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Abstract--A ID analytical model of the metal-semiconductor contact is developed in the framework of 
emission theory which exploits an improved description of the transmission probability. The usual WKB 
approximation is substituted by an interpolation scheme where the eigensolutions of a given potential 
barrier are expressed by Airy functions and then mapped to Gaussians in order to enable analytical 
integration. The method is demonstrated for a parabolic barrier where the eigenfunctions are known and 
direct comparison between the model and an "exact" reference is possible. Contact currents are given in 
a fully analytical form and agree well with those from the reference model over the whole range of doping 
concentrations from Schottky to Ohmic. Boundary conditions for device simulation are derived by 
merging the calculated emission current to the drift-diffusion current at a certain distance from the 
metal-semiconductor interface. Experimental data of Ti on intermediately doped n-Si are used to compare 
with the model and to discuss the influence of the most important parameters. 
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to effective Richardson constants 
[AK - 2 c m  - 2] 

Airy functions and their derivatives 
numerical fit parameter 
absolute energy [eV] 
energy of the bulk conduction band 
edge [eV] 
Fermi energies of metal and semicon- 
ductor, resp. [eV] Uappl 
energy limit for Gaussian approxi- u 
mation [eV] vM,~, Vs, x 
normalization energy [eX o 
energy levels of maximum current x B 
flow [eXq xr 
generalized error function Y(S) 
error function F(x) 
complementary error function ~,(E) 
Fermi distribution functions of metal 6 
and semiconductor, resp. E 
reduced Planck's constant %, E~ 
imaginary part of Z 
imaginary unit E c 
current density [A cm -2] 
partial current densities [A cm -2] 
Boltzmann constant 
momentum in metal and semicon- 
ductor, resp. Er.M 
effective electron masses in metal and 
semiconductor, resp. r/ 
electron rest mass r/¢ 
electron density [cm -3] O,  Oma x 
effective density of states in conduc- 
tion band [cm -3] O(x) 
donor concentration [cm -3] ,9(E), ,91 (E) 
elementary charge K M, K s 
real part of Z 
action integral 2 

u , v , u ' , v '  

Uo, Vo, u;, v; 

~nmx 
E + ~ E I ,  E2, EId,E2 d 

1633 

absolute temperature [K] 
transmission probability 
coordinate of the first maximum of 
the Airy function 
parabolic cylinder functions and 
their derivatives 
values of U, V, U', V' at the end of 
the space charge region 
values of U, V, U', V' at the 
metal-semiconductor interface 
external voltage [V] 
normalized external voltage q U,p¢ /k T 
x-component of the electron velocity 
in metal and semiconductor, resp. 
barrier width [cm] 
extension of the physical contact [cm] 
function of the action (3S/2) 2/3 
Gamma function 
equals y,-m 
real number 
normalized energy E ( = E/E~) 
vacuum and semiconductor permit- 
tivity, resp. 
normalized conduction band edge in 
the bulk (=Ec/Ex) 
normalized energy Em~ ( = E ~ / E ~ )  
normalized energies E +, Ei-, E~-, E~, 
E~ 
normalized Fermi energy of metal, 
(--- EF.M/E~) 
energy normalized by k T  (=E/kT)  
E~ normalized by k T  (=Ec/kT) 
angle between x-axis and momentum 
vector in the metal and its limit 
step function 
arguments of the error functions 
normalized x-components of the 
momenta 
normalization length [cm] 
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At) Debye length [era] 
/~n electron mobility [cm2/V s] 
V, Vma x equals sin(O), sin(O~x ) 
~B normalized barrier width x e ( = xB/2) 
q~ barrier height [eV] 
q~N energetic distance between Ec and 

E~,s leVI 
~T energy level of negligible spectral cur- 

rent density [eV] 
tp B barrier height normalized by kT  

( = ~B/k T) 
tpn electron quasi Fermi potential IV] 

electrostatic potential [V] 
g,(x) wave function 

I. INTRODUCTION 

The metal-semiconductor interface is one of the most 
challenging problems in the field of solid-state theory 
and device physics. This is because of a variety of 
physical effects, e.g. the influence of interface states 
on barrier height[I,2], the effect of interfacial layers 
(dipole, oxide or contamination)[3-6], inelastic scat- 
tering events[7,8], recombination, trapping[9,10] and 
trap-assisted tunneling[l 1], vertical and lateral poten- 
tial fluctuations[12], barrier height fluctuations[13], 
interface roughness[14], band-state mixing (making 
the tunneling mass an uncertain quantity)[15], hot 
carrier effects, realistic image forces, and some others 
which make the theoretical modeling a complicated 
task. Simplified contact models, e.g. suitable for 
device simulation, have to neglect most of all these 
effects. 

A step towards a more physical model instead of 
the commonly used boundary conditions for ideal 
Ohmic contacts (neutrality, equilibrium) and ideal 
rectifying (Schottky) contacts (thermionic emission 
neglecting tunneling) was made recently by 
Schroeder[16]. He developed the well established 
formula of thermionic field emission (TFE) to an 
analytical expression, using a simple WKB trans- 
mission probability of the parabolic potential barrier 
and separating the contact region (emission) from the 
remaining device, where the current is governed by 
drift-diffusion (Crowell and Sze[7], Chang and 
Sze[12]). Supplemented by a proper boundary con- 
dition for the Poisson equation such a model is able 
to describe the transition from Schottky to Ohmic 
contacts as the doping level increases. A shortage of 
that treatment is the use of the WKB approximation 
which breaks down if the de Broglie wavelength 
becomes comparable to the barrier width (Ohmic 
contact or strong reverse bias) and/or if the current 
flows predominantly in the vicinity of the maximum 
of the barrier (Schottky contact). 

It is the aim of the paper to show that the WKB 
approximation can be substituted by a better ap- 
proach, which preserves the accuracy of an "exact" 
reference model over the entire doping range. The 
"exact" reference model is chosen as follows: 
parabolic potential barrier (constant doping level in 
the barrier region, Schottky approximation, no image 

effect, no interfacial layer, etc.), independence of the 
transmission probability on transverse momentum, 
and constant effective mass for all energies above and 
below the band edge of majority carriers. For such a 
model the exact transmission coefficient is well 
known, and derived results may be compared with 
those of our analytical approach. 

In the next section we recapitulate the I D theory 
of the metal-semiconductor contact and define the 
basic quantities. Section 3 outlines the interpolation 
method for the transmittance which removes the 
drawbacks of the WKB approximation. Additionally, 
the transmittance will be written in a form suitable 
for analytical integration. The analytical model of the 
contact current is derived in Section 4 and jV-charac- 
teristics are compared with those from the "exact" 
reference model there. In Section 5 Dirichlet bound- 
ary conditions for device simulation are calculated. A 
certain fraction of the barrier is defined as that region 
where no Fermi level exists and which is shrinked to 
the contact boundary in numerical simulation. 
Matching the emission current to the drift-diffusion 
current at the end of this region yields an explicit 
expression for the boundary value of the quasi Fermi 
potential. The theoretical results are compared with 
data obtained from a Kelvin structure of titanium on 
intermediately doped n-silicon in Section 6. We 
discuss the effect of the most important physical 
parameters there. Conclusions are given in the last 
section. 

