 1
(3.96)

with Γ being Euler’s gamma function [48]. For values j < −1 the integral (3.96) does not
converge but analytic continuations can be defined. For further details on Fermi-Dirac integrals
and routines to compute these integrals to almost any precision see Ref. [49] and references
therein. Analytic expressions for Fj exist for integers j ≤ 0. The j = 0 case reads

F0(x) = ln[1 + exp(x)] (3.97)

and the application of the property

F ′
j(x) = Fj−1(x) (3.98)

allows one to write Fj for negative integers as a rational function of exp(x). Rational ap-
proximations for efficient implementations for the cases j ∈ {−3/2,−1/2, 1/2} can be found in
Refs. [50, 51] while pre-assembled routines are provided by the GNU scientific library [52].

The densities nc and pv are derived under the assumption of spatial isotropy. Under real cir-
cumstances, inhomogeneities due to the presence of different materials and externally applied
fields have to be considered. In the simplest case, local equilibrium is assumed and spatial
changes of the material properties are accounted for by introducing a position dependence in the
quantities mc/v and Ec/v

25 as in the effective mass description of nanostructures explained in
Sec. 3.5. However, when quantization effects become relevant, the local equilibrium approxima-
tion is expected to fail. In this case the envelope functions of the entire nanostructure have to

25In the presence of an external perturbation Uext, the band edges are replaced by Ueff = Ec/v + Uext.
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be calculated. For nanowires, the densities read

n1DEG
c (~r) =

√
2memxkBT

π~2

∑

n

|ψn(y, z)|2F−1/2

(
EF − ǫn
kBT

)

(3.99)

p1DEG
v (~r) =

√
2memxkBT

π~2

∑

n

|ψn(y, z)|2F−1/2

(−EF − ǫn
kBT

)
.

(3.100)

The expressions (3.99) and (3.100) are valid for arbitrary mass tensors. In this case, the mass
mx has to be chosen as described in appendix D. For the case of quantum wells, the densities
read

n2DEG
c (~r) =

√
mxmymekBT

π~2

∑

n

|ψn(z)|2F0

(
EF − ǫn
kBT

)

(3.101)

p2DEG
v (~r) =

√
mxmymekBT

π~2

∑

n

|ψn(z)|2F0

(−EF − ǫn
kBT

)
.

(3.102)

The densities n1DEG
c , p1DEG

v , n2DEG
c , and p2DEG

v are always related to a single valley. In a multi-
valley material, the total density is obtained by collecting the contributions from all valleys 26

The quantities {ψn, ǫn} in Eqs. (3.99), (3.100), (3.101), and (3.102) are the eigensolutions of the
Schrödinger equation for the confined direction. Several examples related to the conduction band
minimum of silicon have been presented so far. Given a valence band maximum described by
the tensor Mv = diag(−1/mx,−1/my,−1/mz), the envelope equation for the confined direction
in a quantum well 27 reads

[
− ~

2

2me

∂

∂z

1

mz

∂

∂z
− Ueff (z)

]
ψ(z) = ǫψ(z). (3.103)

The resulting eigensystem {ψn, ǫn} is used within Eq. (3.102).
Generally, the near-gap energy bands are degenerate around the extremal points such as for
instance the valence bands of silicon. As mentioned in Sec. 3.5, the k · p method can be used
to compute the states and thus the densities in this case. However, the single-band picture, and
thus the effective mass equation, can be retained by means of a very rough approximation, i.e. by
lumping the valence bands into a single effective mass tensor Mv = diag(−1/mv,−1/mv,−1/mv)
with mv being the density of states effective mass.
The neutrality conditions for the wire and well cases are discussed in chapter 4.

3.9 Summary

An review of the basic theory and an overview of different methods for the calculation of band
structures have been given at the beginning of this chapter with a particular focus on the em-
pirical pseudopotential (EPM) and the ETB. While the ETB is attractive from a computational

26In this way, the coupling between diffent valleys is fully suppressed as already mentioned in Sec. 3.5.
27The wire case follows analogously.
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point of view, the EPM is numerically more involved but is supposed to describe the charge
density in a more physical way. For the bulk case, both methods yield a satisfactory agreement.
Unfortunately, such an agreement can not be observed for the case of nanostructures, whereas
the discrepancy is more pronounced for nanowires. A possible source for this discrepancy has
been attributed to different treatment of the surface. Comparisons with more advanced ab-initio
methods could shed more light on this behaviour.
Electronic states in nanostructures have been calculated by the EMA and compared to results
from the ETB and the EPM. The shortcomings of the EMA compared to the atomistic approaches
are referred to as band structure effects. Two such effects, which turn out to be the most relevant
in qunatum transport simulations (see chapter 4), are the overestimation of the conduciton band
edge and the underestimation of the conduction mass. Simple NP models being parametrized by a
single coefficient incorporate these two effects and can be used to improve the EMA. The chapter
is concluded with some considerations on particle densities in nanostructures at thermodynamic
equilibrium.





Chapter 4

Simulation of Ballistic Transport

4.1 Introduction

With the EMA described in the previous chapter, the basis for an efficient quantum-mechanical
treatment of electronic systems in semiconductor devices has been laid. Sticking to the level
of quantum mechanics, the transport of electrons is then most simply treated in the absence of
phase breaking scattering processes, being referred to as quantum-ballistic transport (QBT). The
validity of the ballistic approximation strongly depends on the dimensions of the devices which
should not exceed the coherence length of the charge carriers. Ignoring this prerequisite, QBT can
still be used to investigate the theoretical performance limit of a device. For given material and
contact specifications, the Schrödinger and Poisson equation of the device are repeatedly solved
until the electrostatic potential and the charge density become consistent. Upon successful exit,
the current is calculated.

The Landauer-Büttiker formalism, which is widely used to describe QBT, is briefly outlined at the
beginning of this chapter. Subsequently, some historical notes on the simulator for nanodevices
SIMNAD are given. Fundamental numerical issues are addressed such as the discretization of
the Schrödinger and Poisson equation as well as iterative schemes to achieve self-consistency. In
this context, the box integration method and the finite element method (FEM) are described. In
order to improve the EMA, a spectral method to include the nonparabolicity models elaborated
in the previous chapter, is presented. Finally, the impact of band structure effects on current
characteristics is investigated.

4.2 Devices

Two types of devices are considered in this work, namely nanowire and planar field effect tran-
sistors (FETs). Since a nanowire FET hosts a quasi one-dimensional electron gas (1DEG), the
terms 1DEG and nanowire will be used interchangeably. Analogously, the term 2DEG is related
to a planar FET. Both types of devices are schematically shown in Fig. 4.1. The gate contact is
described by a Dirichlet boundary condition for the Poisson equation while zero von Neumann
conditions are imposed on the remaining surface. The prismatically shaped semiconductor region
is fully enclosed by the dielectric and is divided in three segments along the transport direction
x, i.e. the source, channel, and drain region. Note that the overall prismatic shape of the devices
is not mandatory for the present simulation framework, i.e. the source and drain regions can be
flared out for instance. In particular, the oxide thickness tox does not have to be uniform along

45
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(a)

x

z

y

(b)

Wy

tc

tox

tox

tox

lg
lg

ld

ls

drain
channel

source

ld

ls

Figure 4.1: Schematic representation of the devices considered in this work, i.e. nanowire FETs
(a) and planar FETs (b). The red region denotes the gate contact of length lg which is placed
precisely above the channel region and coincides with the Dirichlet boundary ∂ΩD. The remain-
ing surface is referred to as the von Neumann boundary ∂ΩN , i.e. ∂Ω = ∂ΩD ∪ ∂ΩN is the total
boundary of the simulation domain Ω. The lengths of the source and drain regions are denoted
by ls and ld respectively. Finally, the width and the channel thickness of the planar FET are
denoted by Wy and tc, respectively and tox is the oxide thickness.
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Figure 4.2: A device coupled to semi-infinite leads which are in turn coupled to reservoirs being
at thermodynamic equilibrium. This is the picture used within the Landauer-Büttiker formalism.

the surface.

In the following, the semiconductor region consists of silicon grown along the 〈100〉 direction and
silicon dioxide is used as dielectric. The confinement direction in the planar FETs coincides with
the 〈100〉 direction.

4.3 Landauer-Büttiker Formalism

In this formalism, the current flowing through a conductor is related to the probability that a
charge carrier can be transmitted through this conductor. A detailed review is given in Refs.[53,
54]. For a two-terminal device, the schematic situation is shown in Fig. 4.2. The device is coupled
to semi-infinite terminals (leads) which are assumed to be perfect wave guides. These leads are
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coupled to particle reservoirs being in thermodynamic equilibrium 1. The Fermi energies are Es
F

and Es
F − eVds for the source (s) and drain (d) reservoir respectively, where Vds is the applied

forward bias.
In the following, the potential Ueff (~r) describes the device and the affiliated leads. The effective
mass Schrödinger equation is assumed to be of the form

[
− ~

2

2me

~∇M~∇T + Ueff (~r)

]
F (~r) = EF (~r) (4.1)

with M = diag{1/mx(x), 1/my(~r), 1/mz(~r)}. The mass mx is independent on (y, z) within the
device 2 and fully position-independent in the leads. In the leads of a nanowire, the potential
Ueff depends only on (y, z). The eigenstates of the Hamiltonian (4.1) for this case have been
thoroughly described in Sec. 3.5. The general form reads

F (~r) =
∑

i

(
aie

ikix + bie
−ikix

)
ψi(y, z) (4.2)

with ki =
√

2memx(E − ǫi)/~ and {ǫi, ψi} are the eigensolutions of the transverse Schrödinger
equation 3. The solution (4.2) is continued into the device until reaching the opposite terminal,
where the form of the solution equals the one given in Eq. (4.2). A suitable basis set for the

lead-device-lead system is given by the so called scattering states [55]. Such a state F
(t)
j (E,~r)

is injected into a single mode j from a given terminal t ∈ {s, d} at a fixed total energy E 4. If
ai = δi,j in the source for instance, bi has to be zero in the drain lead for all i. The density of
electrons in the conduction band is given by

n1DEG
c (~r) =

√
me√
2π~

∑

ν

∑

t

√
m

(t,ν)
x

∑

j

∫ ∞

ǫ
(t,ν)
j

|F (t,ν)
j (E,~r)|2

× 1

1 + e(E−E
(t)
F )/kBT

dE√
E − ǫ

(t,ν)
j

(4.3)

where ν is a label for the different valleys, if present, of the conduction band giving rise to

different mass tensors in the Hamiltonian (4.1) and ǫ
(t,ν)
j is the j-th subband energy of the valley

ν in terminal t. The Landauer-Büttiker formalism gives rise to a somewhat unfamiliar picture
of non-equilibrium as the Fermi level is not strictly defined throughout the device. Instead, each
charge carrier is linked to a single reservoir and thus a single Fermi level. The charge density
(4.3) is the sum of the source and drain populations. The current through the nanowire FET is
given by

I1DEG
d =

e

π~

∑

ν

∫

minj(ǫ
(s,ν)
j )

T (1DEG,ν)(E)

×
[

1

1 + e(E−E
(d)
F )/kBT

− 1

1 + e(E−E
(s)
F )/kBT

]
dE, (4.4)

1The lead is not semi-infinite in the strict sense but merely much longer than the device. Furthermore, the leads
are assumed to be perfect prolongations of the source and drain regions of the device. More involved injection
conditions, i.e. from 2DEGs into nanowire FETs, have been studied within the Green’s functions formalism [17].

2This assumption notably simplifies the implementation of the scattering matrix approach (see Sec. 4.5).
3The energies ǫi are also referred to as subband energies.
4The parameters j, t, and E dictate the scattering boundary conditions which are used within the scattering

matrix formalism from Sec. 4.5 to compute the state F
(t)
j (E,~r) inside the device.
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where T (1DEG,ν)(E) is the total transmission probability contributed from valley ν. This prob-
ability can be explained by means of the current

Jx[F ](x) ≡
∫

R2

i~

2memx

[(
∂F

∂x

)∗
F −

(
∂F

∂x

)
F ∗
]

︸ ︷︷ ︸
dydz (4.5)

{ ~J [F ](~r)}x

where { ~J [F ](~r)}x is the x-component of the current

~J [F ](~r) =
i~

2memx

[(
~∇F
)∗
F −

(
~∇F
)
F ∗
]
. (4.6)

Applying the operator (4.5) to the scattering state F
(s,ν)
j (E,~r) for instance, yields ~k

(s,ν)
j (E)/(mem

(s,ν)
x )

in the source and
~

mem
(d,ν)
x

∑

i

k
(ν)
i (E)|a(ν)

i (E)|2 (4.7)

in the drain, where {k(ν)
i (E), a

(ν)
i (E)}i are the parameters belonging to F

(s,ν)
j (E,~r) in the drain

5. The transmission probability T (1DEG,ν)
j (E) provided by this state is given by the quotient

of the drain and source current and the total probability is then obtained by summing up the

contributions from all states, i.e. T (1DEG,ν)(E) =
∑

j T
(1DEG,ν)

j (E) 6. For the 2DEG case, the
density and current expressions can be computed analogously [54]

n2DEG
c (~r) =

me

√
kBT

~2π3/2

∑

ν

∑

t

√
m

(t,ν)
x m

(t,ν)
y

∫

minj(ǫ
(t,ν)
j )

∑

j

F−1/2

(
E

(t)
F − Ẽ

kBT

)
|F (t,ν)

j (Ẽ, x, z)|2 dẼ√
Ẽ − ǫ

(t,ν)
j

(4.8)

I2DEG
d =

Wy

√
2kBT

~2π3/2

∑

ν

√
m

(s,ν)
y

∫

minj(ǫ
(s,ν)
j )

T (2DEG,ν)(E)

×
[
F−1/2

(
E

(s)
F − Ẽ

kBT

)
−F−1/2

(
E

(d)
F − Ẽ

kBT

)]
dẼ, (4.9)

where Wy is the width of the 2DEG as shown in Fig. 4.1.b. Note that Ẽ in Eqs. (4.8) and (4.9)
does not denote the total energy any longer [54].
Finally, some remarks on the role of zero von Neumann conditions for the Poisson equation shall
be given. A device is described by means of the conduction and valence band edge profiles, the
effective masses, the dielectric constants, and the doping profiles 7. In the semi-infinite leads
of the device, charge-neutrality is mandatory. This requirement fixes the electrostatic potential
in the leads once the Fermi levels are specified. While charge neutrality is naturally included
in the local equilibrium approximation mentioned in Sec. 3.8.2, more effort is needed when the
nanostructure is considered as a whole. This is the point, where the zero von Neumann conditions
come into play. From Gauss’ theorem it follows that the total charge in a box, here the leads, has

5Only transverse modes are considered with subband energies being strictly smaller than E in source and
drain.

6The transmission probability is not defined for E < ǫ
(s,ν)
j and is set to zero in this regime.

7The doping is uniformly distributed in a specified region. See Sec. 4.9 for more details.
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to vanish if these conditions are applied. Irrespective of the electrostatic potential, the source-
to-gate voltage (Vgs) is defined as the difference between the Dirichlet condition on the gate and
the Fermi level in the source while the source-to-drain voltage (Vds) is the difference between the
source and drain Fermi levels. These specifications are of crucial importance for comparisons
between different simulators. It has to be noted that only electrons are considered, i.e. the
source and drain regions and thus the corresponding leads are n-doped. The calculation of the
hole density in the valence band pv is not addressed as it is negligible.

