On Numerical Methods for PDE-Based Device Simulation: An Introduction

Bernhard Schmithusen, schmithu@synopsys.com
December 2017

1. Introduction in discretization and solving procedure for basic drift-diffusion model
2. Mathematical/numerical point of view
3. Interplay between discretization of space (grid) and discretization of differential operators (matrix)
4. Importance of M-matrices

Content

> Drift-Diffusion Model
An introduction and some analytical properties
> Solving Procedures Nonlinear and linear solvers
> Discretization of Drift-Diffusion Model Some FE examples, the box method, and Scharfetter-Gummel boxmethod
> Grids
Some remarks

SУПОРSУS

Silicon to Software

Drift-Diffusion Model

Drift-Diffusion Model

Drift-Diffusion Model or van Roosbroeck's equations:

- Describe charge transport in semiconductor devices
- Poisson equation, electron and hole continuity equations (in semiconductors)
-

$$
\begin{aligned}
& -\nabla \cdot(\varepsilon \nabla \varphi)=q(p-n+C) \\
& \mathrm{q} \frac{\partial n}{\partial t}-\nabla \cdot j_{n}=-q R \\
& q \frac{\partial p}{\partial t}+\nabla \cdot j_{p}=-q R
\end{aligned}
$$

- Completed by electron/hole current equations (using Einstein relation $D=U_{T} \mu$)

$$
\begin{aligned}
& j_{n}=-q \mu_{n} n \nabla \varphi_{n}=q \mu_{n}\left(U_{T} \nabla n-n \nabla \varphi\right) \\
& j_{p}=-q \mu_{p} p \nabla \varphi_{p}=-q \mu_{p}\left(U_{T} \nabla p+\mathrm{p} \nabla \varphi\right)
\end{aligned}
$$

- Physics: validity of equations, modeling of mobility μ and recombination R

$$
\mu=\mu(x, \nabla \varphi) \quad, \quad R=R(x, n, p, \varphi)
$$

Not topic of this lecture

DD: Boundary/Interface Conditions

- Domain of equations: distinguish semiconductors, insulators, and metals
- Artificial BCs: artificially introduced borders or the simulation domain

$$
\nabla \varphi \cdot v=j_{n} \cdot v=j_{p} \cdot v=0
$$

- Physical BCs: contact and material interfaces
- Ohmic contacts:

$$
\begin{array}{ll}
n p=n_{i}^{2} & \text { thermodynamic equilibrium } \\
p-n+C=0 & \text { charge neutrality }
\end{array}
$$

result in Dirichlet BCs: $\varphi(x)=\varphi_{0}(x), n(x)=n_{0}(x), p(x)=p_{0}(x)$

- Schottky contacts: ..
- Semiconductor-insulator interfaces:

$$
\begin{aligned}
& \varepsilon_{\text {semi }} \nabla \varphi_{\text {semi }}=\varepsilon_{\text {insu }} \nabla \varphi_{\text {insu }} \\
& j_{n} \cdot v=j_{p} \cdot v=0
\end{aligned}
$$

(neglecting tunneling)

- Heterointerfaces: ...

Example Structure

Schematic MOSFET model with underlying grid.

Drift-Diffusion Model

Mathematical View: (only stationary case)
o Task: find functions φ, n, p satisfying the above equations
o Simulation domain $\boldsymbol{\Omega}$: introduce boundary conditions
o Substitute current equations $j_{n, p}$ into DD equations: nonlinearly coupled system of elliptic PDEs (of second order)
o Typical questions:
o Existence of solutions ?
o Uniqueness of solution?
o Is problem well posed (i.e. continuous dependence of solution on 'data') ?
o Nonlinearity:
o drift term in the equations
o Mobility and recombination models

DD: Some Analytical Properties

1. Existence:

The existence of solutions for the whole system is proven for situations close to equilibrium (assuming certain physical models for the problem).
2. Uniqueness:

In general, uniqueness can not be expected as the experience shows.
3. Layer Behavior:

Scalar diffusion-convection-reaction equations with dominant convection exhibit layer behavior (see Roos,Stynes,Tobiska).
4. Maximum Principle for elliptic PDEs:
coming soon