2. EMISSION CURRENT T H R O U G H  A PARABOLIC 
BARRIER 

In the following we will discuss an n-type semicon- 
ductor with a parabolic conduction band. Figure 1 
defines some basic quantities: barrier height ~PB, 
barrier width xa = Xb(Uappl),  the two Fermi levels, 
and the energetic distance 4~N between bulk quasi 
Fermi level EF, s and conduction band edge Ec in the 
bulk of the semiconductor. The energy zero is chosen 
such that Ec=EF,r ~ + ~N +qUap¢ with the Fermi 
level EF, M in the metal. For the moment we assume 
emission to occur in the whole barrier, i.e. between 
x = 0  and x = x a .  In Section 5 we will restrict 
emission to a reasonable fraction of the barrier width. 
Uappl equals the "applied voltage" only for vanishing 
bulk resistance. This causes severe problems if one 

F.M XB 
qU , 

~ "  Ev 
Fig. 1. Schematic band diagram of the metal-semicon- 

ductor interface. 
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wants to simulate more extended devices than a 
Schottky diode with the physical contact model. 

Neglecting collisions inside the barrier region, 
transverse momentum and energy are conserved, 
and the emission current through the metal-  
semiconductor interface can be calculated from (Con- 
Icy et al.[17]): 

J=--~3fd~kMv~.x:(ku.x,ks:) 

x [fM (kM) --fs(ks)], (1) 

(x-direction perpendicular to the interface). In 
eqn (1) the subscripts M and S refer to metal and 
semiconductor, respectively. 3" denotes the trans- 
mission probability and f the  equilibrium distribution 
function. The transmission probability is obtained 
from the solutions of a 1D Sehrtdinger equation in 
the barrier region and on both sides of the interface. 
Therefore, both longitudinal momenta enter the 
expression of ~-(kMa, ks.x). However, the ksa- 
dependence can be expressed with the help of the 
conservation laws: 

(m,) k2 _ m c  2 2me - k 2 , ±  1 - ~  (2) 
S,,, -- -~M k M,: -- - ~ -  Ee 

This relation clearly shows that due to the different 
effective masses on both sides of the barrier, ~- 
explicitly depends on the transverse momentum, i.e. 
~" is a function of the two variables kM, ~ and kM.±. In 
the following we will use the more convenient choice 
E (total energy) and O (angle between current axis 
and vector kM). 

For the evaluation of 3-(kM:, kM.±) we need the 
wave functions inside the barrier region, at least their 
WKB forms. Therefore, the potential shape must be 
given explicitly. Closed-form solutions of the 
Schrtdinger equation exist in the case of a parabolic 
potential (uniform impurity density, Schottky ap- 
proximation). We restrict ourselves to that case since 
it defines an "exact" reference for the accuracy of the 
analytical model. The method itself actually only 
demands the wave functions to be known far from the 
classical turning points as will be shown below, and 
hence is not restricted to a parabolic shape. 

With above assumptions the electrostatic energy in 
the barrier region is given by (see Fig. 1): 

E k T  Ee(x) = e + ~ (x - XB) 2, (3) 

where 2o denotes the Debye length 2 D= 

~/~o~kT/q2ND. If eqn (3) is inserted into the 
Schr6dinger equation for the envelope wave function, 
one obtains: 

[ & .  o 
with the eigenvalue: 

mM 
X~s = ~ - ~e  - - -  ~ s in~ O. ( 5 )  

mc 

In eqn (4) normalized quantities were introduced 
and labeled/_._b small greek letters: ~ = (x B - x ) / 2 ,  
Xs =ks~,2x/mar/mc, x M =/¢M,x,i l -md/mM, ~ = E/E~, 
and ~c = EJE~. The angle O is measured between k M 
and the current (x-) axis. Normalization length and 
energy are defined by: 

( h22~ ,~,/4 h2 
)" = ~4m-markT,] ' Ea = 2mar 22" (6) 

E~ corresponds to 2E0o in Refs [18-20] and to 2W0o in 
Ref. [16]. The effective mass mar has to be distin- 
guished from me, since tunneling electrons can have 
energies reaching from Ee to EF,M + 48. Therefore, a 
model of the tunneling mass mar@) would be necess- 
ary that describes mixing of  valence band states (and 
eventually metal states). 

The differential equation (4) is solved by parabolic 
cylinder functions U and V ([21], p. 686): 

I]](~)=cIU(--K2s~)÷c2V(--I'C2,~). (7) 

The matching conditions at x = 0 and x = xa, i.e. 
continuity of ~O and ( l /m) d~O/dx, yield for the trans- 
mission probability[17] (see Appendix A): 

8 x~ 
mM U~,) : - (k~)  = - - - I ( V : ,  + ix~ Vo)(U~, + "  - '  ' 

7[ /~M 

-(U'o + i~c~Uo)(V~a ÷ ix~lV~a)[ -2, (8) 

with the abbreviations U 0 = U ( - x ~ , 0 ) ,  U~B= 

U( -K~,  CB) and: 

E cos O. (9) 
~/mar Xt mM 

After some algebra the contact current density can be 
written as: 

j = -- 2A M T 2 dqq , 
d~, Lexp(q - -  ?~F,M) ÷ 1 

' 1 7' exp(q - qF, M -- U) + 1" V dye'(t/ ,  v), 

with: 

(10) 

2 
~r(~l, v ) =  (11) 

1 + g()l, v)  

_ . o v .  gO1, v) = ~ (V'o U~B ' 2 

+ (Uo v~ ,  - Vo U'~,y 

+ ( v ~ u ' ~ ,  " ' ' 

- u0 v~,) 2] (12) + KM K's( Vo U~a 
1 
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x ' ~  X/~m,~x[/~l(l \ m~ / (14, 

A ,  = qm , k 2 / ( 2n 2h 3) effective Richardson constant 

(15) 

(~I=E/kT ,  ~I¢=E¢/kT, ~ = E ~ / k T ,  v = s i n O ,  
u = qU~ppt/kT). The derivation of eqn (l l) with (12) 
from eqn (8) can be found in Appendix A. 

The lower limit of  the energy integral follows from 
the condition that the square root (14) must remain 
real with the lowest value of v (v = 0). It reflects the 
inability of electrons to transit from or into forbidden 
states of the semiconductor, i.e. the gap in the density 
of  states. The condition of a real ~c~ also restricts the 
angular integration to: 

m c 
Vmax(~) -~" 4~MM ~ ~c/~" (16) 

This limit, which is generally small since 
(E - E~) a EF.M, results from conservation of  trans- 
verse momentum. Whereas in the initial integral (1) 
integration is symbolically over the entire k-space, 
which can be interpreted as taking the second mo- 
ment of  the boundary condition for the Boltzmann 
equation, conservation laws impose restrictions to the 
velocity vector, when the electron changes from one 
band structure to the other. 

The magnitude of the parameter r h = E~/kT deter- 
mines the predominant current mechanism-- 
thermionic emission (TE) if r/a <~ 1 (low doping, 
Schottky contact), thermionic field emission (TFE) if 
r h ~ 1 (medium doping), and field emission (FE) if 
~h >> 1 (heavy doping, Ohmic contact). 