4.4 SIMNAD

The implementation of the SIMNAD software started in 1997 [56] with the intention to simulate
single electron transistors (SET). The promising future attributed to SETs relied on the idea
that the switching procedure in such devices is based on adding or removing a single electron
from a quantum dot (island) and thus being in principle the physical limit of miniaturization.
The conventional FET is controlled by means of a gate contact which opens or closes the channel
capacitively and allows the current flow (ON-state).
In a subsequent work [54], starting around 2000, the simulator has been widely extended.
Amongst other features, the ability to simulate 2DEG devices has been provided. In this con-
text, tunneling effects and self-consistency are fully taken into account. The equivalent extension
followed for the case of nanowires, where the issue of self-consistency is much more involved. So
far, the EMA has been employed in conjunction with a tensorial grid discretization for the
Schrödinger and Poisson equation. The scattering matrix formalism served as basis for the
calculation of transmission probabilities and charge densities.
In particular for the wire case, the tensorial grid discretization puts stringent limits for the choice
of the cross-sectional shape. This motivated the implementation of the FEM. Furthermore, the
most relevant band structure effects are now accounted for by a suitable nonparabolicity models
in case of nanowire and planar FETs. Since 2005 several other features have been implemented,
beside this work, by Martin Frey. The most important ones being the Green’s functions formalism
for charge transport and the inclusion of inelastic scattering processes. A conceptual comparison
between the scattering matrix formalism and the Greens functions formalism can be found in
Ref. [54].

4.5 Scattering Matrix Formalism

The simulation domain, i.e. the device, is sliced along the transport direction as illustrated in
Fig. 4.3. For this purpose, a set of points {xn}n=0,...,N is distributed on the interval [0, L] with
x0 = 0, xN = L, and L being the length of the device. Each slice is delimited by an interval

Ix
n =





[0, x1/2], n = 0
((xN−1 + L)/2, L), n = N
((xn−1 + xn)/2, (xn + xn+1)/2), otherwise

. (4.10)

The external potential Ueff (~r) is approximated by Ueff
n (y, z) ≡ Ueff (xn, y, z) on the interval

Ix
n. Consequently, the general form of the envelope function on Ix

n is formally identical to the
expression (4.2) in the leads, i.e.

F (n)(~r) ≡
∑

i

(
a
(n)
i eik

(n)
i x + b

(n)
i e−ik

(n)
i x
)
ψ

(n)
i (y, z), (4.11)
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Figure 4.3: Slicing of the simulation domain along the transport direction.

where ψ
(n)
i (y, z) = 〈y, z|i〉(n) is the eigensolution of the transverse Hamiltonian 8

H
(n)
⊥ = − ~

2

2me

(
∂

∂y

1

my

∂

∂y
+

∂

∂z

1

mz

∂

∂z

)
+ Ueff

n (y, z) (4.12)

to the eigenvalue ǫ
(n)
i and

k
(n)
i =





√
2memx(E − ǫ

(n)
i )/~, E ≥ ǫ

(n)
i

i

√
2memx(ǫ

(n)
i − E)/~, otherwise

. (4.13)

The position-dependence of the effective masses is defined in Sec. 4.3. Note that separability
of the Schrödinger problem (4.1) on a slice Ix

n is partially due to the (y, z)-independence of mx

beside the enforced x-dependence of Ueff . For instance, the mass mx can be taken from the
material which hosts the majority of the charge density on Ix

n, i.e. usually the channel material.
The envelope function on the whole simulation domain reads

F (~r) =

N∑

n=0

χn(x)Fn(~r), (4.14)

where χn(x) is unity on Ix
n and zero otherwise. The continuity of the current (4.5) and the

charge densities (4.3) and (4.8) at the interface between two slices is ensured by the conditions

Fn((xn + xn+1)/2, y, z)
!
= Fn+1((xn + xn+1)/2, y, z), (y, z) ∈ R

2 (4.15)

and
∂

∂x
Fn(~r)

∣∣∣∣
x=(xn+xn+1)/2

!
=

∂

∂x
Fn+1(~r)

∣∣∣∣
x=(xn+xn+1)/2

, (y, z) ∈ R
2 (4.16)

8The transverse wave functions ψ
(n)
i (y, z) are subject to Dirichlet boundary conditions. For instance, the

surface of an arbitrary prismatic hull of the device oriented along the transport direction can serve to define the
boundary for the Dirichlet conditions.



4.5. SCATTERING MATRIX FORMALISM 51

Equations (4.15) and (4.16) provide connection rules between the coefficients on two neighboring
slices

a
(n+1)
j =

1

2
eik

(n+1)
j ∆xn/2

×
∑

i

[
a
(n)
i eik

(n)
i ∆xn/2

(
1 +

m
(n+1)
x k

(n)
i

m
(n+1)
x k

(n+1)
j

)

+ b
(n)
i e−ik

(n)
i ∆xn/2

(
1 − m

(n+1)
x k

(n)
i

m
(n+1)
x k

(n+1)
j

)]
(n+1)〈j|i〉(n)

b
(n+1)
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2
e−ik
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×
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(n)
i eik
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i

m
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(n)
i e−ik
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(
1 +

m
(n+1)
x k

(n)
i

m
(n+1)
x k

(n+1)
j

)]
(n+1)〈j|i〉(n)

which can be cast as matrix vector product

(
a(n+1)

b(n+1)

)
= T

(n)

(
a(n)

b(n)

)
=

(
T

(n)
00 T

(n)
01

T
(n)
10 T

(n)
11

)(
a(n)

b(n)

)

with a(n) = (a
(n)
0 , a

(n)
1 , . . . , a

(n)
Ns

)T and b(n) = (b
(n)
0 , b

(n)
1 , . . . , b

(n)
Ns

)T . The number of subband
energies is denoted by Ns. Given the initial boundary conditions

F (0, y, z) = f(y, z) (4.17)

∂

∂x
F (~r)

∣∣∣∣
x=0

= g(y, z), (4.18)

one can compute the coefficients {a(0),b(0)} and consequently {a(i), b(i)}i=1,...,N by means of
the partial transfer matrices {T(i)}i=0,...,N−1. However, as mentioned in Sec. 4.3, the portion of
the wave function in the waveguide is determined by means of scattering boundary conditions.
In contrast to the Cauchy boundary conditions (4.17) and (4.18), the components of the wave
function propagating into the device, a(0) and b(N), are used to compute the outward propagating
components a(N) and b(0) 9. This is achieved by means of the scattering matrix

(
a(N)

b(0)

)
= S

(0,N)

(
a(0)

b(N)

)

The forward construction scheme for S(0, N) employs the total transfer matrix T =
∏N−1

n=0 T
(n)

and the relation (4.19) to compute the scattering matrix

S
(0,N) =

(
T00 − T01T11T10 T01T

−1
01

−T
−1
11 T

−1
11

)

However, the forward construction scheme is numerically unstable [57, 54]. This instability
resides in the exponentially increasing and decreasing terms in the partial transfer matrices.

9Note that the scattering boundary conditions contain the same amount of information as given by the Cauchy
boundary conditions. Uniqueness of the solution is therefore guaranteed for a fixed total energy E.
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Depending on the device length, the entries of T may differ by several orders of magnitude and
cause numerical problems when the scattering matrix is finally assembled. A remedy is provided
by a recursive construction of the scattering matrix. In this scheme, the matrices S

(0,n) which
fulfill (

a(n)

b(0)

)
= S

(0,n)

(
a(0)

b(n)

)
,

are recursively calculated starting from n = 1. The S
(0,1) is obtained by replacing T with T

(0) in
Eq. (4.19). The step from n to n+ 1 is accomplished by the pair of matrices S

(0,n) and T
(n), i.e.

S
(0,n+1)
00 =

(
B

(n)
00 − S

(0,n)
01 B

(n)
10

)−1

S
(0,n)
00

S
(0,n+1)
01 =

(
B

(n)
00 − S

(0,n)
01 B

(n)
10

)−1 (
S

(0,n)
01 B

(n)
11 − B

(n)
01

)

S
(0,n+1)
10 = S

(0,n)
10 + S

(0,n)
11 B

(n)
10 S

(n+1)
00

S
(0,n+1)
11 = S

(0,n)
11

(
B

(n)
11 + B

(n)
10 S

(n+1)
01

)
(4.19)

where B
(n) = (T(n))−1. Alternatively, the S

(0,1) can be calculated using S
(0,0) = 1 and T

(0)

in Eq. (4.19). The advantage of this scheme, compared to the forward construction, is that
the partial transfer matrices are included slice by slice in the scattering matrix. In this way,
exponentially growing and decreasing terms are mixed at each recursion step.
The calculation of the charge density inside the device requires the computation of the entire
set of coefficients {a(n),b(n)}n=0,...,N . This can be accomplished by transforming the scatter-
ing boundary conditions {a(0),b(N)} in Cauchy conditions {a(0),b(0)} by means of S

(0,N). The
partial transfer matrices can then be employed to compute the coefficients inside the device.
However, this approach suffers from instabilities similar to the forward construction of the scat-
tering matrix. Again, this problem can be circumvented by using a slice-wise incorporation of
the partial transfer matrices [57, 58]. For this purpose, the scattering matrix S

(n,N) with the
property (

a(N)

b(n)

)
= S

(n,N)

(
a(n)

b(N)

)
,

is introduced. The construction of the set {S(n,N)}n=0,...,N starts with S
(N,N) = 1. Then, the

scattering matrix S
(n−1,N) is computed by means of {T(n−1),S(n,N)}, i.e.

S
(n−1,N)
00 = S

(n,N)
00 (T

(n−1)
00 + T

(n−1)
01 S

(n−1,N)
10 )

S
(n−1,N)
01 = S

(n,N)
01 + S

(n,N)
00 T

(n−1)
01 S

(n−1,N)
11

S
(n−1,N)
10 =

(
T

(n−1)
11 − S

(n,N)
10 T

(n−1)
01

)−1 (
S

(n,N)
10 T

(n−1)
00 − T

(n−1)
10

)

S
(n−1,N)
11 =

(
T

(n−1)
11 − S

(n,N)
10 T

(n−1)
01

)−1

S
(n,N)
11 . (4.20)

Combining Eqs. (4.19) and (4.20) allows to express the coefficients on each slice as a function of
the scattering boundary conditions

a(n) =
(
1− S

(0,n)
01 S

(n,N)
10

)−1

×
(
S

(0,n)
00 a(0) + S

(0,n)
01 S

(n,N)
11 b(N)

)
, (4.21)

b(n) =
(
1− S

(n,N)
10 S

(0,n)
01

)−1

×
(
S

(n,N)
10 S

(0,n)
00 a(0) + S

(n,N)
11 b(N)

)
. (4.22)
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The algorithm for the computation of {a(n),b(n)}n=0,...,N can be summarized as follows. First,
calculate the partial transfer matrices {T(n)}n=0,...,N−1 defined in Eq. (4.17) and store them in
memory. Then, compute the scattering matrices {S(n,N),S(0,n)}n=0,...,N−1 by means of Eqs. (4.19)
and (4.20) and store them as well. The coefficients a(n) and b(n) can be finally computed by
means of Eqs. (4.21) and (4.22), respectively. The number of matrix-matrix multiplications in
this algorithm is proportional to the number of slices N . In a more memory-saving approach,
a loop over the slices can be performed and the required transfer and scattering matrices are
calculated anew for each slice. In this case the number of matrix-matrix multiplications scales
like N2.

For the numerical calculation of the electrostatic potential and the density, the envelope function
(4.14) has to be sampled at positions whose x-components are part of the set {xi}i=0,...,N from
Fig. 4.3 10. The evaluation of Fn(xn, y, z) is rather simple since the exponential terms are
omitted. More information from the entire slice can be included by averaging the wave function
over the slice

F̃n(y, z) =
1

∆xn

∫ (xn+xn+1)/2

(xn+xn−1)/2

Fn(~r)dx

=
∑

i

φ
(n)
i (y, z)(a

(n)
i + b

(n)
i )

2 sin
(
k

(n)
i ∆xn/2

)

k
(n)
i ∆xn

. (4.23)

Note that the terms containing purely complex wave vectors k
(n)
i = ik̃

(n)
i with k̃

(n)
i ∈ R in

Eq. (4.23) diverge exponentially as a function of ∆xnk̃
(n)
i , i.e.

(a
(n)
i + b

(n)
i )

2 sinh
(
k̃

(n)
i ∆xn/2

)

k̃
(n)
i ∆xn

. (4.24)

Especially in the presence of high barriers, the grid spacing has to be chosen such that the

corresponding ∆xnk̃
(n)
i does not excessively exceed unity. This is a crucial prerequisite for the

achievement of self-consistency.

In this section, some details on the SMA have been explicitly described for the case of nanowire
FETs. The planar case can be treated analogously [54]. The usage of the SMA for arbitrary
effective mass tensors is described in appendix D. Neglecting the off-diagonal entries in the
overlap matrices (n+1)〈j|i〉(n) is referred to as the uncoupled mode space approach. This approx-
imation notably reduces the computational burden but in some cases this goes at the expense of
important physical insights [59, 60]. In this work, the mode coupling is fully taken into account.

Finally, some notes on the charge density computation shall be given. Instead of evaluating
the time-demanding injected densities (4.3) and (4.8), a local equilibrium like approach can be
employed by using the expressions (3.99) and (3.101) on each slice Ix

n. In this approximation,
tunneling and reflections are completely discarded. However, this adiabatic density can be cal-
culated very efficiently and can serve as an initial guess to a self-consistency algorithm (see
Sec. 4.7.6). Details on the implementation of the adiabatic density can be found in Ref. [54]. In
this work, current calculation are always based on the injected variants (4.3) and (4.8).

10This restriction for the sampling points is required for the numerical approaches used in this work.
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4.6 Discretization

4.6.1 Fundamental Equations

In d dimensions, the general form of the stationary Schrödinger equation within the EMA is
given by [

−∇M(x)∇T + Ueff (x)
]
F (x) = EF (x), (4.25)

and the Poisson equation reads

− 1

8π
∇ǫ(x)∇TF (x) = ρ(x) (4.26)

with

ρ(x) = −
[
nc(x) − pv(x) +N−

A (x) −N+
D (x)

]
. (4.27)

Both equations are expressed in atomic units, i.e. lengths in Bohr radii, energies in Rydberg,
and potentials in Ry/e. The effective mass tensor M(x) is generally dense while the dielectricity
ǫ(x) is assumed to be of the form ǫ(x)1. The self-consistent solution of Eqs. (4.25) and (4.26),
i.e. with nc(x) computed by means of the solutions of the Schrödinger equation (4.25), partially
accounts for many-particle interactions in the sense of the Hartree approximation described in
Sec. 2.3.

4.6.2 Box Integration Method

Finite difference methods are widely used for the solution of partial differential equations. The
differential operators are expressed by means of differences between point evaluations of the
solution, thus allowing to cast the differential equation as an algebraic matrix problem. These
point evaluations are then obtained by solving this, generally sparse, matrix problem11. A
straightforward discretization of the simulation domain, which is particularly suited for the finite
difference method, is provided by a tensorial grid. Starting with the set sx = {xn}n=0,...,N used
for the slicing of the device (cf. Fig. 4.3), the tensorial grid T G = sx ⊗ sy ⊗ sz is constructed
by means of two further sets sy = {yj}j=0,...,J and sz = {zk}k=0,...,K in three dimensions 12.
Intervals {Iy

j }j=0,...,J and {Iz
k}k=0,...,K can be constructed for sy and sz respectively, according

to Eq. (4.10).

Within the box integration method in three dimensions (x = ~r), the operator −~∇B(~r)~∇T , with
B = diag(bx, by, bz) being either M or ǫ, is integrated over the box Ωn,j,k = Ix

n × Iy
j × Iz

k

−
∫

Ωn,j,k

~∇B(~r)~∇TF (~r)d~r = −
∮

∂Ωn,j,k

~n(~r)(B(~r)~∇TF (~r))dS

(4.28)

The same operation has to be performed on the remaining terms of the partial differential
equation. The surface integral in Eq. (4.28) can be divided in six integrals corresponding to the
six faces of Ωn,j,k. Each of these integrals is approximated by evaluating the integrand at the
middle of the face and multiplying this value with the area of the face. The integrands itself are

11A simple linear or eigenvalue problem has to be solved in the case of the Poisson or Schrödinger equation,
respectively.