DD: Free Energy and Dissipation Rate

Free Energy:

$$
\begin{aligned}
F(\varphi, n, p) & =\frac{1}{2} \int_{\Omega} \varepsilon\left|\nabla\left(\varphi-\varphi^{*}\right)\right|^{2} d x \\
& +k_{B} T \int_{\Omega} n\left(\ln \left(\frac{n}{n^{*}}\right)-1\right)+n^{*}+p\left(\ln \left(\frac{p}{p^{*}}\right)-1\right)+p^{*} d x
\end{aligned}
$$

Dissipation Rate:

$$
D(\varphi, n, p)=\int_{\Omega} \mu_{n} n\left|\nabla \varphi_{n}\right|^{2} d x+\int_{\Omega} \mu_{p} p\left|\nabla \varphi_{p}\right|^{2}+k_{B} T \int_{\Omega} R \ln \left(\frac{n p}{n^{*} p^{*}}\right) d x
$$

F is Lyapunov function for transient problem under equilibrium boundary conditions and we have:

$$
F(0)-F(t)=\int_{0}^{t} D(\tau) d \tau
$$

Inverse Monotonicity of Elliptic Operators

Let L be a linear second order elliptic differential operator in divergence form

$$
L u:=-\nabla \cdot[a(x) \nabla u+\boldsymbol{b}(x) u]
$$

Then we have (e.g. Gilbarg, Trudinger, Theorem 9.5):

- Inverse Monotonicity:

$$
\{L u \geq 0 \text { on } \Omega \text { and } u \geq 0 \text { on } \partial \Omega\} \quad \Rightarrow \quad u \geq 0 \text { on } \Omega
$$

- Comparison Theorem:

$$
\{L u \geq L v \text { on } \Omega \text { and } u \geq v \text { on } \partial \Omega\} \quad \Rightarrow \quad u \geq v \text { on } \Omega
$$

- Maximum/Minimum Principle:

$$
\{L u \geq 0 \text { on } \Omega\} \quad \Rightarrow \min _{x \in \Omega}(u(x))=\min _{x \in \partial \Omega}(u(x))
$$

Similar results are valid even for quasilinear operators.

M-Matrices

Definition (M-Matrix): The real-valued $n x n$-matrix A is M-matrix if

1. $A_{i i}>0$ for all i,
2. $A_{i j} \leq 0$ for all $i \neq j$,
3. $\quad A$ is invertible and A^{-1} is nonnegative (i.e. $\left(A^{-1}\right)_{i j} \geq 0$ for all i and j).

Remarks:

- Handy sufficient criterion:

If A fulfills the first two conditions and is irreducibly diagonally dominant (i.e. all variables are connected via nonzero offdiagonals, and $\left|A_{i i}\right| \geq \sum_{i \neq j}\left|A_{i j}\right|$, and there exists one i_{0} with strict diagonal dominance), then A is M -matrix.

- M-matrices are (positive) stable, i.e. the initial value problem in \mathbb{R}^{n}

$$
\dot{x}+A x=0 \quad, \quad x(0)=x_{0}
$$

converges for all initial values x_{0} against 0 .
Stable matrices with nonpositive offdiagonal entries are M-matrices (Horn,Johnson).

- M-matrices are a discrete analogon to the inverse monotonicity of elliptic operators.

Numerical Discretization

Continuous Problem: formulated in infinite dimensional function spaces

TASK: make finite dimensional

Popular methods:

- Finite differences
- Finite elements
- Box method

Necessary steps:

1. Grid/mesh generation
2. Discretization of the differential operators
3. Solution of nonlinear equations
4. Solution of linear equations

SYПOPSУS

Silicon to Software

Solution Procedures

Nonlinear Problem

The discretization results in the nonlinear problem in \mathbb{R}^{n}

$$
F(u)=\left(\begin{array}{l}
F_{\varphi}(u) \\
F_{n}(u) \\
F_{p}(u)
\end{array}\right)=0 \quad, u=(\varphi, n, p) \in \mathbb{R}^{n}
$$

Nonlinear equations can only be solved iteratively.