Often a simplified ansatz with a transmission prob- 
ability depending only on E~[22] or ks~[23 ] is used, 
and the k-space integration is performed over the 
Brillioun zone of the semiconductor instead of the 
Fermi sphere of the metal: 

~0 °~ qh dksxksxOJ_(ksx ) J = -- 4rr 3m---'~e ' ' ' 

fd2k.[fM(kM) - fs (ks) ] .  (17) X 

In this case one obtains after changing to energy 
variables: 

j =  - A c T  2 dr/x ~-(r/~) 
e 

f0 I 1 x dr/£ exp(r/x+~/- --r/F.M) "Jr" I 

' ] 
exp(r/x + t/i -- r/F,M -- U) + 1 ' 

(13) Introducing the variables E and v as before, this 
transforms to: 

J - 2 A c  T2 ~ ~I~ xp(r/--r/F.M)+ 1 

_ l ] 
exp(~ - ~F.M -- U) + 1 

f ~  madrtl 
x v dvS[~/(1 - v2)], (19) 

with v ~  (r/) -- x / l  - r/c/r/. Here the dependence of 
on r/ and v is of the special form r / ( l -  v2), which 
agrees with the general expression of the transmission 
probability equations (I 1)-(15) only if: (a) mc = mM; 
or (b) 9-(,S, v) --, ~-('7, 0). 

Case (a) follows immediately from (14) and (15). In 
case (b) the v-integration becomes trivial and yields 
identical current densities (10) and (19). The ad hoc 
ansatz 5 = ..q-(Ex) has the advantage of avoiding a 
numerical double integral, because the r/±-integration 
in (18) is straightforward, but it requires modifi- 
cations in the general expression of 5 (11). 

Since the aim of the paper is twofold: replacing the 
WKB approximation by a better approach and 
deriving an analytical expression of the contact current 
suitable for device simulation, it seems to be most 
feasible to set mM/m~ to unity in (14), or, which has the 
same effect, to set v = 0 ( r /= ~/x) in order to enable an 
approximate analytical integration. This is justified by 
the above mentioned fact that conservation of trans- 
verse momentum only permits small angles between 
momentum vector kM and x-axis. In particular, the 
approximation ~'(r/, v) ~ 3"(r/, 0) does not affect the 
results of the next section, where the WKB approxi- 
mation is replaced by an interpolation scheme. 

With this modification of  the transmission prob- 
ability (11) we can use eqn (8) as the starting point 
of the further calculation. Analytical integration in 
Section 4 demands also an approximation for the 
Fermi functions. We choose: 

1 
exp(x) + 1 -~ e-XO(x)  + O ( - x ) .  (20) 

With this simplification the ~/±-integral can be solved 
and eqn (18) turns into: 

j = --Ac T 2 d~/~-(~ + r/F,M, 0) 
tl ~c -- r/F,M 

x {O01c - ~ ,M) e -~ + O(~tF,M -- ~o)[e-~O (rt) 

+ (1 - ~ ) o ( -  ~)] - O(¢~N) e - ( " - " )  

- O ( -  ON)[e-(~-~)O(~ -- u) 

+ (1 - ,1 + u ) O ( u  - ,1)]}, (21) 

where 3" is given by eqns (11)-(15). We have changed 
the meaning of the integration variable ~ for conven- 
ience: ~ = r/x-r/v.M , i.e. the energy zero for the 
variable r /now is $iven by the metal Fermi level. 

(18) Equation (21) will be considered as "exact" reference 
model in this paper. The term "exact" only applies 
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Fig. 2. Comparison of the transmission probabilities using 
parabolic cylinder functions (solid curve) and WKB wave 
functions (dashed curve). Parameters: Er.u= l l.7eV, 
mu=m 0, m~=0.258m 0 ((lll)-silicon), OB=0.7eV, 

ND= 1019cm -3, Uappl=OV. 

to the usage of the transmission probability in terms 
of the eigenfunctions of the potential barrier. 

The well-known TE current formula follows im- 
mediately, if 3- is replaced by the step function 
0 (q -- ~B/kT): 

JTE = --AcT2exp(--~)[l--exp(u)]. (22) 

3. I N T E R P O L A T I O N  S C H E M E  F O R  T H E  
T R A N S M I S S I O N  P R O B A B I L I T Y  

In this section we derive a simplified expression of 
the transmission probability ,~-(~, 0) suitable for ana- 
lytical integration. It is the aim to substitute the WKB 
approximation by a better approach which essentially 
preserves the accuracy of eqn (11) (restriction to the 
case v = 0 is only for convenience in this section). The 
proposed interpolation scheme uses the asymptotic 
forms of the parabolic cylinder functions which read, 
e.g. in the case of U,B ([21], p. 690): 

uappr  __ 

¢, (2n)t/41~ ~ - 4K21t/4 

f½ e -s below top 

sin ~ + ISI above top '  (23) 

where S denotes the action integral: 

= 1 ~'¢B d~ x//~2 S J2~s - 4K2 (24) 

The corresponding expressions for wppr rr,~pp, and r ~ a  ' ~ B  ' 

V~ ppr are listed in Appendix ft. These asymptotic 
forms agree with the WKB wave functions up to a 
prefactor. They approach U¢B, V¢B, etc. for energies 
much smaller or much larger than the barrier height, 
respectively, but they diverge at the top of the barrier. 
Figure 2 compares .~appr(~, 0) (with ?/'.ppr Lral~r etc.) ~ e  ' r ~ a  ' 

against ~r(r/, 0) (using the exact solutions). Due to the 
breakdown of the WKB approximation the trans- 
mission probability drops off to zero at the top of the 
barrier (Ks = ~B/2). 

The correct shape of a-(q, 0) can be reproduced, if 
a function is used which yields the same asymptotic 
limits, hut interpolates over the divergency. Such a 
function is represented in the case of U,, by: 

• ( 2 7 ~ ) 1 / 4 ~  
U S =  I--TT--- ----~ @ S I)'/6Ai([3S]2/3). (25) 

~n_  2 
4 KS 

If S is imaginary (above top), the real root of ( - l )  1/3 

has to be used, i.e. - 1 .  For a triangular barrier a 
similar function can be obtained in a straightforward 
way, if a transformation of the Schr6dinger equation 
from ¢ to the new variable S(~) is performed (as first 
done by Fowler and Nordheim[24]; see also the book 
of Mo11125]). It is easy to prove that U~ has exactly the 
limits of eqn (23) and that it turns into the finite value: 

lim U S = (2n) TM F + Ai(0), (26) 
gS~B/2 

where '~¢BrrapPr diverges. The maximum deviation of U S 
from U~B at the top of the barrier is of the order of 
0.2% only. The same holds for the other functions in 
3-(r/, 0), which are substituted according to V --* Bi, 
U' - ,  Ai', and V' -~ Bi'. Full expressions are given in 
Appendix B. After these substitutions, the function 
g(q, 0) in the denominator of the transmittance can 
be written as: 

g( r /+  r/F,M , 0) = 27tX//(r/ + r/F'M)I YI /m¢ 
kOB --,11 X/m,,,, 

x {Re2[e~"/3)Ai(Ye-~2'~/3))] 

+ mar im2[e,~/3)Ai(Y e-i(2n/3))]~ 
m c  J 

+ 2 n ~ (  I~OB--ql m ~  
~/+ ~/F,M)I YI 

x ~m~ Re2[e_~=13~Ai,(y e_~a,m)] 
{meff 

+ Im2[e-a=mAi'(Y e-/t2t/3))]~ (27) 
) 

with 
Y = (3S)2/3. (28) 

In deriving eqn (27) the ratio F(  i + Ki/2)/F(¼ + Xl/2 ) 
was approximated with the help of Stirling's formula 
by IKsl without any visible influence on the trans- 
mission probability. The origin of t/ is again 
~/F.M- Furthermore, with eqns (3), (5) and (6) we 
substituted: 

~2 K2 = ~s - 01 --qF.M), (29) 
4 t/a 

with ¢PB -- OBIkT. 
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Equation (27) also shows that the assumption of a 
tunneling mass m~r different from the bulk effective 
mass mc introduces an essential complication. In 
order to keep the expressions short, we now restrict 
ourselves to the simplest model for re,e: 

m=er(E) - me. (30) 

Equation (27) then can be written in the compact 
form: 

+ r/FM, 0) = 2n/(~I + r/F'M)I YI g(r/ 
' V 1~o . - , 71  

m ~  
x IAi(Y e-~(2~/3))12 

+ 2n /(~/Iq)" -- r/I m/~M 
+ r/F,M)I YI ~/ mc 

x IAi'( Y e-~2~/3))[ 2. (31) 

We note that Yis positive below the top of the barrier 
(S real) and negative above (S imaginary). 