12The two-dimensional case is constructed analogously.
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approximated by a central difference, i.e. the integrand pointing along the positive x-direction
for instance is approximated by

− bx(x, yj , zk)
∂

∂x
F (x, yj , zk)

∣∣∣∣
x=(xi+xi+1)/2

=

−bxn+1/2,j,k

(
Fn+1,j,k − Fn,j,k

xi+1 − xi
+ O((xi+1 − xi)

3)

)
(4.29)

where Fn,j,k = F (xn, yj , zk) and bxn+1/2,j,k = bx((xi+1−xi)/2, yj , zk). Note that the matrix B has
to be evaluated at artificial points lying between the sites of the tensorial grid. The approximation
of the surface integral (4.28) is formulated for each lattice site and cast as a matrix vector
multiplication AF with F = (. . . , Fn,j,k, . . .)

T . 13 For the inclusion of Dirichlet and von Neumann

Boundary conditions see Ref. [56]. With Ω = diag(. . . , |Ωn,j,k|, . . .), U = diag(. . . , Ueff
n,j,k, . . .),

and ρ = (. . . , ρn,j,k, . . .)
T , the application of the box integration method to the Schrödinger

(4.25) and Poisson equation (4.26) yields the algebraic problems

(A + U)F = EF (4.30)

and
AF = ρ (4.31)

respectively. In the 1DEG case for instance, the Poisson equation is solved on the three-
dimensional tensorial grid yielding the electrostatic potential at the grid points. At each position
xi ∈ sx, a two-dimensional Schrödinger equation expressed on the grid points perpendicular to
the transport direction is solved employing the electrostatic potential.

Solution of the linear Problem

In one, two, and three dimensions, the matrix A contains at most three, five, and seven entries
per row respectively, and is therefore rather sparse. The Poisson problem related to the 1DEG
case for instance has to be solved in three dimensions. In this case, typical sizes of the tensorial
grid, and therefore of the matrix problem, are of the order of ∼ 500000 degrees of freedom. The
solution of sparse linear systems up to these sizes can be accomplished by several well-established
algorithms and data structures. A common way to store large sparse matrices is provided by
the column row sparse (CRS) format for instance. The solvers for sparse linear systems are
generally subdivided in two classes, i.e. direct 14 and iterative 15 methods. A survey on direct
and iterative approaches for the solution of sparse linear systems can be found in Refs. [62] and
[63], respectively, with references to corresponding software packages. A powerful framework
which combines efficient data structures and an unified access to state-of-the-art linear solvers,
even for distributed computing, is provided by the PETSC[64] software.

Solution of the Eigenvalue Problem

The eigenvalue problems which have to be solved within the 1DEG case are sparse as well, but
of more moderate size, i.e. ∼ 10000 degrees of freedom. However, these problems are still not
optimally suited for direct eigenvalue solvers such as LAPACK. More appropriate approaches

13The hermiticity of the matrix A is ensured by the particular choice of integration (4.28). Non-hermitian
matrices may arise from a direct finite difference discretization of the Laplacian on a non-uniform grid.

14The PARDISO (www.pardiso-project.org), MUMPS (mumps.enseeiht.fr/), and UMFPACK (www.cise.
ufl.edu/research/sparse/umfpack/) libraries are well-known direct solvers.

15The iterative solver ILS[61] is well suited for computational electronics.
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(a) (b)

Figure 4.4: (a) Tensorial grid discretization of a rectangular domain. The boundary of the dark
region, denoted by the red line, is refined (green lines) in (b). The redundant lattice sites are
highlighted by the blue dots.

are Krylov subspace iteration methods such as the implicitly restarted Arnoldi method. This
algorithm is implemented in the ARPACK [65] software. A further iterative approach is given by
the Jacobi Davidson QR method [66]. Both, the Arnoldi and Jacobi Davidson method search for
some eigenvalues around a specified parameter λ. As only the energetically lowest eigenvalues
are interesting, the λ can be set to the minimum of the effective potential in the Schrödinger
equation. A detailed survey on methods for the solution of eigenvalue problems is given in
Ref. [62]. At the beginning, the device simulator SIMNAD was equipped with the JDQR and
Slip90 software for eigenvalue and linear problems respectively. The ARPACK solver has been
added operating in shift-invert mode by means of the UMFPACK.

Remarks

Finally, some major shortcomings of the box integration method used in conjunction with ten-
sorial grids shall be mentioned. The tensorial grid itself implies two main disadvantages. First,
refining the grid in regions where strong variations of the potential or density for instance are
expected, such as at a material interface, generates a notable amount of undesired grid points as
illustrated in Fig. 4.4. Secondly, the treatment of von Neumann conditions on arbitrarily shaped
surfaces is not straightforward. Major complication can also be expected when dense effective
mass or dielectric tensors are employed. The application of the box integration on Delaunay
triangulations and related theory can be found in Ref. [67].

4.6.3 Finite Element Method

When partial differential equations have to be solved on complicated domains such as in aero-
dynamics or when the desired accuracy of the solution notably varies within the domain such as
in car crash simulations, the finite element method is a popular choice.
In this work, the Poisson and Schrödinger equation for the 1DEG case with arbitrarily shaped
boundaries16 are solved by means of the FEM on a tetrahedrization and triangulation, respec-
tively. Again, the set sx = {xn}n=0,...,N from Fig. 4.3 is used to construct the grid. As the device
is assumed to be prismatic, i.e. the transverse shape does not change along the transport direc-
tion, a two-dimensional grid17 is generated, according to the cross-sectional shape and refinement

16The box integration method is exclusively used for rectangular cross sections.
17The term grid denotes a set of points while a mesh contains informations on how the grid points are connected.

Within the finite difference method, the meshing is trivial and thus knowing the grid is sufficient.
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regions, and replicated 18 along the positions {xi}i=0,...,N as shown in Fig. 4.5. The two- and
three-dimensional grid contain N2D

p and N3D
p points respectively. The QHULL 19 software is

employed to generate a Delaunay tetrahedrization from the resulting grid in three dimensions.
This grid is used for the Poisson problem. Accordingly, a Delaunay triangulation is created from
the 2D grid for the Schrödinger problem 20. The FEM discretization of the Schrödinger and
Poisson equation is accomplished by means of piecewise linear functions (hat functions) bi(x) lo-
cated at the lattice sites (see appendix C). First, the Schrödinger problem is considered. In this
case, the solution F is subject to zero Dirichlet conditions on the boundary ∂Ωt of the transverse
domain Ωt which is the same for all slices. Hence, only hat functions which do not peak at ∂Ωt

are considered. This set of hat functions is referred to as St. Multiplying Eq. (4.25) on the left
by a test function v ∈ St and integrating (by parts) over Ωt yields

∫

Ωt

(∇v)(M∇F )dx−
∮

∂Ωt

v(x)(∇vMn(x))dS

+

∫

Ωt

v(x)U(x)F (x))dx = E

∫

Ωt

v(x)F (x))dx. (4.32)

The condition (4.32) has to be fulfilled for each v ∈ St. Using the ansatz

F (x) =
∑

bi∈St

fibi(x) (4.33)

in Eq. (4.25) yields an algebraic problem of the form (4.30) with

Ai,j =

∫

Ωt

(∇bi)(M∇bj)dx, (4.34)

Ui,j =

∫

Ωt

bi(x)U(x)bj(x)dx, (4.35)

and F = (. . . , fi, . . .)
T . Details on the assembly of A and U within the hat function basis are

given in appendix C.
The solution of the Poisson problem is more involved as the data at the Dirichlet boundary ∂ΩD

is not necessarily zero. In this case, the problem is recasted as follows. Instead of searching for
F with F |∂ΩD

= g, the inhomogeneous Dirichlet conditions are eliminated by introducing a new
function w = F −F0, where F0 is a given function with F0|∂ΩD

= g(x) and n ∇F0|∂ΩN
= 0. The

modified Poisson problem reads

− 1

8π
∇ǫ(x)∇Tw(x) = ρ(x) +

1

8π
∇ǫ(x)∇TF0(x), x ∈ Ω

w = 0, x ∈ ∂ΩD

n ∇w = 0, x ∈ ∂ΩN .

and is solved within the set S of hat functions which do not peak at ∂ΩD. The solution

w(x) =
∑

bi∈S
wibi(x) (4.36)

18Conversely, different 2D grids for different xn could be employed to further reduce the number of grid points.
However, this modification notably complicates the calculation of the overlap integrals.

19www.qhull.org
20Similar to the box integration method, the grids for the Schrödinger problems are subsets of the 3D grid.

This is not necessarily the case for the corresponding 2D and 3D meshes within the finite element method.
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(a)

(c)

(b)

(d)

Figure 4.5: Meshing strategy for the finite element method described by means of a circular
nanowire. A two-dimensional grid (a) for Ωt is replicated along the set sx consisting of four
points in this case. The resulting three-dimensional grid (b) is then meshed as shown in (d).
Accordingly, a triangulation (c) is generated from the two-dimensional grid (a). Note that the
mesh (c) does not necessarily coincide with the mesh (d).
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has to fulfill the condition 21

∫

Ω

(∇v)(ǫ∇w)dx =

∫

Ω

v(x)ρ(x)dx−
∫

Ω

(∇v)(ǫ∇F0)dx (4.37)

for each v ∈ S. This yields an algebraic problem of the form Aw = ρ with

Ai,j =

∫

Ω

(∇bi)(ǫ∇bj)dx, (4.38)

ρ
i

=

∫

Ω

bi(x)ρ(x) −
∫

Ω

(∇bi)(ǫ∇F0)dx (4.39)

wi = (. . . , wi, . . .)
T . A suitable boundary function F0 is given by F0 =

∑
bi∈S0

gibi, where S0 is
the set of hat functions which peak at ∂ΩD and the gi are the evaluations of g(x) at the lattice
sites i within ∂ΩD. This gives a piecewise linear approximation of the boundary condition g(x).
The Poisson equation is solved on the tetrahedrization yielding the piecewise linear electrostatic
potential. In this form, the potential is included in the transverse Schrödinger equations on each
slice. The resulting wave functions are used to compute the total charge density which is in turn
absorbed in piecewise linear form in the Poisson equation for the next iteration step.
As already mentioned previously, the main advantage of the FEM is the ability to easily include
von Neumann boundary conditions on arbitrarily shaped boundaries. This benefit, compared
to the box method, vanishes in the 2DEG case which is the main reason why the FEM is used
for the 1DEG exclusively. The agreement between the FEM and the box method, in terms of
current computations, is found to be excellent for comparable rectangular nanowires.
Finally, some notes on further promising discretization methods shall be given. A hybridiza-
tion between the FEM and finite difference method, referred to as the finite difference element
method (FDEM) [68, 69], combines the advantages from both approaches. This method has
been successfully applied to several important industrial problems (see Ref. [70] for instance).
Sparse grids [71] are a further promising utility which have not received much attention so far.
Amongst other applications, when higher dimensional problems are considered in conjunction
with the FEM, these grids can yield a substantial reduction of memory consumption and com-
putational burden. The presence of atomic-like, i.e. singular, potentials or densities in a device
simulation often hinders the achievement of self-consistency. An improvement can be obtained
by splitting the potential in a long-range and a short-range part [72], whereas the latter is treated
analytically.

4.7 Self-Consistency

4.7.1 Main Difficulties

A straightforward iteration between the Poisson and Schrödinger equation, i.e. a direct exchange
of the charge density and the electrostatic potential, rarely yields a satisfactory convergence be-
havior 22. Mostly, the desired quantities exhibit an oscillatory behavior or diverge after some
iterations. This shortcoming can be partially ameliorated by tracking the history of the ob-
servable and perform an appropriate mixing before the observable is handed over to the next
equation. A popular mixing scheme is described in Sec. 4.7.2. Especially when the quantities are

21This variational formulation is derived as in the Schrödinger case using integration by parts. The boundary
terms vanish due to the properties v|∂ΩD

= 0, n∇F0|∂ΩN
= 0, and nǫ∇w|∂ΩN

= 0.
22Similar observations can be expected within other frameworks for device simulations such as the drift-diffusion

model or more generally when computing the self consistent charge density within the density functional theory.
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still far from the final solution, the mixing prevents overshoots and therefore inhibits divergence.
A further enhancement is provided by the so called predictor-corrector method which employs
an approximate non-linear Poisson equation to obtain a better prediction for the electrostatic
potential. The solution of this non-linear equation (predictor step) is referred to as the inner loop
while in the outer loop (corrector step), the potential is used within the Schrödinger equation
to compute the wave functions and consequently the charge density for the next predictor step.
Details on the simulation flow are given in Sec. 4.7.5.

4.7.2 Kerker Mixing

With φ
(i)
out being the output from the Poisson solver, the input to the Schrödinger solver can be

computed by means of Kerker 23 mixing

φ
(i)
in = γφ

(i)
out + (1 − γ)φ

(i−1)
in , (4.40)

where φ
(i−1)
in is the Schrödinger input from the previous iteration and γ ∈ [0, 1] is referred to as

the damping factor. This factor can be modified during the iteration procedure, i.e. γ → γ(i),
depending on the behavior of the potential error

Perr[φ
(i)
in , φ

(i−1)
in ] = ||φ(i)

in − φ
(i−1)
in ||p (4.41)

and the residual
R[φ

(i)
in , ρ

(i)] = ||∇ǫ∇Tφ
(i)
in + ρ(i)||r (4.42)

A small residual is an indicator for self-consistency whereas the potential criterion (4.41) acts as

an additional control parameter. It has to be noted that the difference φ
(i)
in − φ

(i−1)
in is directly

proportional to γ. Therefore, only if the damping factor is close to unity at the end of the iteration
procedure, the potential satisfactorily fulfills the specified error criterion. A common choice for
||.||p is given by the maximum norm ||f ||p = maxx∈Ω whereas a possible norm for the residual
||.||r is described in appendix C for the present FEM. Typical convergence criterions, which can be
fullfilled within reasonable time limits, are given by Perr = 10−3V and R = 1016cm−3 for doping
concentrations of ∼ 1020cm−3. However, the poor convergence behavior in large structures often
requires a loosening of these criterions.
A successful strategy for the Kerker mixing of the outer loop consists of keeping the γ constant
during some iterations as long as both Perr and R decrease. If one of the latter conditions is
not fulfilled any longer, the γ is instantly decreased. Otherwise, the factor is increased and kept
constant for the next few iterations.
The ability to modify the damping factor is particularly interesting when the quantities are
close to the self-consistent solution. In this regime, a large damping factor notably reduces the
number of required iterations. However, in cases where the increment of γ does not yield a
satisfactory improvement of the convergence near the self-consistent solution, an acceleration
could be obtained by means of Pulay mixing [73]. In this approach, a linear combination of all
previous iterations is used in order to construct the input for the Schrödinger routine.