Newton Algorithm

The well-known Newton iteration:

Given a starting point u_{0}, iterate

$$
F^{\prime}\left(u_{n}\right) \cdot\left(u_{n+1}-u_{n}\right)=-F\left(u_{n}\right)
$$

Remarks:

- Quadratic convergence: For sufficiently good starting points (assuming smooth functions F and an isolated root u^{*}), we have

$$
F\left(u_{n+1}\right)=F\left(u_{n}\right)+F^{\prime}\left(u_{n}\right) \cdot\left(u_{n+1}-u_{n}\right)+O\left(\left|u_{n+1}-u_{n}\right|^{2}\right)
$$

therefore we conclude

$$
\begin{aligned}
& \left|F\left(u_{n+1}\right)\right|=O\left(\left|u_{n+1}-u_{n}\right|^{2}\right)=O\left(\left|F\left(u_{n}\right)\right|^{2}\right) \\
& \left|u_{n+1}-u_{n}\right|=O\left(\left|F\left(u_{n}\right)\right|\right)=O\left(\left|u_{n}-u_{n-1}\right|^{2}\right)
\end{aligned}
$$

- Modifications of pure Newton:
degradation of quadratic convergence, improvement of domain of attraction

Alternative Nonlinear Solution Procedures

Gummel Iteration:

- Iteration:

$$
\begin{array}{llll}
\varphi_{k}, n_{k}, p_{k} \text { given: } & & \\
F_{\varphi}\left(\cdot, n_{k}, p_{k}\right)=0 & \rightarrow & & \varphi_{k+1} \\
F_{n}\left(\varphi_{k+1}, \cdot, p_{k}\right)=0 & & \rightarrow & n_{k+1} \\
F_{p}\left(\varphi_{k+1}, n_{k+1}, \cdot\right)=0 & & \rightarrow & p_{k+1}
\end{array}
$$

- Convergence: might converge in case of weak coupling of equations

Multigrid Procedures:

- Idea: solve problem on different grids with different resolutions, thereby resolving low-frequency components on coarse grids and high-frequency components on fine grids
- Variants: on geometric level (grid) or on the algebraic level (matrix)

Solution of Linear Equations

Consider the linear equation $\left(A \in M^{n x n}(\mathbb{R}), b \in \mathbb{R}^{n}\right)$:

$$
A u=b
$$

Remarks:

1. Sparsity: matrices from FD/FE/BM discretizations are sparse, i.e. most entries are zero
2. Nature of Matrix: different procedures for specific sparse matrix problems (e.g. bandstructured, symmetric, diagonally dominant, structurally symmetric, ...)

Two Solver Categories:

- Direct Methods:
- based on Gauss-algorithm, perform LU factorization
- Complexity: dense $O\left(N^{3}\right)$, sparse 2D $O\left(N^{3 / 2}\right)$, sparse 3D $O\left(N^{2}\right)$
- Experimental memory: 2D about 6 times matrix size, 3D about 20 times
- Iterative Methods:
- splitting methods
- Krylov subspace methods (CG, GMRES)
- algebraic multigrid

Matrix Condition Number

The condition number of a matrix (Golub, van Loan, 'Matrix Computations', 1989)

$$
\kappa(A):=||A \| \cdot|| A^{-1}| |
$$

characterizes the sensitivity of the perturbated equation

$$
(A+\varepsilon F) u_{\varepsilon}=b+\varepsilon f
$$

It can be derived

$$
\frac{\left\|u_{\varepsilon}-u_{0}\right\|}{\left\|u_{0}\right\|} \leq \kappa(A)\left(\varepsilon \frac{\|F\|}{\|A\|}+\varepsilon \frac{\|f\|}{\|b\|}\right)+O\left(\varepsilon^{2}\right)
$$

We have machine precision $\varepsilon \approx 10^{-16}$
(ANSI/IEEE Standard $754-1985$ for 'double floating point numbers'' 64 bit - 1 sign bit, 11 exponent bits, 52 fraction bits)

$$
\text { Maximal number of valid digits of solution } u \approx 16-\log _{10}(\kappa(A))
$$

Device simulation: matrices are stiff, i.e. large condition numbers

GMRES

Generalized Minimal Residual (GMRES) Method:

