
Coupling the Monte-Carlo Method with

Semi-Analytical Solutions of the Boltzmann

Transport Equation

S. C. Brugger1, V. Peikert2, and A. Schenk2,3

1Numerical Solutions GmbH, Regensdorferstr. 155, CH-8049 Zürich, Switzerland
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Abstract—This paper presents an important improvement
of the current-based one-particle Monte-Carlo method. By re-
gionwise coupling a semi-analytical solution of the Boltzmann
equation to a full solution, the usage of computationally intensive
Monte Carlo Boltzmann solvers can be limited to only those
regions where they are needed. The advantages and drawbacks
of this new method are reviewed and the problems arising from
the coupling scheme are discussed.

I. INTRODUCTION

The Monte Carlo (MC) method is a well known approach

to solve the Boltzmann transport equation (BTE). It allows

to compute results with usable accuracy, without requiring

as much memory as direct methods. However, at low and

medium electric fields and in moderately to highly doped

regions the MC method is rather innefficient due to the very

short mean free paths of the simulated particles. In [1] a semi-

analytical method has been described which allows to solve

the BTE in all orders in the driving forces (DF). This semi-

analytical method can be coupled with the MC technique and

can advantageously replace the MC method in the problematic

regions.

After a concise theoretical introduction, the coupling be-

tween the semi-analytical method and the MC method is

carefully described. Then, a simple example is chosen to

illustrate the advantages and drawbacks of the new coupling

scheme. It is then shown how this hybrid method allows to

understand which DF are mainly responsible for the behavior

of the transport parameters inside a device. Problems arising

from the discretization of the first Brillouin zone and from

the stochastic nature of the MC method are then discussed. A

short summary will conclude the discussion.

II. THEORY

A. Semi-analytical solution

In the following we consider only Boltzmann statistics

because Monte Carlo is a very inefficient method when solving

for Fermi statistics. However, a semi-analytical solution can

also be derived for Fermi statistics.

Multiplying the space-inhomogeneous BTE with the inverse

scattering operator (ISO) [2], using the important property

(B.18, p. 250 in [3]) and rearranging the terms leads to

h = −β∇rψ·S
−1

~v −β∇rψ·S
−1

~vh +
q

~
∇rφ·S

−1

∇kh+S−1

~v·∇rh, (1)

where the distribution function f has been rewritten as f =
feq(1 + h), β := q

kBT
, ψ is the quasi-Fermi potential, and

φ is the electrostatic potential. The quasi-Fermi potential is

defined as ψ := −β−1 ln(n/ni) + φ − ∆ǫg, where ni is the

material intrinsic density and ∆ǫg is the bandgap narrowing

of the considered band due to the doping. Eq. (1) is a fixed

point equation for h: h = F (h), where F (h) is the rhs of (1).

Because h is a fixed point, FN(h) = h for all positive integers

N . FN (h) contains (3N+1
− 1)/2 terms of which 3N still

depend on h. These h-dependent terms are all proportional to

W−N−1
tot , where Wtot is the total scattering rate. For not too

large DF, the h-independent part of F 2(h) is already a very

good approximation of h:
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Eq. (2) shows that the preponderate DF are the gradient of the

quasi-Fermi potential, the electric field, and surprisingly the

second derivative of the quasi-Fermi potential. In Section III

it is shown that in small NIN structures the second derivative

of the quasi-Fermi potential dominates, with the unfortunate

consequence, that in such structures no natural TCAD mobility

(in the sense of [1]) can be defined anymore.

As long as Eq. (2) is valid it can advantageously be used

instead of the MC method to locally solve the BTE.

B. Coupling

Eq. (2) contains two unknowns: the electrostatic potential φ
and the quasi-Fermi potential ψ. These two potentials can be
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determined by self-consistently solving the Poisson equation

(PE) and the current-continuity equation (CCE). Therefore,

the coupling with the full Boltzmann solver (Monte Carlo

or direct solver) needs three steps. First, starting from a

provisory solution of the PE and the CCE (e.g. drift-diffusion

or energy-balance), the regions Ωsa, where Eq. (2) is valid, are

determined. In the remaining regions ΩMC the BTE is solved

with the boundary conditions given by Eq. (2). Then, transport

parameters (TP) (mobilities and diffusivities) are extracted in

both regions Ωsa and ΩMC using the method described in [4].

Finally, the generalized drift-diffusion (GDD) equation [5] is

solved everywhere using these new TP. The solution variables

of the GDD equation are the electrostatic potential and the

quasi-Fermi potential. These potentials are used again in the

first step described above to determined the two regions Ωsa

and ΩMC . The three steps are iterated until convergence is

achieved.

To determine where Eq. (2) is valid, a conservative criterion

has been used: TP are not allow to change by more than

25% of their equilibrium value. Using the notation of [1], this

criterion can be mathematically written as
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for the diffusivity and
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for the mobility. These criteria ensure the convergence of

FN (h) for N → ∞.

III. RESULTS

A. NIN structure

Eq. (2) has been used together with the current based one-

particle MC (CBOPMC) method [5] to compute transport

parameters for the generalized Drift-Diffusion equation (GDD)

[5]. Figs. 1, 2, and 3 show the bulk mobility compared

to the mobility computed using Eq. (2). Fig. 7 illustrates

the simple NIN structure simulated in this paper. Fig. 8

shows the regions of the NIN structure where the semi-

analytical solution (Eq. (2)) is valid (Ωsa) and those regions

(ΩMC ) where the MC method must be used (0.01V bias). The

criterion for the use of the semi-analytical solution has been

described above. At the boundary between semi-analytical

region and MC region the particles are consistently injected

using Eq. (2). Fig. 5 shows the mobility in transport direction

computed by the MC method. The shape of the mobility is

dominated by the last term of Eq. (2), e.g. the electric field

times the gradient of the quasi-Fermi potential as can be

seen in Fig. 4 (M1, M2, M3, and M4 are defined in [1]).