4.7.3 Predictor-Corrector Method

Knowing the exact dependence of the total charge density ρ on the electrostatic potential φ allows
to formulate a non-linear Poisson equation which can be solved by means of a Newton-Raphson

23The term linear mixing or underrelaxation is often encountered in the literature for this scheme. In this work,
the mixing is only applied to the electrostatic potential.
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scheme, for instance, as described in Sec. 4.7.4. This approach fully circumvents a Schrödinger-
Poisson type iteration procedure to obtain the self-consistent charges and potentials. However,
an explicit expression for ρ[φ] for general quantized structures is not known. Nevertheless, an
approximate dependence ρ̃[φ] could be employed in the non-linear Poisson equation

−~∇ǫ~∇Tφ =
1

ǫ0
ρ̃[φ] (4.43)

to compute an improved guess for the potential within a Schrödinger-Poisson scheme. For in-
stance, a semi-classical form [74] for the charge density could be used. A more elaborate ex-
pression for the case of nanowires has been presented by Trellakis et al. [75]. The approximate
charge density in this case reads

ρ̃[φ] = −e{ñc[φ] − pv +N−
A −N+

D} (4.44)

with

ñc[φ] =

√
2memxkBT

π~2

∑

n

|ψ(i)
n (y, z)|2

×F−1/2

[
EF − ǫ

(i)
n + e(φ− φ

(i)
in )

kBT

]
, (4.45)

where {ψ(i)
n , ǫ

(i)
n } were computed in the previous Schrödinger step, i.e. by means of the potential

φ
(i)
in . This potential remains fixed during the inner loop. Once the non-linear problem is solved,

the resulting potential φ
(i+1)
out ) is handed over to the mixing routine for the outer loop. The

dopand concentrations are assumed to be independent on φ. Note that the approximate electron
density (4.45) is similar to the adiabatic density (3.99) with the difference that the eigenvalues

are shifted by the potential offset, i.e. ǫ
(i)
n → ǫ

(i)
n − e(φ − φ(i)). Following this idea 24, the

density (4.3) can be appropriately modified to obtain an approximate expression for the injected
case. The expressions for the 2DEG case follows analogously. Note that the computation of
the injected density within the predictor loop is much more involved than the evaluation of the
conventional expression (4.3). This is due to the potential term in the Fermi-Dirac integral.

4.7.4 Solution of the Non-Linear Poisson Equation

Given a non-linear equation of the form F(x) = 0, the Newton-Raphson method starts by
linearizing the function F in the vicinity of the solution x by means of a Taylor expansion

F(x + δx) = F(x)+
δF
δx︸︷︷︸

δx + O(δx2). (4.46)

J (x)

Neglecting terms of order δx2 and requiring F(x + δx) = 0, yields the condition

J (x)δx = −F(x) (4.47)

for the shift δx. Equation (4.47) is solved for an initial guess x0 and the resulting correction δx0

is used to obtain a new position
x1 = x0 + δx0. (4.48)

24In the original work only the adiabatic density (3.99) has been considered.
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By means of an iterative application of this procedure, the xi is assumed to converge towards
the solution of F(x) = 0.
Conversely, instead of seeking for the correction δx0 in Eq. (4.47), the relation (4.48) could be
employed to recast Eq. (4.47) into a linear equation for x1, i.e.

J (x0)x1 = J (x0)x0 −F(x0). (4.49)

The non-linear Poisson problem (4.43) can be recast in the form F [φ](~r) = 0

F [φ](~r) = −~∇ǫ(~r)~∇Tφ(~r) − ρ̃[φ](~r) (4.50)

and the Jacobian

J [φ](~r) = −~∇ǫ(~r)~∇T− δρ̃[φ]

δφ
(~r)

︸ ︷︷ ︸
. (4.51)

ρ̃D[φ](~r)

With φ0 being the initial electrostatic potential, the linear problem (4.47) reads

{
−~∇ǫ~∇T − ρ̃D[φ0]

}
δρ0 = −~∇ǫ~∇Tφ0 + ρ̃[φ0] (4.52)

or alternatively {
−~∇ǫ~∇T − ρ̃D[φ0]

}
φ1 = ρ̃[φ0] − ρ̃D[φ0]φ0 (4.53)

using Eq. (4.49). The form (4.53) is more convenient from an implementational point of view since
the set up of an additional linear problem due to the boundary conditions for δρ is circumvented.
As in the outer loop, handing over the potential directly to the next Newton step results in a
poor convergence behavior. Very elaborate damping schemes such as the Broyden or Bank-Rose
method (see Ref. [56] and references therein) could be employed to improve the convergence.
A more manageable approach is provided by the Kerker mixing described in Sec. 4.7.2. The
residual (4.42) in this case is ||F [φ](~r)||r. Contemporarily, the convergence of the potential φ is
monitored. The functionality of the predictor-corrector scheme within the entire self-consistency
simulation flow is schematically plotted in Fig. 4.6.

4.7.5 Simulation Flow

The interplay between the Schrödinger-Poisson iteration (outer loop) and the solution of the non-
linear Poisson equation (inner loop) outlined in Secs. 4.7.2 and 4.7.3 respectively, is illustrated

in Fig. 4.6. The i-th iteration starts with the potential φ
(i)
in and comprises the solution of the

Schrödinger problems, the calculation of the charge density ρ(i), as well as the computation of a

new potential φ
(i+1)
out by means of the inner loop. The φ

(i+1)
in for the (i+1)-th iteration is obtained

by Kerker mixing. The convergence criterions for the outer loop are given in Eqs. (4.41) and
(4.42) while the termination of the inner loop is described in Sec. 4.7.4.

4.7.6 Initial Guess

The efficiency and, under circumstances, the success of simple or sophisticated damping strategies
strongly depend on the choice of the starting solution, i.e. the initial guess. An elementary,
and rather generic, approach to compute this initial guess is provided by the local equilibrium
approximation described in Sec. 3.8.2 with Uext(~r) = −eφ(~r). However, especially in small
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Figure 4.6: Simulation flow for self-consistency.
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nanostructures, the resulting potential φ(~r) is rather far away from the self-consistent solution due
to quantization effects. In this regime, an improved initial guess can be obtained by evaluating
the densities (3.99) or (3.101), for nanowire or planar FETs respectively, on each slice 25. The
required subband energies and wave functions {ǫ(n), ψ(n)} are computed by means of the potential
Ueff = Ec/v(~r)−eφ(~r) with φ(~r)|x∈Ix

n
= φ(n) being piecewise constant on a slice. For the 1DEG

case, the values {φ(n)}n are determined by the condition

0 =

∫

σ

(
n1DEG

c + p1DEG
v +NA −ND

)
dydz (4.54)

on each slice n. The 2DEG case is treated analogously.

For the calculation of transfer characteristics for instance, the self-consistent solution for a given
gate voltage can serve as input for the successive voltage point. When the solutions to several
voltage points are available, a suitable extrapolation scheme could be employed to further improve
the initial guess for the next point.

4.7.7 Computation of the Injected Charge Density

The integrands in the injected charge densities (4.3) and (4.8) diverge for energies equal to the
subband energies in the terminal. Furthermore, a transfer matrix is not defined, i.e. divergent, if
the injection energy is equal to a subband energies on the corresponding slice. Therefore, in order
to avoid further numerical instabilities, the energy grid has to account for these singularities. A
straightforward approach would be to project the subband energies of all slices onto the energy
axis. The allowed energy range is then obtained by removing an interval [s−∆E1/2, s+∆E1/2]
around each singularity s. The integrand is sampled on the resulting energy range and the integral
can be evaluated by means of a conventional Riemann sum. A typical sampling interval is given
by ∆E2 ≃ 2 · 10−5 eV while ∆E1 ≃ 2 · 10−6 eV. It remains to specify the integration boundaries
for the injected densities. The lowest subband energy in the terminal is the natural choice for
the lower boundary as states with lower transport energies are exponentially suppressed. The
exponential decay of the Fermi distribution function suggests the higher of the source or drain
Fermi energy plus a cutoff ∆Ec, being typically a few kBT , as upper limit. If the Fermi level is
lower than the lowest subband energy, the latter quantity shall be taken as upper bound (plus
∆Ec). Typically, the total amount of energy points with ∆E1 and ∆E2 as specified above is of
the order of ∼ 1000.

The energy grid for the computation of the currents (4.4) and (4.9) has to account for the same
singularities as in the density calculation. Furthermore, in some cases the transmission proba-
bility may grow faster than the Fermi function decreases (thermally assisted tunneling). While
the lowest subband energy in the source remains a proper lower boundary for the integration
domain, the upper limit might be raised to the maximum of the lowest subband energy barrier
(plus ∆Ec) in order to capture thermally assisted tunneling effects. However, when the barrier
starts to disappear, the upper bound should be kept above Es

F + ∆Ec.

Conversely, instead of building the energy grid explicitly for densities and currents, an adaptive
Simpson quadrature rule could be employed which automatically accounts for singularities. This
approach is technically more involved but more advantageous for transport frameworks where
the injection singularities are not known a priori.

25This is equivalent to the calculation of the adiabatic density described at the end of Sec.4.5.
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4.7.8 Implementation

The major computational burden within the self-consistency algorithm resides in the calculation
of the injected charge densities and the solution of the transverse eigenvalue problems. The effort
related to these tasks can be fortunately divided into independent subtasks, i.e. by splitting the
energy integral in the density calculation or subdivide the slices on which the eigenvalue problems
are solved. Parallelization can be achieved by means of the open multi-processing (OMP) pro-
gramming interface and the message passing interface (MPI) 26. The two programming models
are basically different in that OMP requires a connection of the compute nodes to a common
memory (shared memory parallelism) while the MPI is not bound to this restriction (distributed
memory parallelism). For an excellent overview see Ref. [76]. The OMP programming interface is
rather simple to employ but computing machines featuring shared memory capabilities typically
contain only a small amount of compute nodes. On the other hand, scaling a code by means of
the MPI is more involved.
Both programming models have been employed for the calculation of the charge density and
the eigenvalue problems and in both cases the scaling of the individual routines is found to be
excellent. However, a major drawback of the MPI is the overhead caused by the communication
between the nodes. The solution of the Poisson problem and the collection of the transverse
modes for instance require substantial communication. The simulation time spent for the total
self-consistency routine can therefore be notably affected by a slow node interconnect within the
MPI model.

4.8 Inclusion of Nonparabolicity

The nonparabolictiy (NP) models derived in Sec.3.7 can be implemented within the SMA from
Sec. 4.5. 27 The main consequences for the SMA are twofold, namely, the conduction mass mx

and the transverse Hamiltonian (4.12) are affected. In the wire case, the transverse Hamiltonian
is replaced by 28

H
(n)
NP,⊥ =

1

2α

[√
1 − 4α

~2

2

(
1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)
− 1

]
+ Ueff

n (y, z) (4.55)

A real space discretization of the Hamiltonian (4.55) is not as straight-forward as in the EMA
case. Instead, a spectral method can be employed, i.e. the solution F (n) is expanded in terms
of basis functions which are used to build the Hamilton matrix 29. For rectangular nanowires a
suitable choice consists of sine waves with nodes at the boundary of the transverse domain, i.e.

F (n)(y, z) =

Cr∑

r=1

Cs∑

s=1

fr,s
2√
LyLz

sin

(
πry

Ly

)
sin

(
πsz

Lz

)

︸ ︷︷ ︸
, (4.56)

σr,s(y, z)

where Ωt = [0, Ly] × [0, Lz] is the transverse domain in this case and Cr and Cs are the cutoffs
for the basis set.

26See www.openmp.org and www.mcs.anl.gov/research/projects/mpich2 for instance.
27The present NP models are also compatible with the Green’s functions mode space approach for quantum

transport [60, 59, 77].
28The single-material approximation will be used in conjunction with NP.
29Further works which employ spectral methods for device simulations can be found in Refs. [78, 39, 38].
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Within the box method from Sec. 4.6.2 the effective potential Ueff
n is given by samples Ueff

n,j,k on
the sites of the tensorial grid. A piecewise constant analytic continuation of the potential on Ωt

reads

Ueff
n (y, z) =

J∑

j=0

K∑

k=0

Ueff
n,j,kχjk(y, z), (4.57)

where χjk is unity on Iy
j × Iz

k and zero elsewhere. The Hamilton matrix elements

〈r′, s′|H(n)
NP,⊥|r, s〉 =

∫ Ly

0

∫ Lz

0

σr′,s′H
(n)
NP,⊥σr,sdydz (4.58)

can be computed very efficiently since the kinetic part is diagonal and the terms 〈r′, s′|χjk|r, s〉
can be calculated and stored a-priori. Typically, Cr = Cs = 30 is sufficient and the resulting
dense eigenvalue problems can be solved by means of LAPACK. The planar FETs are treated
analogously.
In the FEM the situation is more involved since the effective potential is piecewise linear on an
arbitrary triangulation. An apparently rough, but effective, simplification consists of sampling
the piecewise linear potential on a tensorial grid and adopt the procedure from the tensorial case,
i.e. Eq. (4.57). For this purpose, a bounding box surrounding the arbitrary transverse domain
Ωt is constructed and the originated vacuum region is mimicked by raising the conduction band
edge to a sufficient high value. For J = K = 100 an excellent agreement with the conventional
FEM is found for several transverse shapes.
Arbitrary transverse kinetic operators, including position-dependent effective masses, can be
tackled by means of spectral methods such as the one described in this section. The sine waves
in the expansion (4.56) can be replaced for instance by the eigenfunctions of the transverse kinetic
operator subjected to zero Dirichlet conditions on Ωt.

4.9 Simulation results

4.9.1 Overview

The NP models from Sec.3.7 are now used to investigate the impact of band structure effects on
transfer characteristics of silicon nanowire and planar FETs (cf. Fig. 4.1). The ballistic quantum
transport formalism outlined in this chapter is employed to compute the currents. In particular,
the spectral method from Sec. 4.8 is used for the inclusion of NP 30. The penetration of the wave
function in the oxide is neglected, i.e. zero Dirichlet boundary conditions are employed at the
channel oxide interface 31. Furthermore, NP is solely used for the energetically lowest valleys,
since particularly in the presence of strong confinements, only these valleys notably contribute
to quantum transport. On the other hand, for weak confinements all valleys become relevant
but band structure effects are less important. Charge densities are computed self-consistently as
described in Sec. 4.7.
As mentioned in Sec.3.7, two band structure effects, i.e. the overestimation of the conduction
band edge and the underestimation of the conduction mass, are captured by the present NP
models. These two effects can be accounted for individually in order to distinguish between the
respective contributions to the currents 32. In the following, increasing the conduction mass
alone is referred to as the MC model while increasing the NP coefficient alone is referred to

30Note that the expressions for the currents (4.4) and (4.9) are left formally unaltered by the present NP models.
31In this way, only the effective masses of the channel material, i.e. silicon, become relevant.
32The investigations are closely related to the strategy employed by Ref. [79].
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as the ALPHA model. Neglecting both effects yields the EMA case and the inclusion of both
effects is still referred to as the NP case. The numerical values of the NP coefficients and
modified conduction masses for the simulation of the FETs are given in Sec. 5.2 and are of minor
importance in this section since the attention is paid to qualitative considerations.
The impact of band structure effects on transfer characteristics Id(Vgs) of FETs operating under
a fixed forward bias Vds is investigated by means of specific quantities. One of these quantities
is the threshold voltage Vth defined by the condition

Id(Vth)
!
= Ith. (4.59)

The threshold voltage Vth divides the transfer characteristic in two parts, the subthreshold regime
(Vgs ≤ Vth) and the on-current regime. The subthreshold regime is characterized by the sub-
threshold slope (SS)

SS = 1000 × ln(10) × min
Vgs∈[Vth−∆VSS,Vth]

[
d

dVgs
ln(Ĩd)

]−1

, (4.60)

where Ĩd is the drain current in arbitrary units. The theoretically minimal value for the SS is
given by 1000 × ln(10) × kBT/e = 59.637mV/dec33. Finally, the on-current Ion is defined by

Ion = Id(Vth + ∆Von). (4.61)

The drain current in ideal FETs subject to a fixed bias Vds is solely controlled by the gate voltage,
i.e. the width of the barrier underneath the gate in the subthreshold regime is comparable
to the length of the gate. Applying strong bias conditions in short channel FETs leads to a
deformation (thinning) of the barrier being referred to as drain induced barrier thinning (DIBT).
This phenomenon is accompanied by a reduction of the barrier height, i.e. drain induced barrier
lowering (DIBL) [54]. Consequently, the tunneling component to the drain current Id increases,
leading to a shift of the threshold voltage Vth and a degradation of the subthreshold slope
depending on Vds. Non-ideal effects such as the deformation of the barrier appear both in planar
and nanowire FETs whereas the electrostatic control of the gate contact in the latter case is more
efficacious [80, 3]. In the following, non-ideal effects are abetted by using a rather high forward
bias of Vds = 0.6V and the behavior of these effects under the influence of NP is investigated.

