
Quantum transport effects 
and their modeling

Frederik Heinz
Fabian Bufler
Andreas Schenk
Wolfgang Fichtner

SNDT Taiwan, May 2004



Outline

�Motivation

�Overview: Simulation models

�“Conventional” device simulation

�Classical Monte-Carlo simulation

– Treatment of non-localities

– Strained silicon devices

�Modeling of quantum effects 

�Conclusion



Motivation

�Scaling is the driving force behind the 
semiconductor revolution

�Reduced device dimensions require refined 
simulation models:

– higher fields � non–local transport effects
– quantum mechanics

Physical gate length: 9 nm

G.E.Moore, Electronics, 38(8) (1965);   M.Lundstrom, Science 299, 210 (2003)
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The Boltzmann Transport Equation (BTE)

�Device simulation is based on 
the kinetic theory of gases.

�Dynamic variable:
Classical distribution function



The “Conventional” Simulation Models

�BTE: integro–differential eqn over     .

� Numerical effort rather high.

�Reduce effort by the Method of Moments

• New dynamic variables:
k–averages of

• Use only the (two) lowest moments.

• Introduce a local parameterization of µ.
� Hydrodynamic eqns / Drift–Diffusion eqns



Limitations of the “Conventional” Models

�Assumptions

– local thermal equilibrium
– vmean is a function of local quantities.

� fail in very small devices:
� not enough scattering for local thermalization

� ballistic contributions to vmean —
electron velocity depends on the history
� velocity overshoot.
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Direct Solution of the Boltzmann equation

�Characteristics of the Boltzmann equation:
– High dimensionality of the space of possible f,

– Stochastic nature of the scattering term.

� Direct discretization problematic / inefficient.

�Monte–Carlo methods well suited.



Density–of–States DOS



Output Characteristics



Output Characteristics



Velocity Profiles along the Channel



Strained Silicon

Silicon–Germanium and strained Silicon are 
now heavily used in semiconductor industry

�compute the mobility by bulk Monte–Carlo 
�[input: band-structure of strained Si]



SiGe and strained Si Lattice constant

� Silicon: 5.43 Å
� Germanium: 5.66 Å
� Si1–xGex : depends on the mole-fraction x.

� Lattices of deposited layer will naturally adapt:
– SiGe on top of Silicon is under compressive stress
– Silicon on top of SiGe is stretched
– increased mobility !!!



Strained CMOS – Strain in the Cap Layer

High tensile stress in the cap layer results 
in compressive stress in source and drain
and tensile stress in the channel.

The NMOS with the highly tensile 
stress cap layer shows an improved 
saturation current (approx. 14%).

No-stress cap stressed cap



Quantum mechanics becomes important!
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Quantum Ballistic Transport

from open boundary Schrödinger eqn



Source–Drain Tunneling in nano–MOSFETS



Model comparison (Lgate = 5nm)



Simulation of Quantum–Dot Flash RAM



Coupled DESSIS/SIMNAD Simulations



Coupled DESSIS/SIMNAD Results



Conclusion

� Downscaling of devices � non–local phenomena

� Two kinds of non-localities
– classical: ballistic transport; non-local µ
– quantum: wave-nature of the carriers

� classical non-localities: full band MC �

� quantum mechanics: �/�
simplifications necessary (high comp. effort)

� DESSIS/SIMNAD coupling:
quantum dots and classical channels in one device
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Ballistic MOSFET under forward bias