To derive an analytical formula of the contact 
current, the mathematical form of the transmittance 
has to be further simplified. Therefore, it is desirable 
to substitute the Airy functions. The first maximum 
of the Airy function Ai(t) with a real argument t is 
located at to = -1.0187929(7) which corresponds to 
a certain energy level above the maximum of the 
barrier. From the bottom of the barrier up to that 
point it is possible to replace the Airy function by a 
Gaussian. Figure 3(a) shows how this is done: the 
center of the Gaussian is placed at to and two points 
are used to fix the shape of the Gaussian. The first 
point is t = 0 which corresponds to the top of the 
barrier and ensures a good agreement in the TE 
regime, the second point is fixed by fitting the attenu- 
ation constant such that best agreement is achieved in 
the TFE and FE regimes. Therefore, we replace [see 
Fig. 3(a)]: 

Ai(t) -* Ai(0) e -b'(' - 2,0). (32) 

For  the transmittance we need the absolute value of 
Ai with the complex argument Y exp(i(2n/3)), i.e. 

IAi( Y e-i(2~/3) I = lx/Ai2 (Y) + Bi2(Y). (33) 

Applying (32) to that case yields: 

IAi(Y e-/(2~/3)) l -=) Ai(0) e I/2bYtY - 2,0), (34) 

i,e, (34) includes a corresponding approximation to 
Bi as well. Figure 3(b) shows the accuracy of (34). The 
fit of the attenuation parameter b was found to be 
unique for all doping concentrations. Best agreement 
with the exact transmission probability was obtained 
for b = 0.38, The effect of a variation of b will be 
discussed in Section 4, 

The Gaussian approximation results in a further 
simplification of the function g in the denominator of 
the transmittance: 

g ( r / +  ~/F.M, 0) = 2nAi2(0) e brcY- 2'°) 

x F ~ / (rl +rIF'M)lYI 
L~/mu 'V lips -- ~/I 

4- ~ : ItPs-r/I 
X/mo X/('/+ '/~,M)IYI 

x 4b2(y2 + Yto + t2)]. (35) 

This approximation may be used up to an energy 1/m~x 
given by the condition Y(~/m~) = to' The energy t/m~ x 
can be determined analyticaly if Y(r/) is developed up 
to first order in )7 around the top of the barrier, 
resulting in: 

~/m~x = ~ a  + ~hlt01. (36) 

Note again, that t/ is measured from r/F, M. The 
derivation of (36) is given in Appendix C. For  
energies larger than t/ma x the WKB form of g is 
sufficient: 

gwKs(~/ +~/F'M'0) = 2 ~ J m u ~ /  ~/ --q)a 

+ ~ , . > ~m~. (37) 
N ~ J i -  I~F,M 

Appendix D contains the derivation of the last 
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Fig. 3. (a) Approximation of the Airy function Ai(t) (solid 
curve) by a Gaussian (dashed curve), to denotes the position 
of the first maximum of the Airy function. The point t ffi 0 
corresponds to the barrier maximum, where both curves 
coincide. The fit is tuned by the attenuation parameter b. 
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Fig. 4. Comparison of the transmission probabilities using 
parabolic cylinder functions (solid curve) and the Gaussian 
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energy Em~ x. For higher energies the WKB form is used. 

Parameters: b = 0.38, for other parameters see Fig. 2. 

equation. In Fig. 4 we show j-G .... [eqns (35) and 
(37)] in comparison with ~--(~/, 0) (using the exact 
solutions). Now, the dip at q~B is removed and only 
a small error occurs well above the top of the barrier. 
This error has practically no effect on the current in 
the T F E  and FE regimes and only iitte effect in the 
TE regime. A further advantage of 3 -~ .... is that in 
this form an approximate analytical integration be- 
comes possible. 

4. ANALYTICAL MODEL OF THE CONTACT CURRENT 

To enable analytical integration with the 
distribution function model (20) the transmission 
probability 3-07 + r/F,M , 0) has to be transformed into 
a Gaussian with respect to the energy r/. Therefore, 
Y(r/) must be linearized in r/ at the energy level of 
maximum current density. The major failure in the 
analytical model of the contact current results from 
the inability for finding a satisfactory analytical ex- 
pression of that energy level. Furthermore, such an 
expression depends on the particular case, i.e. on the 
sign of the applied voltage and if the semiconductor 
is degenerate or not  (see Ref. [18]). The various parts 
of the integrand in the current integral yield different 
approximations for the level of maximum of these 
parts [compare eqn (21)]. In any case, they have to be 
borrowed from the WKB approach. Thus, instead of 
3 - ( r /+  r/F,M , 0) we must use exp[-2S(~/)] to find a 
solution of: 

d 2s 
e -  3¢(r/) = 0, (38) 

where f(~/) is one of the various terms in the braces 
of eqn (21). Inserting the action S of the parabolic 
barrier, this gives the implicit relation: 

(39) 

From the last equation one can derive the following 
energy levels that approximately describe the pos- 
itions of the current density maxima of the different 
terms in eqn (21): 

~PB - (r/c - ~/F,M) 

term ~ O (~c - ~F.M) and term ~ O (~N) 

)7 ? = max(0, ~ ÷) term ~ O (~F,M -- ~c)O (7) 

term ~ @(r/F, M -- ~/c)(9(-- r/) 

~/d = max(u, r/+) term ~ @(-- 4)N)@(r / --/Z) 

r/~ = U + r/~- term ~ ( 9 ( -  ¢)N)@(U -- r/). (40) 

After linearizing Y(~/) at these levels: 

r(r/)  = V(rT) + y(rT-----~, (41) 

with 

~(~) = y,-l(~)= - V ~ - ~  

x In-1 (Y/q)B + r/F'-----M--~/2--+----X/~B- )~), (42) 

where r7 denotes one of the energy levels (40) (with 
the origin r/F,M ), the transmittance can be written 
in Gaussian form for all energies in the range 

[~]c -- ~F,M, t]max]: 

2 e btr(~)- '°]2 

~'(l'~ -l- ~F,M, O) ~ I + g(r~ + ~]F,M, O) 

x e x p  - b  + Y ( ~ ) - t o  , t/~<~m,x. 