4.9.2 Results for Nanowire FETs

The nanowire FETs considered in this section have a prismatic shape with profiles shown in
Fig. 4.7. The silicon core and the circumjacent silicon oxide layer are characterized by the
quantities tc and tox respectively. The source and drain regions are both n-doped with a
concentration of ND = 1020cm−3 and the lengths are ls = ld = 10 nm. The gate contact
surrounds the FET as shown in Fig. 4.1 (gate-all-around structure) and the length takes the
values lg[nm] ∈ {5, 10, 15, 20}. The various channel thicknesses of the triangular FETs are
tc[nm] ∈ {4, 5, 6, 7} while tc[nm] ∈ {2, 3, 4, 5} are the ones of the square and circular FETs. For
the calculation of Vth, Ion, and SS the values Ith = 10−7 A, ∆Von = 0.2 V, and ∆VSS = 0.2 V,
respectively, are employed 34.
Transfer characteristics of the square FETs are given in Fig. 4.8. For tc = 2 nm and lg = 5 nm, the
SS seems to be mainly affected by the increment of the conduction mass while for the remaining
cases the SS is essentially left unaltered by the various models. A more detailed analysis of
the SS for different geometries is given in Fig. 4.9. For the smallest tc, the SS diminishes for

33A temperature of T = 300K is assumed for all current calculations in this work.
34These values are also used for the planar FETs in Sec. 4.9.3.
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Figure 4.7: Profile specifications of the square (sq), circular (ci), and triangular (tr) nanowire
FETs from Sec. 4.9.2. Typical triangulations are shown as well. The oxide thickness is always
tox = 1nm.

an increasing lg and approaches the theoretical minimal value of 59.637 mV/dec. Particularly
evident is the influence of the conduction mass on the SS in the square and circular cases with
the smallest lg. In this case, the tunneling contribution to the total current is notable and
is further enhanced by the strong forward bias as already mentioned in Sec. 4.9.1. Increasing
the conduction mass leads to a suppression of tunneling and thus an improvement of the SS.
The discrepancy between the various models is negligible beyond lg = 10 nm since tunneling
is generally suppressed. For an increasing channel thickness tc, the electrostatic control of the
gate contact diminishes leading again to an increased tunneling and thus a degradation of the
SS. Contemporarily, the band structure effects decrease which explains the smaller discrepancy
between the various models compared to the lg = 5 nm cases for the smallest tc.

The threshold voltage Vth is plotted in Fig. 4.10 as a function of both lg and tc. The major
impact on Vth can be attributed to the increment of α. This finding is best explained by means
of Fig. 4.11.a showing the lowest subband energy profile of a square nanowire FET at Vgs = 0 V.
The transverse eigenvalue problems generally yield a smaller eigenvalue when α > 0eV−1 and thus
reduce the barrier below the gate. The decrease of the barrier causes a shift of the transmission
coefficient and thus an increment of the spectral current as shown in Fig. 4.11.c. This leads
to a shift of the transfer characteristics and thus Vth towards smaller values. Apparently, this
shift of the barrier due to α does not notably influence the SS (cf. Fig. 4.9). The situation in
the source and drain regions is essentially left unaltered by α (inset) while the increment of the
conduction mass lifts the subband energy (see discussion about the on-current) having, however,
a minor impact on Vth. For the smallest tc in Fig. 4.10, the Vth approaches a constant value for
an increasing lg. A weak dependence on the conduction mass can be observed for lg = 5 nm,
where the Vth is generally smaller compared to the remaining lg. Again, this can be attributed
to an increased contribution of the tunneling component to the current for short channels, i.e. a
larger subthreshold current yields a smaller Vth while an increased conduction mass suppresses
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Figure 4.8: Transfer characteristics (subthreshold regime) of square nanowire transistors by
various models. Gate lengths lg and channel thicknesses tc are specified in the graphs.
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Figure 4.9: Subthreshold slope (SS) of nanowire FETs. The gate lengths lg, channel thicknesses
tc, and the cross-sectional shapes are specified in the graphs.
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Figure 4.10: Threshold voltage Vth of nanowire FETs. The gate lengths lg, channel thicknesses
tc, and the cross-sectional shapes are specified in the graphs.
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Figure 4.11: Lowest subband energy profile (a & b), spectral current (dashed lines), and trans-
mission coefficient (c & d) of a square nanowire FET with tc = 2 nm and lg = 10 nm. The data
belongs to one of the four ∆4 valleys which, in this case, contribute approximately in the same
manner to the current. The gate voltages are specified in the graphs and the source Fermi level
is Es

F = 0 eV.
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Figure 4.12: ON-currents of square nanowire transistors by various models. The channel thick-
ness is tc = 2nm.

the tunneling and thus diminishes the decrease of Vth. Beyond lg = 10 nm the Vth is not
influenced by the tunneling any longer. For increasing channel thickness tc, the subthreshold
current generally increases leading to a reduction of Vth. Furthermore, the discrepancy between
various models vanishes since band structure effects become less important.
The on-current of square nanowire FETs is plotted in Fig. 4.12 as a function of the gate length lg.
The Ion increases for an increasing lg and becomes approximately constant beyond lg = 10 nm.
The small Vth at lg = 5 nm due to tunneling shifts the evaluation point for the Ion and is mainly
responsible for the smaller on-currents compared to the remaining gate lengths. However, in each
case, the conduction mass seems to have the leading impact on Ion. This finding is somehow
counterintuitive since the gate barrier, and thus tunneling, essentially vanishes in the on-current
regime and the conduction mass can not influence the current via the tunneling contribution any
longer. Figure 4.11.b sheds more light on this situation. The gate voltage is close to the voltage
point used for the evaluation of Ion. In the source and channel region, the subband energy is
raised when the conduction mass increases leading to a smaller spectral current as shown in
Fig. 4.11.d. This influence of the conduction mass on the subband energy in the source region
is due to charge neutrality. Since the density of states in a wire is directly proportional to the
conduction mass, a larger mass mandates a larger subband energy in order to obtain the same
number of conduction band electrons.
Finally, the Vth and the SS of the various nanowire FETs are plotted in Fig. 4.13 as a function
of the effective diameter de (see Sec. 5.2). While the various Vth are scattered approximately
in the same manner, the SS of the triangular FETs shows a distinct behavior compared to the
square and circular case.
Further reading on ballistic transport is given in Refs. [81, 60, 82, 59, 83, 84, 85, 86, 87] and
particular attention to band structure effects is paid in Refs. [88, 89, 90, 31, 79, 91, 92, 93, 94].

4.9.3 Results for Planar FETs

The discussion in this section is kept rather brief since several explanations from the wire case
apply also to planar FETs. Transfer characteristics were obtained from hypothetical double-gate
FETs similar to the one employed by Lundström et al. [95]. Doping and geometry specifications
are given in Fig. 4.14. The gate length lg and channel thickness tc are variable while the source
and drain regions are fixed.
Transfer characteristics are plotted in Fig. 4.15. The currents are given in A/µm, i.e. the current
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Figure 4.13: Threshold voltage Vth and subthreshold slope (SS) of nanowire transistors by various
cross-sectional shapes. The gate length is lg = 10nm and the models are specified in the graphs.
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Figure 4.15: Transfer characteristics (subthreshold regime) of planar FETs by various models.
Gate lengths lg and channel thicknesses tc are specified in the graphs.
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Figure 4.16: Threshold voltage (Vth) and subthreshold slope (SS) of planar FETs as a function
of the gate length lg and channel thickness tc by various models.

(4.9) has to be divided by Wy. A point which is worth noting is the pronounced 35 influence
of the conduction mass on the Vth, compared to the wire case, even for large lg as can be seen
from Fig. 4.16. A closer look at the current formula (4.9) reveals that even in the absence of
tunneling, the transverse mass my, which is increased in the same manner as the conduction
mass, is able to increment the current. The inferior electrostatic control of the gate contact
compared to the wire case becomes evident, for instance, for {tc = 5nm, lg = 10nm, where
SS = 83.512 mV/dec (EMA case) compared to the SS = 73.675 mV/dec of the square nanowire
FET with {tc = 5nm, lg = 10nm (EMA case) from Sec. 4.9.2. Apart from that, the qualitative
behavior of SS and Vth as a function of tc and lg is very similar to the one observed in the wire
case.

Further reading on ballistic transport and band structure effects for the case of planar FETs can
be found in Ref. [96, 97].

35The impact of α on Vth is still dominant.
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4.10 Summary

The scattering matrix formalism for the implementation of quantum ballistic transport within the
Landauer-Büttiker formalism has been outlined at the beginning of this chapter with a particular
focus on devices hosting two- and one-dimensional electron gases, i.e. planar and nanowire FETs.
For the discretization of nanowire FETs, the FEM is found to be superior compared to the box
integration method in that the treatment of arbitrary surfaces is more straightforward. Beside
the consideration of different discretization schemes for the Poisson and Schrödinger equation,
a detailed survey on techniques to achieve self-consistency has been given. The inclusion of
the present NP models within the SMA by means of spectral methods allows to investigate the
impact of band structure effects on the device characteristics. Nanowire FETs with various cross
sectional shapes have been employed in order to include the effect of the geometry. While square
and circular FETs show similarities, the triangular FET shows a distinct behavior concerning
the SS. Short-channel effects such as the degradation of the SS is found to be alleviated by
the increment of the conduction mass in both planar and nanowire FETs. Beside the expected
inferior electrostatic control in planar FETs, the qualitative impact of band structure effects
depending on geometry variations is found to be similar in both types of devices. Finally, it has
to be reminded that the conclusions elaborated in this chapter are based on quantum ballistic
transport simulations. The presence of scattering, in particular surface roughness, might might
notably influence the impacts of band structure effects.





Chapter 5

Comparison with Tight-Binding

5.1 Introduction

Simulation of quantum transport can be accomplished on various levels. The Landauer Büttiker
formalism in conjunction with the EMA and SMA has been outlined in the previous chapter for
the ballistic limit. An emerging class of simulators make use of the non-equilibrium Green’s func-
tions formalism (NEGF) in conjunction with atomistic methods, i.e. the tight-binding [98, 99]
or fully ab-initio techniques [100, 101] for instance. These methods fully account for band struc-
ture effects. A good overview of related methods is given in Ref. [102]. Further approaches to
atomistic quantum transport can be found in Refs. [103, 104, 105, 106, 107, 108]. The common
denominator in atomistic quantum transport simulators is the notable computational burden
compared to the EMA case. Thus, simplified methods being able to capture the main impacts
of band structure effects on quantum transport are desirable in order to maintain simulation
times within a reasonable limit. Extensions of the EMA within semi-classical transport frame-
works have been proposed [88, 31] as well as quantum mechanical approaches [93, 94] including
scattered comparisons to fully atomistic approaches. In this chapter the present NP models are
appropriately calibrated and transfer characteristics are compared to results obtained by a TB-
NEGF simulator [98] being able to tackle devices of considerable size. Extensive comparisons for
circular and square nanowire FETs are carried out for different diameters and gate lengths.

5.2 Extraction of α

The square and circular silicon wires used to build the channels of the FETs in this section have
been thoroughly studied in Secs. 3.4 and 3.6. The termination at the surfaces which mimics
hydrogen passivation is consistent with the neglect of the penetration of the wave function in
the oxide. This penetration will be neglected for the comparisons in this section. Given a
square or circular nanowire FET, the transfer characteristics computed by the present transport
framework (EMA case) are supposed to differ from the corresponding TB-NEGF results due to
band structure effects. The NP models from Sec. 3.7 aimed at improving the EMA results but no
parameterizations have been specified so far in this work 1. For each wire cross section, the NP
coefficient is extracted by means of tight-binding band structures based on the parametrization

1The qualitative considerations from Sec. 4.9 about the impact of band structure effects on transfer character-
istics by means of NP are based on the parameters extracted in this section.
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Figure 5.1: Tight-binding (TB) band structure of a square silicon nanowire (see text) and non-
parabolic (NP) dispersion (3.78). The corresponding dispersion obtained by the EMA is plotted
as well. Data is given for de = 4.139 nm, α = 0.841eV−1, mc = 0.252. The inset highlights the
agreement between the nonparabolic and tight-binding dispersion.

in Refs.[109, 110], i.e. the TB cases in Figs. 3.14 and 3.15 and Tab. 3.2 2. A widely used approach
to determine the NP coefficient in silicon is based on the condition 3 [31, 79]

1

2α

[√
1 + 4αǫg⊥ − 1

]
!
= ǫac (5.1)

which states that the conduction band edge ǫac of the nanowire computed by the tight-binding
approach is equal to the band edge obtained by means of the EMA, i.e. Eq. (3.78) in the
square case4. Once the α is known, the modified conduction mass is given by ml

√
1 + 4αǫg⊥

5. For a square nanowire, the tight-binding and corresponding nonparabolic dispersion (3.78),
after fitting the α, are compared in Fig. 5.1. The extraction procedure (5.1) is employed for
both circular and square nanowires. As mentioned in Sec. 3.6.3, an analytic expression for the
EMA band edge ǫg⊥ in the circular case is not straight-forward. The spectral method from
Sec. 4.8 is used to compute the band edges of the circular wires (diameters dictated by the
TB cases) from Sec. 3.6.3. The fit model (3.63) is then used to obtain a continuous form for
the band edge, yielding Kc = 2.807 eVnm2, ac = 0.135 nm, and bc = −0.070 nm2. The NP
coefficients and related conduction masses are reported in Tabs. 5.1 and 5.2 for the square and
circular case, respectively. Using the fits from Tab. 3.2, the NP coefficient, and therefore the

2This parametrization is employed by the TB-NEGF simulator used for the present comparisons. The bulk
effective masses for this parametrization are ml = 0.891 and mt = 0.201.

3In the following, the notation from Sec. 3.7 is used. An other approach to determine the NP coefficient in
silicon consists in fitting the density of states obtained by means of the dispersion (3.72) to data obtained by
atomistic approaches or experiments as outlined in Sec. 3.8.

4Note that the same α and mc are obtained when the full spectrum (3.75) is fitted to the atomistic band edge.
5As mentioned in Sec. 4.9.1 , the NP model is only employed for the energetically lowest conduction band

valleys, i.e. the ∆4 valleys in this case. In this connection, the band splitting effects mentioned in Sec. 3.6.3 are
fully ignored.



5.2. EXTRACTION OF α 81

Table 5.1: NP coefficients α, conduction masses mc, and effective diameters de for the present
comparison to tight-binding (square case). The mc for the case of a single (sg) α is given as well.

de [nm] 2.451 2.914 3.370 3.831 4.139 4.595 5.057

α[eV−1] 0.625 0.688 0.748 0.806 0.841 0.895 0.945
mc 0.299 0.280 0.267 0.257 0.252 0.246 0.241
mc (sg) 0.319 0.290 0.270 0.256 0.250 0.241 0.234

Table 5.2: NP coefficients α, conduction masses mc, and effective diameters de for the present
comparison to tight-binding (circular case). The mc for the case of a single (sg) α is given as
well.

de [nm] 2.044 2.536 3.010 3.500 4.000 4.529 4.926

α[eV−1] 0.636 0.755 0.888 1.044 1.222 1.427 1.595
mc 0.326 0.303 0.289 0.279 0.272 0.267 0.264
mc (sg) 0.334 0.295 0.271 0.255 0.244 0.235 0.230

conduction masses, can be evaluated at arbitrary positions 6. The conduction masses from the
NP model are compared to atomistic data in Fig. 3.15. A satisfactory quantitative agreement
with the conduction masses extracted from the tight-binding band structure can be observed.
The continuity of α has been used to extract the parameters for the calculations in Sec. 4.9.2
from the previous chapter. The parameters for the various nanowires are given in Tab 5.3. With
the specifications from Fig. 4.7, the effective diameters for the square and triangular case are
2tc/

√
π and tc/

√
π, respectively 7.