Let x_{0}, \ldots, x_{k} be given, $r_{k}:=b-A x_{k}$ the residuals, and $V_{k+1}:=x_{0}+\left\langle\left\{r_{0}, \ldots, r_{k}\right\}\right\rangle \mathrm{a}$ ($k+1$)-dimensional space. Define x_{k+1} by:

$$
\left\|b-A x_{k+1}\right\|_{2}=\min _{x \in V_{k+1}}\left(\|b-A x\|_{2}\right)
$$

Remarks:

- Detailed algorithm is technical, omitted here.
- Algorithm requires only matrix-vector products $A x$, but not the matrix itself.
- The sequence $\left(x_{k}\right)_{k}$ converges in at most n steps.
- Need to store k vectors to compute x_{k+1}.
- GMRES may stagnate (well known, but not really understood).
- A popular variant is the GMRES(m), a restarted GMRES method: stop after m iterations and initialize the procedure again.
- If A is positive definite, GMRES(m) converges for any $m \geq 1$.
- General convergence results for GMRES(m) are not available.

Preconditioning

Idea: Instead of solving $A x=b$ we solve

$$
P_{L}^{-1} A x=P_{L}^{-1} b
$$

Remarks:

- P_{L} should be easier to invert than A.
- Convergence: If P_{L} is close to A, we have $\left\|1-P_{L}^{-1} A\right\|<1$, sufficient for convergence of simple methods.
- Right preconditioning: solve $A P_{R}^{-1} y=b$ for y, compute $x=P_{R}^{-1} y$.
- Right vs left preconditioning:

Left preconditioning minimizes the preconditioned residual.
Right preconditioning minimizes the unpreconditioned residual.
For ill-conditioned systems this makes a difference.

Some preconditioning strategies:

- Incomplete LU factorization ILU (with/without threshold).
- Think about physically motivated preconditioners.

Silicon to Software

Discretization of the Drift-Diffusion Model

BVP: Strong and Weak Formulation

Elliptic boundary value problem (BVP) of the following form:

$$
\begin{array}{rlr}
L u:=-\nabla \cdot(a \nabla u)+b u=f & \text { on } \Omega \\
& a \frac{\partial u}{\partial n}=g & \text { on } \partial \Omega_{N} \\
u=0 & \text { on } \partial \Omega_{\mathrm{D}}
\end{array}
$$

Strong formulation of the problem: Find a function $u \in H$ with the above properties.

Alternative: Choose a test function $v \in H_{0}=\left\{u \in H: u=0\right.$ on $\left.\partial \Omega_{D}\right\}$, multiply the strong problem and integrate by parts.

Weak formulation of the problem:
Find $u \in H_{D}=\left\{u \in H: u\right.$ satisfies Dirichlet BCs on $\left.\partial \Omega_{D}\right\}$ such that for all $v \in H_{0}$ we have

$$
B(u, v):=(a \nabla u, \nabla v)+(b u, v)=(f, v)-\int_{\partial \Omega_{N}} g d S(x)
$$

1D Laplace Equation: Standard FE

Laplace equation 1D

$$
\begin{array}{cl}
L u:=-\nabla \cdot(\nabla u)=f & \text { on } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}
$$

Weak formulation: Find $u \in H_{0}^{1}$ (Sobolev space) with

$$
B(u, v)=\int_{\Omega} \nabla u(x) \cdot \nabla v(x) d x=\int_{\Omega} f v d x=(f, v)
$$

Standard FE on grid $\left(x_{0}, \ldots, x_{N}\right)$:
Ansatz: $u(x)=\sum_{j} u_{j} \xi_{j}(x)$, where ξ_{i} is hat function at x_{i}
Computation per element $K=\left[x_{i}, x_{i+1}\right], h_{i}:=x_{i+1}-x_{i}$

$$
\begin{aligned}
& B^{K}\left(\xi_{i}, \xi_{i}\right)=\int_{K}\left(\frac{1}{h_{i}}\right)^{2} d x=\frac{1}{h_{i}} \\
& B^{K}\left(\xi_{i}, \xi_{i+1}\right)=-\frac{1}{h_{i}}
\end{aligned}
$$

Element matrix: $\quad A^{K}=\left(\begin{array}{cc}1 / h_{i} & -1 / h_{i} \\ -1 / h_{i} & 1 / h_{i}\end{array}\right)$
Global matrix: $\quad A=\operatorname{tridiag}\left(-1 / h_{i-1}, 1 / h_{i-1}+1 / h_{i},-1 / h_{i}\right)$
We get a M-matrix