(43) 

TO allow analytical integration for energies larger 
than t / ~  too, the transmittance is approximated 
there by (see eqn (37) and Appendix D): 

m / - - ~  ~/r/ -- ¢PB 4 

~d-(r/ + r/~,M, 0) ~/ ""cffF, M 

1 ~ ' - - - - - - - \ ~  ' "~- / ~ %/~]max -- ~ B )  

> ~max" (44) 

With eqns (43) and (44) the contact current can be 
calculated without any further approximations. The 
final result reads (omitting details of the lengthy but 
straightforward calculation): 

j =j+ +j? +j~ +j~+jd +J3, (45) 

with 

j+  = --jo(r/+)[e (r/~ -- r/F,M ) 
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- O ( ( P S )  e"]e -"+ +'~("+'"+) 

x Eft[9(}7¢ - }TF,~, }7 +), 9(}7 . . . .  }7 +)] 

Ji- = -J0 (}7,)O (}TF.M -- }7¢) e -"r + ~ , r . , r )  

x Eft[9 (0, }7 i- ), 9(}7 . . . .  }7 1 )1 

d d d 
j~ = +jo(}7~)O(--rPN) e-"' + " + ~ " " " ' )  

x Erf[9(u, }7~), 9(}7~,  )/4)] 

j ~  = --jo(}7~)O (}TF, M - -  }7~) e ~'~("~' "f)  

x 1 + ~ 9~(0, }7i-) 

x Eft[91(}7~ - }TF,M, }7~-), 91(0, }Tf)] 

17(}7 f)l}Ta (e_ ~ho..~) _ e~,~<.~_.~.~..~))~c 
) 

• 2 d d 

j~ = +]o(}7~)0(-¢,N) e~,(~2,,2) 

u 

x Eft[9,(}7¢- }TF.M,}Td), 91(U, }7~)] 

+ 1~(}7'd)1}7~ (e-~,(...~) _ e~,% -.~.M..~'))} 

2Aor2  
j3 = M (1 - e " )  

x Ie-~B erfc( ~xf-ff~--S_ ~OB) 

, ] 
w h e r e  

A(}7 )  = , y ~ [ 1  + g(}7 + }7~.M, O)l" 

The energies }7 +, }7 i-, }74, }7~- and }7~ are the quantities 
d e f i n e d  in (40), the function g(}7 + }TF.M, 0) is given by 
eqn (35) and ~,(}7) by eqn (42). Eft(x, y )  denotes the 
generalized error  function Eft(x, y)  = eft(y) - eft(x),  
and erfe(x) the complementary error  function 
erfc(x) = Eft(x, oo) ([21], p. 297). The action S reads 
explicitly: 

s(}7)  = ~Ao~ + }7~.~ - } 7 o , / ~  - }7 - (}7 + }7~.. - }7°) 

xln( -%/~°B+-}7F'~-=}7¢+ ~--~-~ (53) 
\ %~}7 + }TF.M - -  }7c / "  

Two new functions were introduced for convenience: 

9(}7,. }72) v/b 
(46) lY(}72)l}Ta 

. ~:(}72)}7~? 
x }7, -- }72 + }7~/(}72)[Y(}72) -- to] + - - - - - ~ - - - ( ( 5 4 )  

ly(n2)l}Ta 
(47) 91 (}71,)h) = 9(}71, }72) 2x/~ (55) 

To complete the list of quantities we repeat that: 

(48) }7c = }TF, M + rPN/kT + u 

}Tmax = ~L)B - -  /0[~] 2(~OB + }TF,M - -  }7c)] 1/3 

to = Ai'-1(0) = -- 1.0187929(7) 

Ai(0) = 0.3550280(5) 

A c =  120.155(m~-~)AK-2 cm -2 

Richardson constant 
(49) 

b = 0.38. 

We should note that the analytical model (45) 
describes the contact  current through a parabolic  
barrier  for the whole range of doping concentrations 
(from Schottky to Ohmic) and for the whole range of  
external voltages (from strong reverse to strong for- 
ward bias)• Therefore, the appearance of different 
terms is natural.  All terms have a similar structure 

(50) and each term contains an error  function as the most 
complicated ingredient. For  the case of a Schottky 
contact (low doping, TE regime) only the terms j3 and 
J+ +J i -  are essential, in the T F E  regime the import-  
ant terms are j+  and Ji-, whereas for an Ohmic 
contact  (FE regime) only J2 (reverse bias) and j ~ + j  
(forward bias) contribute considerably to the total 
current density. 

In Fig. 5 the analytical model (45) is compared with 
the "exact"  reference model (21), where the transmit- 
tance is expressed by parabolic  cylinder functions and 

(51) the energy integral is performed numerically. We used 
typical parameters  for an Al-contact  on n-type silicon 
varying the donor  concentration from 10 ~4cm -3 to 
102°cm-3. (PN was calculated with Fermi statistics. 

(52) The agreement is excellent over the whole range, i.e. 
over 14 orders of magnitude in the current density. 
One observes the typical change from a rectifying 
behaviour to an almost linear behaviour as the 
doping level is increased. 

Both current densities are compared in more detail 
in Fig. 6, where their ratio is plotted over the whole 
doping range for - 2  and +0.2  V bias, respectively. 
The maximum relative error  is about  40% and 
sharply peaked at  a part icular doping concentration. 
Here the energy level of maximum current density 
crosses the metal Fermi level, and the statistics 
changes from Boltzmann to total degeneracy accord- 
ing to the simplified model (20). Note  that  the 
disagreement is mainly caused by the analytical 
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integration and not by the approximation for the 
transmittance. Leaving one numerical integration 
would not only allow for Fermi statistics, but also 
practically reproduce the curves of the "exact" refer- 
ence model. 

As already mentioned, the agreement was 
achieved with an unique numerical fit parameter 
b = 0.38 in the approximate mapping of the Airy 
function to a Gaussian. The sensitivity of the ana- 
lytical iV-characteristics to that parameter is demon- 
strated in Fig. 7 where we chose the intermediate 
case N D = 10 Is cm -3. Increasing the parameter b de- 
creases the reverse current, but not very pro- 
nounced. The sensitivity of the results to b depends 
on the doping concentration--in the TE regime the 

metal-semiconductor contact 1641 

influence is negligible, whereas it is largest in the FE 
r e g i m e .  

In order to prove if the interpolation method may be 
extended to other barrier shapes, we acted as if we did 
not know the exact eigenfunctions of the parabolic 
potential but only the WKB solutions. Proceeding 
with them in the same manner as described above in 
detail leads to the same final expressions. This is 
because of the close relationship between asymptotic 
forms and WKB wave functions and due to the fact 
that the unknown normalization constants of the latter 
cancel out in the expression of the transmittance. 
Therefore, the interpolation scheme is not restricted to 
the parabolic barrier, although its accuracy can not be 
proved directly for more complicated problems. 

,f-- 
E 

p .  

® a 

- z  

O 

2e-06 
No=1014cm4 

lo-06 i 

0 

-le-06 

-2e-06 . . . . . . . . . . . . . . . . . . .  
- 2 . 0 - 1 . 6 - 1 . 2 - 0 . 8 - 0 . 4  0.0 

4o--06 

No=lOtacm "= 
2e-06 F 

0 

-2e-o6 

-4o-06 
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 

,f-- 
E 
O 

U )  
¢ . .  

' - !  

O 

2e-05 
No=lO~Tcm4 

I e-05 

0 

-le-05 

-2e-05 . . . . . . . . . . . . . . . .  
-2.0 -1.6 -1.2 -0.8 -0.4 0.0 

0.03 

0.02 

0.01 

0 

-0.01 

-0.02 

-0.03 

No=lO cm )~. 