The NP coefficient α exhibits a notable dependence on the effective diameter de. This dependence
suggests that there is no overall agreement between the actual silicon conduction band and

6It has to be noted that for large de, the α diverges and becomes very sensitive for variations of the fitting
parameters. However, the analytic expression for the NP coefficient and the conduction mass are restricted to
the range of diameters used to fit the atomistic band edges.

7Note that for the triangular FETs, the α from the circular case has been employed. Conversely, atomistic
nanowires with a triangular shape can be used to provide the correct α.

Table 5.3: NP coefficients α, conduction masses mc, and effective diameters de for the various
nanowire FETs from Sec. 4.9.2.

tc [nm] 2 3 4 5 6 7

α[eV−1] (sq) 0.598 0.750 0.886 1.003 - -
mc (sq) 0.309 0.267 0.247 0.235 - -
de [nm] (sq) 2.257 3.385 4.514 5.642 - -

α[eV−1] (ci) 0.627 0.885 1.221 1.627 - -
mc (ci) 0.329 0.289 0.272 0.263 - -
de [nm] (ci) 2 3 4 5 - -

α[eV−1] (tr) - - 0.685 0.833 1.006 1.203
mc (tr) - - 0.314 0.293 0.281 0.273
de [nm] (tr) - - 2.257 2.821 3.385 3.949
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Figure 5.2: Tight-binding band edges (cf. Fig. 3.14) versus the corresponding value computed
by means of the EMA (square and circular wires). The solid and dash-dotted lines denote fits
of the relation (5.1) to the tight-binding data for a single α.

Table 5.4: NP coefficients α and conduction masses mc for the various planar FETs from
Sec. 4.9.3.

tc [nm] 1 2 3 5

α[eV−1] 7.731 9.567 12.294 18.696
mc 0.706 0.423 0.344 0.285

the nonparabolic dispersion (3.72) for a single α. Even in the case of a perfect agreement,
when further energy bands become relevant, the α has to be modified to account for this effect.
However, it is possible to extract a single α for a set of atomistic and corresponding EMA band
edges [31, 79] by fitting the relation (5.1) to the entire dataset. Figure 5.2 shows the fits to the
TB sq100 band and TB ci edges from Fig. 3.14 8. The resulting NP coefficients differ from the
value obtained by the bulk method described in Sec. 3.8. This finding is not surprising since the
present fit employs the band edge and not the density of states. Neglecting the de-dependence
of α is investigated in Sec. 5.3. The modified conduction masses when using the single α from
Fig. 5.2 are reported in Tabs. 5.1 and 5.2. In the following, using a single α is referred to as the
NPsingle model.

Finally, NP coefficients are extracted for the planar FETs simulated in Sec. 4.9.3. Again, this is
accomplished by means of tight-binding band edges. The parametrization by Niquet et al. [30] is
employed, i.e. the 100 case from Fig 3.16, with the bulk masses ml = 0.918 and mt = 0.191. As
in the wire case, the condition (5.1) is employed to extract the α. In the well case, the transverse
mass my is increased in the same way as the conduction mass mx. The NP coefficients and
conduction masses are reported in Tab. 5.4 for the various channel thicknesses tc.

8The EMA band edges from Fig. 3.14 are employed for the fit.
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Figure 5.3: Transfer characteristics of the smallest and largest square and circular nanowire
FETs by various models. The gate length is lg = 15 nm.

5.3 Simulation Results

The circular and square nanowire FETs used for the comparison have the same structure as the
FETs from Sec. 4.9, i.e. gate-all-around, Vds = 0.6 V, ls = ld = 10 nm, and the source and drain
regions are n-doped with 1020 cm−3. The diameters are dictated by the atomic structure of the
cross section and are reported in Tabs. 5.1 and 5.2. For the smallest diameter, the gate lengths
take the values lg[nm] = {5, 10, 15, 20} while lg = 15 nm is used for the remaining diameters.

Transfer characteristics of the nanowire FETs with the smallest and largest effective diameter are
given in Fig. 5.3. The discrepancy between the EMA and TB-NEGF models is most pronounced
for the smallest diameters. For this case, a detailed analysis of the Vth, SS, and Ion can be found
in Fig. 5.4. The parameters for the extraction of these quantities are Ith = 10−7 A, ∆Von = 0.2 V,
and ∆VSS = 0.2 V, i.e. the same as in Secs. 4.9.2 and 4.9.3. For lg = 5 nm, the SS computed by
the TB-NEGF model is smaller than the corresponding EMA value due to the larger conduction
mass. The NP and NPsingle models provide an improvement for both circular and square FETs.
In the square case, the error (Vth − V TB

th ) between the threshold voltage computed by the TB-
NEGF model V TB

th and the remaining models, shows the superior improvement by the NP model
compared to NPsingle. Furthermore, the error for the EMA case is comparable to the band edge
overestimation ǫg⊥ − ǫac (dash-dotted line) for large lg. On the other hand, the overestimation
is roughly equal to the Vth shift between the EMA and NP. This finding is not surprising since
ǫg⊥ − ǫac is used to calibrate the NP model. In the circular case, the improvement is less obvious
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Figure 5.4: The errors (Vth − V TB
th ) and (Ion − ITB

on )/ITB
on as well as the subthreshold slope (SS)

of the smallest square and circular nanowire FET as a function of the gate length lg by various
models. The dash-dotted lines denote the band edge overestimation ǫg⊥ − ǫac by the EMA.
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Figure 5.5: Cross sections and effective contours of the smallest square and circular nanowires.

compared to square FETs. In particular, the (Vth − V TB
th ) for the EMA case notably differs

from ǫg⊥ − ǫac . Several causes are possible for the reduced improvement by the NP compared
to the square case. From a numerical point of view, the spectral method from Sec. 4.8 might
introduce an error in the circular case. However, the method is in good agreement with the
FEM and is able to satisfactorily reproduce analytic results. From a conceptual point of view,
instead of using analytic fits to the TB band edges, the actual energies and conduction masses
could be employed. However, in the square case, the use of analytic fits yields the expected
improvement. On the other hand, the use of perfect circles to approximate the circular wire
cross section might not be the best choice, particularly for small diameters, as highlighted in
Fig. 5.5. The reduction of the error (Ion − ITB

on )/ITB
on by the NP model is more evident in the

circular case than in the square case for the smallest diameter. The analysis is completed by a
plot of the errors (Ion−ITB

on )/ITB
on and (Vth−V TB

th ) as a function of the wire diameter in Fig. 5.6.
The improvement of the threshold voltage by the NP model is noticeable over the whole range
of diameters in the square case, as well as the agreement between ǫg⊥ − ǫac and the EMA error.
For the circular FETs, the improvement by the NP model remains inferior compared to the
square case for an increasing diameter. However, the NPsingle model seems to perform better
than NP for larger diameters. The error (Ion − ITB

on )/ITB
on reveals that the TB-NEGF current in

the on-current regime, for larger diameters, is even higher than the EMA current. This finding
is counter-intuitive from a physical point of view since the conduction mass in the TB-NEGF
case is still much larger than the bulk value. A better improvement for the on-current in the
square case is reported in Ref. [77] which employs different effective masses and contour fits to
the atomic cross sections but relies on the same NP model and comparison to the TB-NEGF
approach. The results are plotted in Fig. 5.7.
Finally, the on-currents and threshold voltages computed by the TB-NEGF approach are plotted
in Fig. 5.8 as a function of the effective diameter. Similar to the NP and EMA data plotted in
Fig. 4.13, the Vth roughly follows a common line.

5.4 Summary

The calibration of the present NP models by means of atomistic band structures has been de-
scribed at the beginning of this chapter. In particular, the parameters belonging to a series of
square and circular nanowire FETs are reported. These parameters are used to validate the
corresponding NP models by means of comparisons with a full-band TB-NEGF approach. For
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Figure 5.6: The errors (Ion − ITB
on )/ITB

on and (Vth − V TB
th ) of square and circular nanowire FETs

as a function of the effective diameter de by various models. The dash-dotted lines denote the
band edge overestimation ǫg⊥ − ǫac by the EMA. The gate length is lg = 15 nm.
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Figure 5.8: Threshold voltage Vth and on current Ion of circular and square nanowire FETs
computed by the TB formalism. The gate length is lg = 10nm.

the smallest diameters, the improvement provided by NP is particularly evident for the Vth of
the square FETs and the SS of both types of devices. An improvement for the Vth of the circular
FETs and the on-current of both types of devices is less evident. Different parameterizations
provided in a previous work for the same NP models yield a more satisfactory improvement
for the on-current of square FETs. Amongst other possible causes for the unexpected outcome
in the circular case, it has to be investigated whether a perfect circle is an appropriate choice
to approximate the cross section of, particularly small, circular nanowires. Provided that this
behavior is related to the irregularity of the wire surface for very small diameters and no satisfac-
tory improvement can be achieved by continuum type approaches such as the EMA or NP, the
TB-NEGF approach could be employed since the computational burden does not notably exceed
the one caused by the present transport simulator. Typically, ∼ 400 CPU hours are required
by the TB-NEGF simulator compared to the ∼ 60 CPU hours needed by the present simulator
for the smallest nanowires. Finally, except for the Vth of circular FETs for larger diameters,
the use of a diameter-independent α does not yield a significant improvement compared to the
conventional NP model.





Chapter 6

Inclusion of Scattering

6.1 Introduction

The quantum transport framework detailed in the previous two chapters does not account for
scattering effects. A widely used approach, based on a phenomenological description of scattering,
is given by the Büttiker probes [111, 112]. Going a step further, the inclusion of scattering effects
can be accomplished by means of the NEGF 1. In this approach, scattering is introduced in a
perturbative way by means of self-energies which depend on the correlation functions, i.e. the
Green’s functions, and vice versa. Compared to the Büttiker probes, the NEGF is less bound to
input parameters but causes a larger computational burden due to the interdependence between
the quantities.
In this chapter, combined and particular impacts of NP and scattering on transfer characteristics
of nanowire FETs are investigated. Scattering is treated on the level of the first self-consistent
Born approximation and a novel method [113] for the treatment of the boundary conditions is
employed. The result section is preceded by a short survey on NEGF for quantum transport.
The interested reader can find detailed informations about the NEGF for quantum transport in
Refs. [114, 115, 116, 117, 118, 119, 53, 17]

6.2 A Short Survey on NEGF

6.2.1 Steady-State Quantum Transport Equations

Before moving to the coupled-mode expansion, the continuous form of the steady state quantum
transport equations will be given. The solution variables of the steady-state Dyson and Keldysh
equation are the retarded (GR) and lesser (G<) Green’s function [114, 115]:

∫ [
(E −H(~r))δ(~r − ~r1) − ΣR(~r, ~r1, E)

]
GR(~r1, ~r

′, E)d~r1 = δ(~r − ~r ′),

G<(~r, ~r ′, E) =

∫ ∫
GR(~r, ~r1, E)Σ<(~r1, ~r2, E)GA(~r1, ~r

′, E)d~r1d~r2,

where H(~r) is the Hamiltonian from Eq. (4.1) describing the device. The self-energy

Σ(~r, ~r ′, E) = Σint(~r, ~r
′, E) + Σbc(~r, ~r

′, E) (6.1)

1The implementation of the NEGF, inelastic scattering processes, and related approximations in SIMNAD has
been provided by Martin Frey.
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contains the electron-phonon interaction Σint(~r, ~r
′, E) as well as the boundary conditions Σbc(~r, ~r

′, E).
The Hartree potential is included in H(~r).

6.2.2 Coupled-Mode Expansion

For devices with a well-defined transport direction, such as the ones employed in this work, the
coupled-mode approach provides an attractive alternative to the real-space discretization of the
Dyson and Keldysh equations from a computational point of view [81, 60] 2. All quantities are

expressed by means of the transverse modes {ψ(n)
i (y, z)} from Sec. 4.5 and restricted to the

points {xn} shown in Fig. 4.3 along the transport direction. For instance, the retarded Green’s
function reads

GR(~r, ~r ′, E) =
∑

i,j

GR
ij(xn, xm, E)ψ

(n)∗
i (y, z)ψ

(m)
j (y′, z′), (6.2)

where GR
ij(xn, xm, E) is the solution of the Dyson equation formulated in mode-space

∑

i,n′

[
Eδjiδnn′ −

∫
dydzψ

(n)∗
j (y, z)H(~r)ψ

(n′)
i (y, z) (6.3)

−
∫
dydz

∫
dy′dz′ψ(n)∗

j (y, z)ΣR(~r, ~r ′)ψ(n′)
i (y′, z′)

]
GR

ik(xn′ , xm, E)

=
∑

i,n′

[
Eδjiδnn′ −Hji(xn, xn′) − ΣR

ji(xn, xn′ , E)
]
GR

ik(xn′ , xm, E)

= δjkδ(xn − xm).

Similarly, the expressions for the self-energies in mode-space can be derived [77]. The present

NP models enter the NEGF via the transverse modes ψ
(n)
i (y, z) which are computed by the

nonparabolic transverse Hamiltonians (3.79) and (3.81).

6.2.3 Electron-Phonon Scattering

In general, scattering in quantum mechanics is spatially correlated since the particles involved are
described by their own wave functions. For computational purposes, the scattering processes are
assumed to occur locally in space. Furthermore, the phonon system is kept at equilibrium and
the wave functions are approximated by the bulk correspondents. The electron-phonon matrix
elements |Mq|2 are computed by means of a perturbative approach within deformation potential
theory [120]. For the steady-state case, the lesser self-energy reads [116] 3

Σ<(~r, ~r ′, E) =
1

(2π)3

∫
ei~q(~r−~r ′)|Mq|2 (6.4)

×
[
NqG

<(~r, ~r ′, E − ~ωq) + (Nq + 1)G<(~r, ~r ′, E + ~ωq)
]
d~q

within the self-consistent Born approximation. The retarded self-energy is generally given by

ΣR(~r, ~r ′, E) =
1

2
(Σ>(~r, ~r ′, E) − Σ<(~r, ~r ′, E)) (6.5)

+iP
1

2π

∫
Σ>(~r, ~r ′, E′) − Σ<(~r, ~r ′, E′)

E − E′ dE′

2The reduction of the matrix size for the transport problem is the main advantage of the coupled-mode
approach. The number of matrix elements is proportional to the square of the number of modes while in the real
space variant the matrix size is proportional to the number of discretization points in the transverse direction.
On the other hand, accounting for gate leakage currents is not straightforward in the coupled-mode approach.

3The equations are given in their continuous form. For the transformation to mode-space see Sec. 6.2.2.
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with P
∫
dE′ being the principal part of the integration. Conversely, the retarded self-energy can

be calculated directly from the solution variables (GR, G<) of the Keldysh and Dyson equations
[118]

ΣR(~r, ~r ′, E) =
1

(2π)3

∫
ei~q(~r−~r ′)|Mq|2 (6.6)

×
{

(Nq + 1)GR(~r, ~r ′, E − ~ωq) +NqG
R(~r, ~r ′, E + ~ωq)

+
1

2

[
G<(~r, ~r ′, E − ~ωq) −G<(~r, ~r ′, E + ~ωq)

]

+iP

∫
dE′

2π

G<(~r, ~r ′, E − E′)

E′ − ~ωq
− G<(~r, ~r ′, E − E′)

E′ + ~ωq

}
d~q.

In order to reduce the computational burden related to the principal part integrals in Eqs. (6.5)
and (6.6) different approximations are employed. Neglecting the principle part integral in
Eqs. (6.5) and (6.6) is referred to as Approximation I and II, respectively, while keeping the
integrals is referred to as the Full model for scattering. The respective impacts are investi-
gated in Sec. 6.3. For a discussion on the lesser self-energy for intravalley acoustic phonon and
intervalley phonon scattering see Ref. [77].