Fig. 6 shows the diffusivity in transport direction computed

by the MC method. Here, the shape of the diffusivity is

astonishingly dominated by the second derivative of the quasi-

Fermi potential (s. Fig. 4), which has, to our best knowledge,

never been mentioned as a variable to parameterize models for

the mobility and/or the diffusivity.

The main advantage of this new coupling scheme is clear.

Only the NI junctions must be simulated using MC, whereas

a semi-analytical solution exists in the highly doped regions

and in the center of the device. The simulation time saved

here is of about a factor of ten. The drawback is that the ISO

contained in Eq. (2) must be recomputed after each iteration.

The cost for these computations is, however, of only 1% of

the total computation time.

B. Discretization-related problems

In this work, the discretization of the band structure for

the semi-analytical solution was the same as the one used in

the MC simulator. The first Brillouin zone (BZ) is discretized

in small cubes with edges of the size 1/96 of the BZ. The

velocity and the mass (first and second derivative of the

band structure) are assumed constant in each box, whereas

the energy is linearly interpolated. This kind of discretization

is usual in MC simulators, but has a main drawback when

directly computing transport parameters. At thermodynamic

equilibrium (TDE) the Einstein relation is not exactly ful-

filled. There is usually a discrepancy of about 3% to 5%.

Furthermore, an exact relation between M1 and M4 is also

not perfectly fulfilled. The consequences of these numerical

errors will become clear below.

C. Surface scattering problem

Surface scattering was taken into account using the model

proposed in [6], i.e. allowing reflexive and specular scattering

at the interfaces. These special kinds of scattering are respon-

sible for the violation of the Einstein relation at TDE, and

should be avoided when using the new coupling scheme (e.g.

by using a scheme based on elastic scatterings proportional to

the component of the electric field normal to the interface).

D. Space-charge regions and violated Einstein relation

In the two previous subsections, different causes of the

violation of the Einstein relation were discussed. These vi-

olations have a visible impact on the course of the quasi-

Fermi potential, but astonishingly not on the terminal current.

This problem is not directly related to the hybrid method, but

it was discovered during its validation. In the space-charge

regions (i.e. the NI regions), the electric field can be very

high even at TDE. From the CCE, the quasi-Fermi potential

7-6-2



Fig. 1. Bulk transport parameters: comparison between MC and Eq. (2)
(without doping).

can be rewritten as

ψ(x) =

∫ x

0

(1 − β
Dxx(x′)

µxx(x′)
)Ex(x′) + vx(x′)dx′ + C. (5)

At TDE, the second term inside the integral vanishes (i.e.

the velocity is zero everywhere). If the Einstein relation is

fulfilled, the term in parenthesis also vanishes leading to

a constant quasi-Fermi potential. If the Einstein relation is

violated, the effect will be the bigger the larger the intensity

of the electric field is. Therefore, in the space-charge region,

even a small violation of the Einstein relation will have a

visible repercussion on the quasi-Fermi potential. This issue

can only be solved using a better discretization of the BZ and

a longer MC simulation time.

E. Decreased efficiency of statistical enhancement

When simulating NIN structures as shown in Fig. 7 using

no hybrid method but only MC, one usually uses some kind

of statistical enhancement to have the same statistics in the

intrinsic region as in the highly doped regions. With the hybrid

method, statistical enhancement can only be used in the MC

region (ΩMC ), i.e. in the region where the electric field is quite

high and where only few scattering events occur. Because of

these few scatterings, the effect of statistical enhancement is

highly reduced, because the path of the generated statistical

particles is increasingly correlated. Thus, one should very

carefully assess the effect of statistical enhancement when

using it together with the hybrid method. It could generate

a non-negligible computational overhead.

IV. CONCLUSION

A semi-analytical method has been developed to solve the

BTE in regions where the MC method is particularly ineffi-

cient. This method can be easily coupled with the MC tech-

nique (or a direct BTE solver) using the CBOPMC method. It

allows to understand under which well-defined conditions the

popular transport models (Drift-Diffusion and Hydrodynamic)

are still valid, and allows to select the proper DF to parametrise

models for the mobility and the diffusivity. Still open problems

Fig. 2. Bulk transport parameters: comparison between MC and Eq. (2)
using a doping concentration of 10

18cm−3.

Fig. 3. Bulk transport parameters: comparison between MC and Eq. (2)
using a doping concentration of 10

20cm−3.
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Fig. 4. Contribution of the three DF of Eq. (2) to the mobility and the
diffusivity in the NIN structure as function of position x.
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Fig. 5. Mobility extracted from a MC simulation in the NIN structure as
function of position x.
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Fig. 6. Diffusivity extracted from a MC simulation in the NIN structure
as function of position x.

Fig. 7. Geometry and Doping profile of the simulated NIN structure.

Fig. 8. Semi-analytical regions (red) and MC regions (blue) automatically
detected using the criterion eqs. (3)–(4).

are mainly related to the poor discretization of the band

structure. A better discretization should be found.
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