. , . . . , . . . = . . . , . . . . .  

- 2 . 0 - 1 . 6 - 1 . 2 - 0 . 8 - 0 . 4  0.0 

3e+04 

E 2e+04 

I e+04 

i Oe+O0 

- 1 e+04 

-2e+04 
0 

I o+O7 

No=lO~*cm "= 
o 

J - 1 e+07 

f -2e+07 

No:I O=°cm -= 
J 

4 " " " ' " " " " " " " " ' '  " "  " 7  , , / , 

- 0 8  - 0 4  o o 04  -  °=20-16-12 - 0 8  - 0 4  o o 
Voltage (v) Voltage (V) 

Fig. 5. Calculated jV-cbaracteristics o£ an A1/a-Si contact for various donor concentrations. Solid curves: 
exact transmission probability and numerical integration, dashed curves: fully analytical model. Par- 

a m e t e r s :  EF. M = 11.7 eV, m M = I~10, mc = 0.258m 0 (<11 l>-silicon), @s = 0.7 eV, b =0.38. 

I 
0 .4  

SSE 37/9--F 



1642 ANDREAS SCI~NK 

1.5 • 1 - i • i - , - = 

U,m,f-2.0V 
. . . . .  U..=,=+0.2V ] 

~ t ...... \ 

o v,,,/t t '0 • # 

0 .5  ' ~ ' ~ . . . . . . . .  
14  15 16 17 18 19 20  

Ig N o 
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curve) as a function of the donor concentration. For 

parameters see Fig. 5. 

5 .  B O U N D A R Y  C O N D I T I O N S  F O R  D E V I C E  S I M U L A T I O N  

The analytical model of the current through a 
parabolic barrier (45) can be used to set up boundary 
conditions for device simulation. We will consider 
here the drift-diffusion approach, where the 
unknowns are the electrostatic potential and the 
carrier densities (or the quasi Fermi levels, respect- 
ively). The region of the physical contact may be 
defined as that region, where transport is governed by 
emission and not by drift-diffusion. Here, a Fermi 
level is not defined. In the previous sections the whole 
space-charge layer was considered as such a region. 
In the case of low doping concentrations the barrier 
width becomes large and can cover a considerable 
fraction of the device. Therefore, we restrict the 
emission region now to a certain part of the space- 
charge layer. This part may be determined by the 
maximum of the spectral current density[26] or, 
following an idea of Schroeder[23], an energy 4~ r is 
defined where the spectral density of the emission 
current has dropped off to a small fraction of its 
maximum value. The corresponding coordinate xr 
then may be considered as the "boundary" for the 
drift-diffusion simulator, as illustrated in Fig. 8. 

Feasible boundary conditions can only be derived 
under simplifying assumptions. If we assume that a 

0 .03  
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0.01 - - - - -  b=0.39 
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Fig. 7. Influence of the fit parameter b on thejV-character- 
istic for N n = l0 ts cm -3. For other parameters see Fig. 5. 

_q~ (xr) ......... - ............... , ,  : ~ . j "  E° 

x~ x~ 

Fig. 8. Illustration of the energies ~T and -q~o,(x r) at the 
reverse-biased contact, xr denotes the extension of the 

contact region for device simulation. 

degenerate semiconductor produces ideal Ohmic 
contacts, ¢~T is given by E ¢ -  EF. M and it cannot 
become smaller. Then, we have only to care about the 
partial current densities j+,  Ji-, and j~-. For j+ a 
reasonable value of 4~ r is easily found from the 
condition: 

exp[-  82(~px, r~ +)] = e -~, (56) 

where ~PT = ~ r / k T  and 6 denotes a number. If, e.g 
c5 = 3, the spectral current density has dropped off to 
e -3 at the energy level 4, r. The left-hand side of (56) 
is the Gaussian factor under the integral of the 
current density, and we used the function ~ (54) for 
convenience. Equation (56) has the explicit solution: 

~0T(r/÷) = IV(r/÷)lr/~ i~ 9 (0, r/÷) + ~/6]. (57) 

For ji- one obtains ~PT = ~Pr(r/-), whereas no explicit 
expression is available in the case of j~ .  Since the 
contribution ofj~- exceeds that of j i -  as the doping 
level and the reverse bias are increased, a formula of 
~0x for the total current, i.e. including all the different 
partial current densities and reflecting the falling-off 
of the leading term of the integrand to e -~, would be 
desirable but cannot be found analytically. Instead, 
we use eqn (57), but limit ~0T by the value for an ideal 
Ohmic contact: 

~Ox = max[~h - ?~F.M, q ) r ( r /  + ) ] "  ( 5 8 )  

The effect of eqn (58) for the higher doping concen- 
trations (above 1017 cm -3 in the case of silicon) is an 
overestimation of cx and hence of xT, which, on the 
other hand, only means that 6 is effectively larger for 
these heavy doping cases. Note, that xx is only a 
reasonable value for the transition from emission to 
the drift-diffusion mechanism of transport and 
depends on the choice of &. The influence of that 
choice and, therefore, of the relation for ~x [eqn (58)] 
on numerical device simulation will be discussed 
elsewhere[27]. 

In Fig. 9 we plotted ~x against the voltage for 6 -- 3 
and the parameters of an Al-contact on n-type silicon 
varying the donor concentration from 10J4crn -3 to 
102o cm -3. In the TE regime ~x is only slightly smaller 
than the barrier height for all voltages. That limits the 
contact region to a small fraction of the barrier width. 
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With rising doping level ~r increases, and the contact 
comprises a growing part of the barrier. At a certain 
voltage OT reaches the limit E =-  EV.M, then the 
whole barrier defines the physical contact. As 
discussed above the slope of the curves for 
Nvf(1018--1019)cm -3 is actually smaller (more 
voltage drop over the barrier) than predicted by the 
approximation (58). However, it should be men- 
tioned again that the overestimation of the matching 
point x r is equivalent to the choice of a larger &, 
which itself is somewhat arbitrary. 

Now, we derive a Dirichlet condition for the quasi 
Fermi level tp, at the boundary xr by matching the 
emission current to the drift-diffusion current there: 

dqb, x=~" j = - -  q p .  n ~ (59) 

This is analogous to the treatment of Crowell and 
Sze[7] who matched the drift-diffusion current to a 
surface recombination current at the top of the 
barrier, and of Chang and Sze[12] who considered 
this matching at the maximum of the spectral current 
density. We again assume that degenerate semicon- 
ductors produce ideal Ohmic contacts and concen- 
trate on the nondegenerate case. Then, the electron 
density can be expressed by Boltzmann statistics and 
eqn (59) can be integrated between XT and xB, if we 
further assume that the current density remains 
constant in that region (generation-recombination 
neglected): 

x/2Zm erf( i~/~,  - ('1o --'7,,M)) k Tl.t, N~ 

ex [ - - q ~ p " ( x r ) ' ~  =exp(u)- -  p~ ~ '), (60) 

where j is the emission current given by eqn (45) and 
eft(x) the error function ([21], p. 297). We are pre- 
pared now to write down the boundary conditions for 
the electrostatic potential ~ and the electron quasi 
Fermi potential ~o~: 1 

~(XT) = -- ~-- OT, (61) 
q 
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Fig. 9. Energy OT, defining the contact region, as function 
of applied voltage for different doping levels. Parameter: 

= 3, for other parameters see Fig. 5. 
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Fig. 10. Electron Fermi energy --q~0. at the boundary X T as 
function of applied voltage for different doping levels. For 

parameters see Fig. 5. 

kT 
q), (xr) = - Uapp] - - -  In[ 1 - fl ( Uappl )exp( -- U)], 

q 

(62) 

with 

2Dj e ~'-'F'M /-~ 
fl(Uapp[)= ~ q21- 

x Im err(ix/opT - (t/, - t/F.M)) (63) 

~DJ e ~  
kTx/2[~PT _ (~/, _ ~F,M)]#. N~ (64) 

The last approximation involves a negligible error 
only. It is based on the asymptotic behavior ([21], p. 
298): 

e x2 
Im eft(ix) ~ x/~x,  (65) 

for large x. Only for large arguments of erf in (63), 
i.e. for reverse biases (qc < qF.M) deviations from a 
straight line occur in Fig. 10. In all other cases 
fl(U, pp]) remains negligibly small. 