6.2.4 Calculation of Density and Current

The lesser self-energies for the density and current calculation essentially consist of three con-
tributions, i.e. coherent terms from the source and drain contacts and an incoherent term from
the electron-phonon interaction. The density and current read

n(xn, y, z) =
−i
π

∑

v

∑

ij

∫
G<,v

ij (xn, xn, E)ψ
(n)∗
i (y, z)ψ

(n)∗
j (y, z)dE

I(xn) = − e

π~

∑

v

∑

ij

∫ (
2Re(Hv

ij(xn, xn+1)G
<,v
ji (xn+1, xn))

)
dE

with v being the valley index.

6.3 Simulation Results

The nanowire FETs used for the present simulations have the same structure as the ones from
Sec. 4.9.2. The main difference is that the gate contact is laid over three faces only (triple gate)
compared to the gate-all-around structures employed in Sec. 4.9.2. The geometry parameters
are ls = ld = 9.7 nm, lg = 15 nm, tox = 1 nm, tc = 3.26 nm, and the source and drain regions
are n-doped with a concentration of 1020cm−3. The parameters for the extraction of Ion and Vth

are ∆Von = 0.3 V and Ith = 10−7 A. Further details such as the NP coefficients and parameters
for the scattering are given in Ref. [77].
Figure 6.1 shows transfer characteristics computed by means of different approximations of the
retarded self-energy (cf. Sec. 6.2.3). Approximation I yields an underestimation of the subthresh-
old current of up to 80% compared to the Full version. On the other hand, the discrepancy
diminishes in the on-current regime. This behavior can be explained by the absence of the en-
ergy renormalization on the effective barrier height [77] due to the neglect of the principle part
integral in Eq. (6.5). Conversely, Approximation II is found to be in excellent agreement with
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Figure 6.1: Transfer characteristics by different approximations to the retarded self-energy com-
pared to the full solution.
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Figure 6.2: Comparison of transfer characteristics computed by means of the NP model and the
combination of scattering with NP (NPSC). The ballistic EMA curve is shown as well.

the Full version throughout the whole voltage range. This approximation is used in the following
current calculations.

Transfer characteristics resulting from simulations including both nonparabolicity and scattering
(NPSC) are compared to data from simulations containing only NP, SC, or purely ballistic
EMA. The currents are plotted in Figs. 6.2 and 6.3 and the extracted quantities are reported in
Tab. 6.1. For both forward biases Vds[V ] ∈ {0.1, 0.5}, the threshold voltage is mainly affected by
the inclusion of NP while the effect of scattering is in the order of 1% and, therefore, negligible.
Conversely, the on-current regime seems to be mainly dominated by scattering compared to the
impact of the increased conduction mass from the NP model. The impact of the latter model on
the on-current is however not negligible. Identifying the contributions from the particular models
NP and SC to the results obtained by the combination NPSC is a rather difficult task. As shown
in Fig. 6.2, the subthreshold current obtained by the NPSC is very similar to the one obtained by
NP alone thus suggesting a minor interaction between SC and NP in this regime. The situation
is different for the on-current regime, i.e. contributions from the single methods SC and NP do
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Figure 6.3: Comparison of transfer characteristics computed by means of scattering (SC) and
the combination of scattering with NP (NPSC). The ballistic EMA curve is shown as well.

Table 6.1: Threshold voltages and on-currents extracted from the transfer characteristics plotted
in Figs. 6.2 and Fig. 6.3. Shown are the results of the two ballistic simulations, EMA and NP,
as well as of the simulations including scattering SC and the combination with nonparabolicity
NPSC. Two source-to-drain biases have been considered: VDS = 0.1V(I) and VDS = 0.5V(II).

The relative(REL) deviations |IEMA
on − INP,SC,NPSC

on |/IEMA
on and |V EMA

th − V NP,SC,NPSC
th |/V EMA

th

are shown as well.

mode VT(I) ION(I) VT(II) ION(II)

EMA 0.312 V 7.53e-06 A 0.308 V 1.06e-05 A
NP 0.266 V 6.86e-06 A 0.262 V 9.25e-06 A
NP REL 14.74 % 8.994 % 14.94 % 12.87 %
SC 0.311 V 4.15e-06 A 0.304 V 6.81e-06 A
SC REL 0.32 % 45.28 % 1.30 % 35.86 %
NPSC 0.265 V 4.04e-06 A 0.258 V 6.16e-06 A
NPSC REL 15.06 % 46.39 % 16.23 % 41.94 %
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not roughly add up to the results from the combined method NPSC. A tentative explanation for
this finding could be drawn from a qualitative point of view on how inelastic scattering affects
the charge carriers in the effective source region. The impact of a modified conduction mass on
the longitudinal velocity of an electron is more pronounced when the total energy is much higher
than the corresponding conduction band edge. In a non-equilibrium system, scattering causes a
redistribution of the electrons in energy and momentum. Phonon emission is the favored process
[77] for electrons compared to phonon absorption, provided that the final state E → E − ~ωq

is available. Therefore, the electrons tend to dissipate energy in the effective source region by
relaxing toward the band edge and the reduced energy alleviates the impact of the conduction
mass on the longitudinal velocity.

6.4 Summary

Inelastic scattering effects are combined with NP within the NEGF in order to investigate the
respective impacts on transfer characteristics of triple-gate nanowire FETs. The shift in the
threshold voltage was mainly attributed to NP while scattering dominates the on-current regime
when considering the particular effects. The energy dissipation of electrons in the effective source
region is assumed to alleviate the effect of NP when both effects are combined thus yielding a
smaller degradation of the on-current. The findings in this chapter underline the importance of
scattering. However, the inclusion of this effect goes at the expense of the simulation time which
considerably increases compared to the ballistic case.





Chapter 7

Concluding Remarks

In this work, quantum transport simulators for the treatment of planar and nanowire FETs
have been developed (extended). A notable effort has been dedicated to the algorithmic, nu-
merical, and computational improvement of the pre-existing SIMNAD software. In particular,
the OpenMP parallelization of time-consuming routines such as the computation of the injected
charge density or the solution of the transverse eigenvalue problems for both the SMA or the
coupled-model NEGF, turned out to be a decisive advancement especially for large devices. The
use of state-of-the-art software libraries for both linear and eigenvalue problems not only im-
proves the overall performance but also ensures a better supportability for future developments.
For the treatment of complicated surfaces, the FEM has been implemented for both the solution
of the Schrödinger and the Poisson equation. For the FEM variant, the ballistic quantum trans-
port framework has been parallelized by means of the MPI, i.e. made suitable for large scale
distributed memory compute clusters such as the Cray XT5.

The SMA is mostly used for the calculation of the transfer characteristics since several advantages
compared to the coupled-mode NEGF exist for the ballistic limit. Some aspects concerning the
use of the SMA for arbitrary transport directions within the EMA have been briefly addressed.
However, the NEGF is an appropriate choice when scattering has to be treated beyond a phe-
nomenological approach. Particularly the real-space variant of NEGF is attractive when complex
geometries, gate leakage currents, or changes in the transport direction have to be taken into ac-
count. This flexibility goes at the expense of the computational burden which increases notably.
A common denominator of the mentioned transport frameworks is the adequacy for scalability
thus encouraging the consideration of high-performance languages such as CUDA (NVIDIA) for
the use on GPUs.

In order to improve the EMA for the simulation of small FETs, a widely used NP model has been
appropriately modified to fit within the SMA or the coupled-mode NEGF. This was accomplished
by means of a Taylor expansion based on the presence of strong two- and one-dimensional
confinements. Extensive simulations to investigate the impact of band structure effects have
been carried out for planar and nanowire FETs of various shapes. Tight-binding band structures
were used to determine the NP coefficients. Comparisons with a full-band tight-binding simulator
reveal a satisfactory improvement by means of NP for the threshold voltage of square nanowire
FETs while a similar improvement is missing for the circular case. However, since the present
NP model shows the potential to improve the EMA (shown in previous work with different
parametrizations) while preserving the same simulation efficiency, it is worth continuing the
related investigations also with regard to more complex wire cross sections.

The tight-binding method is widely appreciated for the modeling of nanoelectronic devices on
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the atomistic level since related simulation times are comparatively small. A part of this work
was dedicated to the implementation of an EPM framework to be used in the future for quantum
transport simulations. An advantage of EPM with respect to tight-binding is the more physical
description of charge densities. Furthermore, the EPM is expected to be less time consuming
than fully ab-initio methods. At the present stage, a band structure calculator based on the
EPM is available for bulk, nanowires, and quantum wells.
A rather small part of this work was concerned with the combination of scattering 1 and NP in
order to fully exploit the capabilities of the presently developed simulators. Since the related
investigations are rather young compared to the effort put in the particular methods NP and scat-
tering, the interpretations of the results are comparatively superficial and further investigative
work is necessary for this topic.

1The implementation of the NEGF, inelastic scattering processes, and related approximations in SIMNAD has
been provided by Martin Frey.



Appendix A

Band Structure Calculations

A.0.1 Empirical Tight-Binding Method

The tight-binding or LCAO method was originally proposed by Bloch in 1928. Almost a quarter
of a century later, Slater and Koster [121] proposed a modified approach motivated by the fact
that a rigorous evaluation of the large number of integrals involved in the LCAO method was
almost impossible with the computational resources of that time. They suggested instead, that
these integrals should be considered as adjustable parameters determined from results obtained
by more accurate electronic structure calculations such as cellular methods or orthogonalized
plane waves. Although the continuous increase of computing power has eliminated some of the
reasons for developing this interpolation scheme, it has survived over several decades and evolved
into a powerful tool for calculating physical properties of arbitrary systems. For a detailed survey
on the Slater Koster (SK) theory and a list of applications see Ref. [122] and references therein. In
particular, the SK theory provided the basis for the empirical tight-binding method. One of the
major enhancements after the introduction of the SK theory was the addition of the excited s-like
orbital, s*, by Vogl et al. [123] almost thirty years later which yielded better reproduction of the
conduction band of diamond and zinc blende semiconductors along 〈100〉. A further improvement
has been provided recently by Jancu et al. [124] for the case of X-valleys of group-IV and III-V
semiconductors. Finally, parameter sets for silicon and germanium within the sp3d5s∗ empirical
tight-binding model have been presented[109] allowing an accurate reproduction of the entire
bulk band structure. In the following, the basic ideas related to the Slater Koster theory are
summarized. Each atom is associated with a set of atomic-like orbitals φiσ, where i denotes the
position ~bi of the atom in the crystal unit cell and σ is a quantum number for the atomic state.
In general, orbitals related to atoms residing on different lattice sites are not orthogonal. A
remedy is provided by Löwdin’s method [125] to construct a set of states ψiσ having symmetry
properties similar to those of the corresponding φiσ but being orthogonal 1

∫
ψ∗

jeσ(~r − ~Rm −~bj)ψiσ(~r − ~Rn −~bi)d~r = δijδnmδσeσ, (A.1)

1An approach which avoids this orthogonalization is mentioned in Ref. [122].
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where ~Rn and ~Rm belong to the reduced lattice (3.18) consisting of N unit cells Ωc. For each
atom i in the unit cell and orbital σ, a Bloch sum

χiσ(~k, ~r) =
1√
N

∑

~Rn∈Γ
red
~N

ei~k(~Rn+~bi)ψiσ(~r − ~Rn −~bi)

= 〈~r|~kiσ〉 (A.2)

can be constructed which fulfills the Bloch condition (3.10)

χiσ(~k, ~r + ~R) = ei~k ~Rχiσ(~k, ~r) (A.3)

and orthonormality

〈~k′jσ̃|~kiσ〉 = δ~k′~kδijδeσσ. (A.4)

With Na atoms in the unit cell and No orbitals per atom, the ansatz for the Bloch states reads

Ψ(~k, ~r) =

Na∑

i=1

No∑

σ=1

ciσ(~k)〈~r|~kiσ〉 = 〈~r|~k〉 (A.5)

which still fulfills the Bloch condition and orthonormality provided that

Na∑

i=1

No∑

σ=1

|ciσ(~k)|2 = 1. (A.6)

Using the ansatz (A.5) for the Schrödinger problem (3.1) leads to the expression of the Hamil-

tonian H in terms of |~kiσ〉

〈~kσ̃j|H|~kσi〉

=
∑

~Rn∈Γ
red
~N

ei~k(~Rn+~bi−~bj)

∫
ψ∗

jeσ(~r −~bj)Hψiσ(~r − ~Rn −~bi)d~r (A.7)

Note that mixing between Bloch states to different ~k is automatically suppressed when using
the ansatz (A.5), i.e. 〈~k′|H|~k〉 = δ~k~k′

〈~k|H|~k〉. The potential U(~r) is approximated as a sum of
spherically symmetric potential wells located at all the atoms of the crystal

U(~r) =
∑

~Rp∈Γ
red
~N

Na∑

q=1

Uq(~r −~bq − ~Rp) (A.8)

In the general case, the integral on the right hand side of Eq. (A.7) has contributions from three
regions. First, the regions centered around the two atom-like wave functions ψjeσ and ψiσ, and the

region centered around the potentials at ~bq + ~Rp. In the following, the two-center approximation
is used, i.e. only integrals involving one (on-site) or two centers (two-center) are considered.
Consequently, the remaining integrals in Eq. (A.7) have the form

∫
ψ∗

jeσ(~r − ~u)Hψiσ(~r)d~r and

depend only on the displacement ~u = ~bj − (~Rn +~bi). The Hamilton matrix is now subdivided
in Na ×Na blocks of size No ×No denoted by Hji. Allowing only interactions between nearest
neighbors, the blocks are given by

Hji =

nn(j)∑

l=1

ei~k~ul
jiVji(~ul

ji), (A.9)
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where ~ul
ji = ~Rn(l) +~bi −~bj is a vector pointing to one of the nn(j) nearest neighbors of the atom

located at j and the matrix Vji(~ul
ji) is related to the integrals

∫
ψ∗

jeσ(~r − ~ul
ji)Hψiσ(~r)d~r. The

blocks Hii on the diagonal of the Hamilton matrix (A.7) are referred to as the on-site energy of the
ith atom. Within the SK theory the on-site and two-center integrals which enter the blocks (A.9)
are replaced by adjustable parameters used to fit data obtained by more sophisticated methods
or experiments. More details on the relation between these parameters and the corresponding
integrals are given in Refs. [121, 122, 17, 10]. In the diamond or zincblende structure [14] the unit
cell contains two atoms and each atom in the lattice is surrounded by four nearest neighbors.
Thus, for elements crystallizing in these structures, the sp3d5s∗ tight-binding method without
spin-orbit coupling leads to eigenvalue problems of size 20 × 20 for each wave vector ~k.
The extension from infinite crystals to nanostructures within the tight-binding framework is
straightforward [17]. If nothing else is specified, the tight-binding calculations in the remainder
of this work are based on the parametrization [109] and boundary conditions [110] employed by
Ref. [17].

