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Motivation

* Scaling is the driving force behind the
semiconductor revolution

YEAR 1999 2002 2005 2008 2011 2014
TECHNOLOGY NODE (nm) 180 130 100 70 50 35

Physical gate length: 9 nm

* Reduced device dimensions require refined
simulation models:

— higher fields = non-local transport effects
— quantum mechanics

G.E.Moore, Electronics, 38(8) (1965); M.Lundstrom, Science 299, 210 (2003)
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A Taxonomy of Simulation Models

near equilibrium

dissipative quasi—ballistic fully ballistic
(local mobility)
guantum Quantum NEGF with NEGF without
mechanics  [elfiise i1V (e]g! Buttiker probes 2 < catter
G o Wigner eq? Scattering matrix
- V ~ o
classical
mechanics  [RJiligCllilYHlol) scattering free
Boltzmann eg? Boltzmann
Vv (full band MC)

O Hydro (analytic)
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The Boltzmann Transport Equation (BTE)

(% +v(k) -V, — %E(r) ' Vk) fr k) = (%)cou

* Device simulation Is based on
the kinetic theory of gases.

* Dynamic variable:
Classical distribution function

f(r,k,t)d’r d*k = #(particles in d°r d°k)
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The “Conventional” Simulation Models

* BTE: integro—differential eq® over R”.
= Numerical effort rather high.

* Reduce effort by the Method of Moments

 New dynamic variables:
k—averages of &' v(k) f(r,k,?)

e Use only the (two) lowest moments.

* [ntroduce a local parameterization of .
— |Hydrodynamic eq®s / Drift—Diffusion eg”s
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Limitations of the “Conventional” Models

* Assumptions
— local thermal equilibrium
— Vean IS @ function of local quantities.
x fail in very small devices:
x not enough scattering for local thermalization

x pallistic contributions to V.., —
electron velocity depends on the history
= velocity overshoot.
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A Taxonomy of Simulation Models

near equilibrium
dissipative
(local mobility)

quantum Quantum
mechanics drift—diffusion
2,
M B 2m* M
classical
mechanics Drift—diffusion
° Y,
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Wigner eqg™

_Boltzmann eq®
(full band MC)
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Direct Solution of the Boltzmann equation

* Characteristics of the Boltzmann equation:
— High dimensionality of the space of possible f,
— Stochastic nature of the scattering term.

x Direct discretization problematic / inefficient.

v  Monte—Carlo methods well suited.
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Density—of-States DOS
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Output Characteristics

i \ -~=="— Measurement .

Drain Current |5 (A/cm)
B

AT Drift-Diffusion
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0 0.5 1

Drain—Source Voltage V. (V)

Different simulation models
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Output Characteristics
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Different gate lengths
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Velocity Profiles along the Channel

__-_ Drift-Diffusion
Hydrodynamic
2 —— full-band Monte Carlo .
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Position along the channel (nm)

Velocity in source—side of channel determines on—current
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Strained Silicon

Silicon—Germanium and strained Silicon are
now heavily used in semiconductor industry

* compute the mobillity by bulk Monte—Carlo
[Input: band-structure of strained Si|
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SiIGe and strained S Lattice constant

* Silicon: 5.43 A
* Germanium:  5.66 A
* S, ,Ge,: depends on the mole-fraction x.

* Lattices of deposited layer will naturally adapt:
— SIGe on top of Silicon is under compressive stress
— Silicon on top of SiIGe is stretched
— Increased mobility !!!
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Strained CMOS - Strain in the Cap Layer

StressXX
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The NMOS with the highly tensile
stress cap layer shows an improved
saturation current (approx. 14%).
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Quantum mechanics becomes important!

Nanodevices have
“critical dimensions”
comparable with the
electron wavelength.

drain channel

s gale

source channel

tmp.grd - n0_branch3_forward_eDensity.daf

ElectronDensity ConductionBand

1.0E+20 - 5.5E+00 . .