Figure 10 shows the slope of the quasi Fermi level 
under the same conditions as for OT. The 
Caughey-Thomas model[28] was used for the mobil- 
ity. Under forward bias there is almost no deviation 
from qU, ppi at the boundary, i.e. only a negligible 
voltage drop between XT and x,  in agreement with 
previous studies (e.g. [26]). Under reverse bias this 
voltage drop is largest for the lightly doped material 
and goes to zero as XT approaches x,  for the 
degenerately doped silicon. 

Both boundary conditions depend on the 
parameter "U, ppl" which equals the "applied voltage" 
for the considered example of a simple Schottky 
diode with negligible series resistance. Devices which 
are subject to numerical simulation give rise to the 
complicated problem that under operating conditions 
the Fermi level it tilted at the boundary of  the 
space-charge layer and the amount of dropped 
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Fig. 11. Comparison of the analytical model with a measured l(V)-characteristic of Ti/n-Si with 
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parameter set: mc = 0.19m0, 4'` = 0.50 eV, mM = m0, and ErM ----- 11.7 eV. (a) Variation of the doping level, 

18 3 (b) variation of the tunneling mass with No 1.9 x 10 cm- , (c) variation of the harrier height with 
ND= 1.7 x 10'Scm -a, (d) effect of a change in the metal Fermi energy and effective mass with 

N D= 1.9 x 1018cm 3. 

voltage, applied at some contacts of  the device, is on 
principle unknown there. This problem will be 
considered elsewhere[27]. 

The corresponding boundary condition for holes 
can be obtained if for the hole injection current the 
rate of  diffusion into the semiconductor bulk as in a 
pn-junction is used[5]. This will not  be discussed in 
detail here. 

6. COMPARISON WITH EXPERIMENT 

The l(V)-characteristics of  a t i tanium contact  on 
intermediately doped silicon is used to test the model 
and to discuss the effect of  the most important  
physical parameters on the fitt. A flat doping profile 
in (100)-sil icon was obtained by implanting 
phosphorus with a dose of  1.83 × 10 '4 cm -2 and a 
subsequent high temperature annealing at 1100°C for 
160 min in pure nitrogen. The surface donor  concen- 
tration was determined by SIMS measurements and 
process simulation:l: to be (1.8-2.2) x 1018cm -3. 

1"The author is grateful to Dr W. Grabinski (ABB semicon- 
ductors, Baden-D~ittwil) for providing the experimental 
data. 

:l:The author wishes to thank Dr Th. Feudel (ETH, Zfirich) 
for discussions on the process and for providing the 
process simulation data. 

Contact  windows were opened by reactive ion 
etching. Finally, a Kelvin structure was formed to 
avoid the voltage drop over a series resistance. 

Figure 11 shows a comparison of  the data and 
eqn (45). Remarkable deviations occur both for low 
reverse bias and forward bias. The reasons may be 
manifold, but most likely a recombination current is 
superimposed resulting from deep levels due to the 
processing (reactive ion etching). Hence, the "break- 
down"  branch is more suitable for a comparison with 
the model. 

There are five physical parameters in the analytical 
model that characterize the metal-semiconductor  
contact: the doping concentration ND, effective (tun- 
neling) mass me, barrier height ~B, effective mass 
on the metal side raM, and the metal Fermi energy 
Ep.M. A reasonable fit is obtained using the set 
N 0 = 1.9 x 1018 cm -3, me = 0.19m 0 ((100)-oriented 
material was used for the contacts), ~I, s = 0.50 eV[29], 
mM=mo, and E F . M = l l . 7 e V .  In Fig, l l (a )  the 
doping concentration was varied from 1.7 to 
1.9 x 10 Is cm -3 showing its strong influence on the 
tunneling current. The best fit is achieved with a value 
between (1.8-1.9) x 10 TM cm -3 which agrees well with 
the measured range. A similar impact on the charac- 
teristics results from a change of  the tunneling mass 
[Fig. 1 l(b)]. As the main tunneling path moves down 
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with rising reverse bias, mixing-in of valence states 
(or even metal states) might reduce the effective 
electron mass. Lowering the barrier height 
[Fig. l l(c)] increases both the forward and reverse 
currents. Barrier height reduction is likely from 
several reasons, e.g. occupation of interface states or 
image forces. Although the observed discrepancy at 
forward bias could be removed with a reduction 
to ~a = 0.44eV which exactly corresponds to the 
image-force lowering at U, pp~ = 0 V, the fit of  the 
reverse branch then would require a far too low 
doping level or too large tunneling mass. Figure 
1 l(d) shows the effect if the two metal parameters 
m M and EF. M are changed drastically. Since the 
expression for the transmittance depends only 
weakly on both quantities, the I(V)-characteristics 
are not  much affected. 

7. CONCLUSIONS 

Based on the concept of thermionic field emission 
a 1D analytical model of the metal-semiconductor 
contact was developed by-passing the WKB ap- 
proximation. This was done by interpolating ana- 
lytically between the asymptotic forms of the 
eigenfunctions of the parabolic potential and map- 
ping the interpolation functions approximately to 
Gaussians. The resulting transmittance of the 
parabolic barrier was shown to be in remarkable 
agreement with the exact one. The method has the 
potential for an application to more complicated 
barrier shapes. Using a simplified carrier statistics 
model and expressing the transmittance by an inte- 
grable function (a Gaussian with respect to the 
energy) enabled the contact current to be calculated 
analytically. The final form contains error functions 
as most complicated ingredients and is therefore 
suitable for an implementation in device simulation 
programs to model boundary  conditions for non-  
ideal contacts. It has been demonstrated that Dirich- 
let boundary  conditions can be derived both for the 
electrostatic potential and the quasi Fermi level 
under certain assumptions. Therefore, a contact 
region was defined as that part of the barrier where 
tunneling gives a noticable contribution to the emis- 
sion current. The local value of the quasi Fermi level 
at the inner boundary of that region was found by 
matching the drift-diffusion current to the T F E  
current there. In device simulation such a balancing 
is done numerically. A complicated problem arises 
from the fact that the input model for the barrier 
contains the potential value at the boundary of the 
space-charge zone, which is not  accessible locally in 
numerical simulation because of the series resistance 
of  the device. Simplifying assumptions can yield a 
way out, but  further work is necessary to tackle this 
problem. 