A.0.2 Empirical Pseudopotential Method

The potential (3.1) is periodic with respect to the Bravais lattice (3.2) and can be expanded in
terms of plane waves

U(~r) =
∑

~G∈eΓ

ei ~G~rÛ(~G) (A.10)

according to Eq.(3.5). The empirical pseudopotential method involves a direct fit of the Û(~G) to
experimental or ab-initio band structures. Initially, Fermi surface data were used for metals and
later on photoemission and reflectivity results provided the relevant informations. The method
was successfully applied to silicon and germanium as well as to other important semiconductors
[126]. The potential U(~r) is assumed to be a linear superposition of atomic potentials Vs(i)

U(~r) =
∑

i

∑

n

Vs(i)(~r − ~Rn −~bi), (A.11)

where ~bi is the location of the ith atom in the unit cell, s(i) is the corresponding species, and ~Rn

is the position of a site in the Bravais lattice. The coefficients of U(~r) become

Û(~G) =
1

|Ωc|

∫

Ωc

e−i ~G~rU(~r)d~r

=
∑

i

∑

n

1

|Ωc|

∫

Ωc

e−i ~G~rVs(i)(~r − ~Rn −~bi)d~r

=
∑

i

e−i ~G~bi
1

|Ωc|

∫

R3

e−i ~G~rVs(i)(~r −~bi)d~r

≡ 1

|Ωc|
∑

i

e−i ~G~bi V̂s(i)(|~G|), (A.12)

where Vs(i)(|~G|) depends only on the absolute value of ~G as the Vs(i)(~r) are assumed to be

spherically symmetric. The pseudopotential enters the ~k-dependent Schrödinger equation (3.13)

which is employed to compute the Bloch states ψn(~k, ~r). To account for the periodic boundary

conditions (3.9), the Bloch factor u(~k, ~r) is expanded in terms of plane waves

u(~k, ~r) =
∑

~G∈eΓ

ei ~G~rû(~G). (A.13)
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as well. Using the ansatz (A.13) for the Schrödinger problem (3.13), multiplying on the left with

exp(−i ~G~r)/(|Ωc|), and integrating over Ωc, yields the secular equation

∑

~G′

[
~

2

2me
(~k + ~G)2δ~G, ~G′ + Û(~G′ − ~G)

]
û(~G′) = ǫ(~k)û(~G) (A.14)

which is cast as matrix eigenvalue problem. In practice, the set of ~G’s is delimited by a cutoff co

|~G| ≤ co (A.15)

which has to be increased until the energies ǫn(~k) from Eq. (A.14) are well converged. This
convergence strongly depends on the smoothness of the potential U(~r), i.e. on how fast the

V̂s(i)(q) vanish. As in the tight-binding method, the ansatz ψ(~k, ~r) = exp(i~k~r)u(~k, ~r) = 〈~r|~k〉
with u(~k, ~r) from Eq. (A.13) automatically suppresses mixing between different ~k, i.e. 〈~k′|H|~k〉 =

δ~k~k′
〈~k|H|~k〉.

The determination of an empirical pseudopotential starts with a guess for the V̂s(i)(|~G|). Next,

the Schrödinger equation (A.7) is assembled and solved for a given set of wave vectors ~k, i.e. the
reduced lattice (3.18) for instance. This allows the calculation of the density of states described in
Sec. 3.8.1 as well as other physical observables. These quantities are compared with experiments
or ab-initio data and the V̂s(i)(q) are modified accordingly, if the desired agreement has not been
achieved.
As an example the diamond structure is considered. The two atoms are placed at the positions
~b1 = −~τ and ~b2 = ~τ with ~τ = (a, a, a)/8. For semiconductors with diamond lattice such as silicon

or germanium the two atoms are identical and therefore V̂s(1) = V̂s(2). The coefficients (A.12)
become

Û(~G) = cos(~τ ~G)
2

|Ωc|
V̂s(1)(|~G|) (A.16)

which are nonzero for ~G2 ∈ {0, 3, 8, 11, . . .}(2π/a)2. The ~G = 0 term in Eq. (A.10) is omitted
as it merely gives a constant shift to the potential U(~r). Chelikowski et al. [126] provided the
following potential for silicon

V̂ Ch
Si (q) =





vSia
Ch
1 /2, (qaSi/(2π))2 = 3

vSia
Ch
2 /2, (qaSi/(2π))2 = 8

vSia
Ch
3 /2, (qaSi/(2π))2 = 11

(A.17)

where aCh
1 = −0.2241Ry, aCh

2 = 0.0551Ry,aCh
3 = 0.0724Ry, and vSi = a3

Si/4 is the volume of the
primitive unit cell of bulk silicon with aSi = 0.543nm. Note that the potential (A.17) is strictly

bound to the choice ~b1 = −~τ and ~b2 = ~τ for the basis vectors. Unfortunately, the definition
of Û(~G) on discrete points of the reciprocal lattice is insufficient for the proper description of
nanostructures such as dots, wires, or wells. Wang et al.[16] presented a continuous momentum
space form for silicon

V̂ Wa
Si (q) = vSi

aWa
1 (q2 − aWa

2 )

aWa
3 eaW a

4 q2 − 1
, (A.18)

where aWa
1 = 0.2685a2

BRy, aWa
2 = 2.19a−2

B , aWa
3 = 2.06, and aWa

4 = 0.487a2
B are determined by

a fit to experiments. This atomic pseudopotential is not restricted to a specific choice for the
basis ~b1 and ~b2. A plot of the form factors V̂ Wa

Si and V̂ Ch
Si is given in Fig. A.1. The discrete points

V̂ Ch
Si are very close to the continuous form V̂ Wa

Si as they partially contributed to the derivation
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Figure A.1: Form factors V̂ Wa
Si and V̂ Ch

Si from Eqs. (A.18) and (A.17) respectively. The diamonds

denote the values of V̂ Ch
Si for q ∈ {

√
3,
√

8,
√

11}(2π/aSi) and the dashed line denotes V̂Si = 0.

of V̂ Wa
Si [37]. Furthermore, as the form factor becomes very weak beyond the third ~G vector

in Eq. (A.17) one can assume that the three V̂ Ch
Si are sufficient to reproduce the bulk silicon

band structure. A plot of the band structure is given in Fig. 3.1. Constant energy surfaces for
the conduction and three highest valence bands, i.e. two heavy and one light hole band, are
plotted in Fig. A.2. While the conduction band minima can be well approximated by ellipsoids,
the situation for the valence band maxima is more complicated. In this case the warped energy
surfaces [10] can be approximated by spheres obtained by means of an appropriate averaging
procedure [15].
The previous considerations on the empirical pseudopotential method involved the use of purely
local potentials. The extension to nonlocal potentials is straightforward [126, 127] and can lead
to significant improvements. An application to strained silicon germanium alloys is given in
Ref. [128]. However, nonlocality introduces some further complications and is not considered
in this work. Further continuous momentum representations of empirical pseudopotentials for
silicon and germanium can be found in Ref. [129].
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(b)

(d)

(a)

(c)

Figure A.2: Constant energy surfaces for the conduction (a), heavy hole (b & c), and the light
hole band (d) of bulk silicon computed by means of the parametrization (A.17). The surfaces
correspond to energies 0.1eV above or below the conduction band maximum or valence band
minimum, respectively.



Appendix B

Density of States

Several methods for the numerical computation of the density of states Gideal(E) from Eq. (3.84)
are available in the literature including advanced schemes [47] which employ an adaptive sampling
of the reciprocal lattice. In the following, a simple procedure is described to obtain Gideal(E).

The integration domain Ω̃c in (3.84) is first transformed to the unit cube C = [0, 1]3 in the
reciprocal space

Gideal(E) =
|det(B)|

4π3

∑

n

∫

C

δ(E − ǫ̃n(~k′))d~k′ (B.1)

=
|det(B)|

4π3

∑

n

∫

S′

n(E)

1

|~∇~k′
ǫ̃n(~k′)|

dS′ (B.2)

with B from Sec. 3.2, ǫ̃n(~k′) = ǫ̃n(B−1~k) = ǫn(~k), and S′
n(E) is defined by the condition

ǫ̃n(~k′) = E. The surface integral (B.2) is now computed numerically by subdividing the unit

cube in M3 uniformly sized cubic cells as shown in Fig. B.1.a. The energy ǫ̃n(~k′) is sampled at

the corners of these cells as illustrated in Fig. B.1.b. For a given band n the gradient ~∇~k′
ǫ̃n(~k′)

is approximated on the ith cell Ci by

∇~k′
ǫ̃n(~k′)|Ci

≃ 1

∆k




ǫ
(i)
1 − ǫ

(i)
0

ǫ
(i)
2 − ǫ

(i)
0

ǫ
(i)
3 − ǫ

(i)
0


 ≡ ~v(i)

n , (B.3)

where ∆k = 1/M . In a next step the intersection between the ith cell and the isosurface S′
n(E)

has to determined. For this purpose, the dispersion ǫ̃n(~k′) is linearly interpolated on the edges

of the cell by means of the samples on the corners, i.e. ǫ
(i)
0 + k(ǫ

(i)
1 − ǫ

(i)
0 )/∆k for instance. If for

this particular edge the condition E ∈ [ǫ
(i)
0 , ǫ

(i)
1 ] holds true, the point k = (E− ǫ(i)0 )/(ǫ

(i)
1 − ǫ(i)0 ) is

marked and applying the same procedure to the remaining eleven edges yields a polygon which

approximates the desired intersection. The surface s
(i)
n of this polygon is obtained by a suitable

triangulation. Finally, the approximation to the integral (B.2) is given by the non-vanishing
contributions from each cell and band

Gideal(E) ≃ |det(B)|
4π3

∑

n

∑

i

s
(i)
n

|~v(i)
n |

. (B.4)
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Figure B.1: (a) Uniform subdivision of the unit cube in the reciprocal space. The dispersion

ǫ̃n(~k′) = ǫn(~k) is sampled on the edges of the cells and labeled accordingly as shown in (b).



Appendix C

Finite Element Method

The basis for the present FEM is given by piecewise linear functions, i.e. hat functions, located
at the nodes of a simplex tessellation of the simulation domain Ω as illustrated in Fig. C.1 for the
two-dimensional case. A hat function bi(x) is characterized by the node i on which the function is
centered. Given a two-dimensional tessellation of the form Ω = ∪KTK consisting of triangles TK ,
each hat function is described by means of the unit triangle D = {(x, y)|0 ≤ x, 0 ≤ y, x+ y ≤ 1}.
The functions f0(ξ) = 1− ξ0 − ξ1, f1(ξ) = ξ0, and f2(ξ) = ξ1 on D are mapped to TK by means

of the transformation x = Θ(ξ) ≡ PK
0 + BKξ, where BK = (PK

1 − PK
0 |PK

2 − PK
0 ) and PK

0 ,PK
1 ,

and PK
2 are the corners of the triangle TK . The three-dimensional case follows analogously. The

assembly of the matrix A from Eq. (4.34) is accomplished by summing up the contributions
from each TK . Quantities such as the charge density or the potential energy for the Schrödinger
equation are expressed within the hat function basis as well. For the calculation of the right-hand
side in the Schrödinger or Poisson equation, the overlap matrix

Oi,j =

∫

Ω

bi(x)bj(x)dx (C.1)

is employed.

Figure C.1: A hat function bi is equal to unity at a grid point i and decays linearly down to zero
towards the edges of the neighboring simplexes.
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The evaluation of the residual (4.42) is commonly accomplished by a variant of the L2 norm, i.e.

||R||r ≡
√

1

|Ω|

∫

Ω

|R(x)|2dx =

√
1

|Ω|
∑

i,j

RjRk

∫

Ω

bj(x)bk(x)dx =

√
RORT

|Ω| (C.2)

with
R(x) = ∇

(
ǫ∇Tφin

)
+ ρ =

∑

i

Ribi(x) (C.3)

and R = (. . . , Ri, . . .)
T . However, the isolation of the vector R needed for the evaluation of√

RORT /|Ω| requires the solution of a further linear problem. This difficulty can be circum-

vented by using the norm
√

(ORT )(ORT )/|Ω| with the following form in position space

||R||r =
1

|Ω|

√√√√∑

i

[∫

Ω

bi(x)R(x)dx

]2
. (C.4)



Appendix D

SMA for Arbitrary Directions

For silicon nanowires grown along the 〈100〉 direction, the envelope function (3.41) consists of
a plane wave times an x-independent function. This form is a key ingredient for the quantum
transport framework described in chapter 4. Unfortunately, when the growth direction of the
silicon nanowire deviates from 〈100〉 or other materials are employed such as germanium, the
symmetric effective mass tensor becomes generally full

M =




wxx wxy wxz

wxy wyy wyz

wxz wyz wzz


 . (D.1)

Using an ansatz of the form (3.41) for the effective mass equation (3.40) yields

− ~
2

2me

(
−ψ(y, z)k2

xwxx + wyy
∂2

∂y2
ψ(y, z) + wzz

∂2

∂z2
ψ(y, z)

+2ikxwxy
∂

∂y
ψ(y, z) + 2ikxwxz

∂

∂z
ψ(y, z)

+2wyz
∂

∂y

∂

∂z
ψ(y, z)

)
+ (Ueff − E)ψ(y, z) = 0. (D.2)

The solution of the transverse wave function ψ(y, z) depends on kx and notably complicates the
problem. A remedy is provided by the ansatz [130]

ψ(y, z) = eikx(αy+βz)σ(y, z) (D.3)

with

α =
−wxywzz + wyzwxz

wyywzz − w2
yz

(D.4)

β =
−wyywxz + wyzwxz

wyywzz − w2
yz

(D.5)

which separates the Schrödinger problem (D.2) in a longitudinal and a kx-independent transverse
part

[
− ~

2

2me
∇⊥

(
wyy wyz

wyz wzz

)
∇T

⊥ + Ueff
]
σ = ǫσ, (D.6)
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where ∇ = (∂/∂y, ∂/∂z), ǫ = E − ~
2k2

x/(2mem̃) and

m̃ =
wyywzz − w2

yz

det(M)
. (D.7)

The determinant of M can be written as a product of the corresponding eigenvalues wl = 1/ml

and wt = 1/mt, i.e. det(M) = wlwtwt
1, which are available in the literature [14].

In the case of germanium for instance, the conduction band has four minima located at the
boundary of the first Brillouin zone along the [111], [111], [111], and [111] directions corresponding
to four different effective mass tensors

M1 =
1

3mlmt




2ml +mt mt −ml mt −ml

mt −ml 2ml +mt mt −ml

mt −ml mt −ml 2ml +mt




M2 =
1

3mlmt




2ml +mt ml −mt mt −ml

ml −mt 2ml +mt ml −mt

mt −ml ml −mt 2ml +mt




M3 =
1

3mlmt




2ml +mt mt −ml ml −mt

mt −ml 2ml +mt ml −mt

ml −mt ml −mt 2ml +mt




M4 =
1

3mlmt




2ml +mt ml −mt ml −mt

ml −mt 2ml +mt mt −ml

ml −mt mt −ml 2ml +mt


 . (D.8)

The transverse Schrödinger problems (D.6) and conduction masses m̃ are identical for the pairs
{M1,M4} and {M2,M3}. In this sense, two of the four valleys are two-fold degenerate.
A similar discussion for the case of arbitrarily oriented quantum wells is given in Ref. [131].
The form (4.11) of the envelope function required within the SMA is generalized for the case of
arbitrary effective mass tensors to

F (n)(~r) ≡
∑

i

(
a
(n)
i ψ

+,(n)
i (y, z)eik

(n)
i x + b

(n)
i ψ

−,(n)
i (y, z)e−ik

(n)
i x
)

(D.9)

by means of the presently described framework. The main difference is that the transverse wave
functions ψi depend on the total energy. However, this modification implies only a minor increase
of the computational burden and does not affect the scalability of the algorithm. The continuity
conditions for the current lead to connection rules between the coefficient of adiacent slices which
can be expressed in terms of transfer matrices, i.e. Eq. (4.17), and thus allow the recovery of the
SMA.

1The presence of a two-fold degenerate eigenvalue implies that the ellipsoid described by M is rotationally
invariant.
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[61] S.K. Röllin. Parallel iterative solvers in computational electronics. PhD thesis, SWISS
FEDERAL INSTITUTE OF TECHNOLOGY ZURICH, 2005.

[62] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Van Der Vorst. Templates for the solution
of algebraic eigenvalue problems. Society for Industrial Mathematics, 2000.

[63] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.



BIBLIOGRAPHY 115

[64] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.
Smith, and H. Zhang. PETSc Web page, 2009. http://www.mcs.anl.gov/petsc.

[65] R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK users’ guide: solution of large-scale
eigenvalue problems with implicitly restarted Arnoldi methods. Siam, 1998.

[66] G. Sleijpen and H. van der Vorst. A Jacobi-Davidson iteration method for linear eigenvalue
problem. SIAM J. Matrix Anal. Appl., 17:401–425, 1996.
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