HoEo 42800 A: Single electron transistors
:Iiﬁiﬂé :11??5’? B: Quantum-—ballistic devices

1.0E+15 -1.3E+00

C: QD flash memory
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Five quantum effects
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A Taxonomy of Simulation Models

near equilibrium
dissipative
(local mobility)

quantum Quantum
mechanics drift—diffusion

L 5
JNN -

classical
mechanics Drift—diffusion

vV
o
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Buttiker probes 2 < catter

Scattering matrix

Wigner eqg™

scattering free
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(analytic)
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Quantum Ballistic Transport

* Coherent transport

— # inelastic scattering.

— An e

remains in a fixed ¥ (solution of Schrodinger eq").

— When occupied, ¥ carries a current (W) ~ transmission probability 7'(€).

* [ hermal carrier injection at the contacts.

= Landauer—Bittiker formula:
I'= h Z / 0 o =

— W P

I p— TN — d 1 o

W width of the device

' from open boundary Schrodinger eq?

F(B(e — ) = £ (Ble — i)

3—%( (ESF:;'W o E)) ( (Egrerr!w o ED)

Ath: electron thermal wave—length h/\/2m*kgT’
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Source—Drain Tunneling in nano—MOSFETS

A - ¢ A — E
fgzllt(_u _— !3 nm fgﬂ_te e !:) nm
107 :
1
107° !
1
10—11 1
— Xz
— 10—13 L
10—15 1
1
T — thermionic current !
E — full scattering matrix ;
10—15 F ) ) ) . . ) 3 . . . !
-0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5
VGS [v] VGS M
gate
107 .
r Xz
10° | 1
r 1
107§ :
r 1
= 107§ i
=10 | 1
10_“; r 1
r 1
r Xz
107§ :
: ' 107 '
-0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5
VGB M VGS M VGS M

double—gate MOSFETSs with a Si body thickness of 1 nm (V4 = 1 V).
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Model comparison (L, = 5nm)

Vo=1uV, QVT=265mV, u . =45cm/Vs
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Simulation of Quantum-Dot Flash RAM

~ Challenge: Devices with quantum dots and classical channels.

x SIMNAD cannot handle | dissipative transport
... but DESSIS |

DESSIS has a 1D Schrodinger solver and a QDD facility, but

X it cannot handle | multi—-dimensional confinement | properly. . .
... but SIMNAD |

* | Together, the two simulators can do both !

= Apply a simulator coupling scheme |
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Coupled DESSIS/SIMNAD Simulations
Simulator coupling: SIMNAD charge density on DESSIS mesh:

o+ e
oD
SO FD
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Conclusion

* Downscaling of devices = non—local phenomena

* Two kinds of non-localities
— classical: ballistic transport; non-local p
— quantum: wave-nature of the carriers

* classical non-localities: full band MC ©

* guantum mechanics: ©I®
simplifications necessary (high comp. effort)

* DESSIS/SIMNAD coupling:
guantum dots and classical channels in one device
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Ballistic MOSFET under forward bias

Egate — 7 nm

ggate — 5 nm

10 10
107
107
107
107
107
~ Vsd = 50 mV Vsd = 50 mV
10° Vsd = 200 mV 1 . — Vsd =200 mV Quantum
Vsd = 800 mV 107 r Vsd = 800 mV ] L.
ballistic current
-8 L 1 -10 1 1 .
% o5 0 05 1 1% s 0 05 1 fOI' d Ifferent
loate = 10 nm loate = 14 nm source—drain
10° . ‘ 10° ‘ ,
voltages
i 107 .
10° [in A/pm]
107
107
10°°
107° 107°
107"
107°
—— Vsd =50 mV e Vsd = 50 mV
—— Vsd =200 mV 10 —— Vsd = 200 mV
107" Vsd = 800 mV " Vsd = 800 mV
107
107" : : 107° : :
-0.5 0 0.5 1 -0.5 0 0.5 1

Ziirich

Integrated Systems Laboratory e nology nd m |
Electrical Engineering