Acknowledgement--This work has been financially sup- 
ported by the Swiss Research Program LESIT. 
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A P P E N D I X  A 

Transmission Probability for a Parabolic Barrier 

The matching conditions for the wave functions (wave 
supposed to be incoming from the metal side): 

~l (x)  = A e ~kM'~ + B e -~kMx metal (AI)  

~bn(x) = ~tU~ + fiVe barrier (A2) 

~,m(x) = C e ~sx semiconductor bulk (A3) 

at ~ = C a ( x = 0 )  a n d ~ = 0 ( x = x B ) r e a d :  

A + B  =~U¢.+[JV~B (A4) 
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1 1 
- -  (/kMA - /kMe)  = - ~ - - ~  (=U~, + pV'~,) (A5) 
mM 

=U 0 + ~V 0 = C e a~'" (A6) 
1 

- ~  (~U~ + ~V~) = C/k s e as*o (A7) 

since me~(xe) = mc. The transmission probability is defined 
as: 

• ¢'(Xs,X ~ If[ 2 Vs. ~ [C[ 2 r~ . ,  = ~ . ~  = ~ . ~ .  (AS) 

Resolving the system (A4)-(A7) and inserting the ampli- 
tudes gives: 

8 x~ 
ff'(~Cs, S:M) = - --I(V~ + iK~ Vo)(Ue. + i~c~a'U'~, ) 

K M 

-- (U~ + i~c~ Uo)(V¢e + i r ~  ] v~,)1-2, (A9) 

which is eqn (8)~__Here we have used the Wronskian 
U 0 V~ - V 0 U~ = x/2/n ([21], p. 687) and the definition of the 
normalized momenta x~ = Xs~2, ~¢M = kM.~Amar/mM. If the 
absolute square in (A9) is evaluated, the mixed terms are 
reordered, and again the Wronskian of the parabolic cylin- 
der functions is used, we end up with: 

2 
#-(Xs, x M ) (A I 0) 

1 + g (Xs, r M) 

" ~ ( ~ M ) ( U o V ~ B  - V0 U~ , )  2 

1 
+(K----~s)(V~U~.--U'oV'~.) 2 

+XMr~(VoU¢.- Uo Vca)2]. (All)  

A P P E N D I X  B 

Asymptotic Forms and Interpolation Functions 
The asymptotic formulae of the parabolic cylinder functions 
U~a= U(--K2,(~B), V~B= V(--/£2,~B), U~a= U'(--K2,~n), 
and V~. = V'(--x~, ~s) are given by ([21], p. 690): 

U~7 ' (2n),/41¢~_4X2st,/, 

f½e  -s for ~s > 2Ks 

x n for ~B < 2Xs' ~ sin(-~ + ,S,) (B1) 

21~. - 4 r ~ l  -t/4 appr __ 
Vca - ( 2 n ) t / 4 ~  + x~s) 

{eS ( n )  f ° r~e>2xs  

x cos ~ + ISI for ~, < 2r  s' (B2) 

U~P~ = 2(2~)t/~l~2_4r21_~/4 

I 
t e-S for ~ > 2Xs 

x co ~+lSI f o r ~ < 2 ~ s '  (1t3) 

~2 A~2 I/4 

V~IPPr = (2~)./4.%/~ ..~_ K 2 ) 

{eSn(. ~ ) f ° r : s > 2 r s  
x st ~ + ISI for ~s < 2Xs' (134) 
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with 
I i'~a 

s = ~ J~, d¢~/~ - 4 ~  (n5) 

The prime denotes the derivative with respect to the second 
argument. The interpolating functions with the same asymp- 
totic behavior read: 

t2~°d/4 
U/~B ~ ~ , , ]  %l • ~,2 T ~ S ]  [31~1~1/6 Ai£r3 ~,12/3 ~ X~I--I] XL2~J ,, (B6) 

"~B K2 ~ - -  s 

9:2 - I  4 
(2~) '/4 ~ --/('2 

v ~  = (23-1SI) '/6 Bi([3S]2/3), (B7) 
~ + ~ )  

U,Ai -- ( 2 n ) | / 4 ~  X~) ¢, - ~ - - - - T ~ Z  (~1SI)-1/6 Ai,([~S]2/3), (BS) 
~ - , ~  

~. 11/4 
(2n)'/' - x 2  

v ~  = (3 ISI)-t/6 Bi,([~S]2/3). (B9) 
~ + ~ )  

A P P E N D I X  C 

Energy Limit for Gaussian Approximation 
Taylor expansion of the action S(~a) in the vicinity of 
~/= ¢PB in the range 2x s > ~B yields: 

S t~ " 4 /~2 x~)3/2, (C1) 

hence, the function Y becomes: 
2 2/3 2 

/ ~ I ¢ , _ ~ A  (c2) 

there. The energy limit is given by the maximum of the 
Gaussian (32), i.e. by Y(S) = to = -Itol. This leads to: 

, , . - , ,  = ~ - +  ~ ) I t 0 l .  (C3) 

Changing to the energy variable ~/(measured from ~/F.M), we 
get: 

ff.~ = ~Pe + thltol (C4) 

= ~0 B "4" (YlF,M --  ~c "]- (PB)I/3y/~/31to 1" (C5) 

A P P E N D I X  D 

WKB Approximation for the Range tl > tl~x 
The WKB form of the transmission probability, valid for 
energies much larger than the maximum of the barrier, is 
most easily obtained from eqn (31) inserting the asymptotic 
representations of the Airy functions for large negative 
arguments ([21], p. 448): 

AJ(-- Y) -~ Tr-I/2Y-U4sin(2 y3/2 + 4), (D1) 

A t ' ( -  Y) ~ - ,  . . . .  "~3 - - ] ] ,  (D2) 

Bi(-- Y) --, ~-112y-1/4 co y3/2 + , (D3) 

Bi'(- Y)--, n-'/2Y'/' sin(2 y3/2 + 4). (D4) 
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Then we get: 

IAi( Y e-  ~2~/3))1 = ½ x/Ai~(Y) + Bi2(Y) -'* ½ n - ~ / 2 l  YI- i/4, 

(D5) 

IAi'( Y e - ~2~/31 ) = ½ x/Ai;2(y) + Bi,2(y) ~ ½ n - I/2l YI t/4 . 

(D6) 

Inserting into eqn (31) yields immediately (37). The limit 
rl --, oo of Y turns out  to be: 

~ r ( " + r / r ' M ' 0 )  + l_ f  / - ~ ¢ +  m/'~M~ (D7) 

which actually tends to 1, since the effective masses have to 
approach the free electron mass for ~/ --, oo. The latter effect 
has not  been modeled in the present paper, consequently the 

limit (DT) expresses quantum reflection at  the boundary of 
two media with difi`erent effective masses. 

For the purpose of  analytical integration the WKB form 
y-wKB has to be approximated in the vicinity of  #m.~' 
Therefore, we write y-WKS as: 

4/m mM 
~-WKB(~ + ~F.M, 0) °(7 + ~r.~) X/~ -- ~% 

(Dg) 
An integrable approximation is obtained, if ~ is neglected 
compared to r/F, M (because ~/m*~ '~ ~/F.M can be assumed) and 

is replaced by r/m ~ in the denominator  (because ~-wKs is 
only important  for the lowly doped contacts, where contri- 
butions to the current originate from a range of a few k T  

above the top of  the barrier only). 