2D Laplace Equation: Standard FE

Laplace equation with homogenous Dirichlet BCs in 2D

$$
B(u, v)=\int_{\Omega} \nabla u(x) \cdot \nabla v(x) d x=\int_{\Omega} f v d x=(f, v)
$$

Remarks:

1. Bilinear form B can be evaluated on $U^{h} \times U^{h}$, hence B^{h} is uniformly elliptic.
2. The right integral can not be computed exactly for general $f \in L^{2}(\Omega)$:

Ansatz $f=\sum_{j} f_{j} \xi_{j}(x)$ leads to discrete form $M f$
3. Resulting linear system

$$
A u=M f
$$

4. A is positive definite, hence stable.
5. A is not necessarily M-matrix, but we have in 2D:

For triangulations without obtuse angles, then A is M-matrix.
6. Mesh geometry determines matrix properties.
7. Similar results hold for the Poisson equation

$$
B(u, v)=\int_{\Omega} a(x) \nabla u(x) \cdot \nabla v(x) d x=\int_{\Omega} f v d x=(f, v)
$$

Box Method (BM)

Assumption: Divergence form of operator

$$
L u(x)=-\nabla \cdot \boldsymbol{F}(x, u)=f(x)
$$

and partition of Ω into boxes B_{i}.
Gauss theorem per box B_{i} :

$$
\int_{\mathrm{B}_{\mathrm{i}}} L u(x) d x=-\int_{B_{i}} \nabla \cdot \boldsymbol{F}(x, u(x)) d x=-\int_{\partial B_{i}} \boldsymbol{F}(x) \cdot v_{i}(x) d S(x)
$$

Remarks:

- Transform divergence form from volume integral into surface integral
- We need approximation for $\boldsymbol{F}(x) \cdot v_{i}(x)$ on box boundary.
- Form of boxes not yet specified.
- Relation to FE: The test function is the characteristic function of the box, trial functions are not yet specified.

BM: Voronoi Boxes

Box method with grid vertices (\bullet) and dual Voronoi grid (blue)

Voronoi boxes: defined by mid-perpendicular 'planes' of all grid edges:

$$
B_{i}=\left\{x \in \Omega:\left|x-x_{i}\right| \leq\left|x-x_{j}\right| \text { for all } j \neq i\right\}
$$

BM: Delaunay Property

Delaunay Property:

The (inner of the) circumsphere/circle of each grid element does not contain any grid point.

Remarks:

- Delaunay guarantees overlap-free partitioning of Ω with Voronoi boxes.
- Obtuse angles (i.e $\geq \pi / 2$):

$$
s^{T_{1}}{ }_{i, j}<0, \quad s^{T_{2}}{ }_{i, j}>0
$$

Delaunay guarantees

$$
s_{i, j}:=s^{T_{1}}{ }_{i, j}+s^{T_{2}}{ }_{i, j} \geq 0
$$

BM: Poisson Equation

Poisson Equation:

$$
L u(x)=-\nabla \cdot(a(x) \nabla u)=g(x)
$$

Mid-perpendicular box method:

$$
\begin{gathered}
-\int_{\mathrm{B}_{\mathrm{i}}} \nabla \cdot(a(x) \nabla u) d x=-\int_{\partial \mathrm{B}_{\mathrm{i}}} a(x) \nabla \mathrm{u}(\mathrm{x}) \cdot v_{i} d S(x) \approx-\sum_{j(i)} a_{i j} \frac{u_{j}-u_{i}}{\left|x_{j}-x_{i}\right|} s_{i j} \\
\int_{B_{-} i} g(x) d x \approx\left|B_{i}\right| g_{i}
\end{gathered}
$$

with $a_{i j}=\left(a\left(x_{j}\right)+a\left(x_{i}\right)\right) / 2$ some average of a on the edge.

Remarks:

- M-matrix property depends on averaging of a.
- Laplace operator: std FE and BM coincide in 2D, but differ in 3D (except for equilateral tetrahedra which do not fill the whole space).

1D Drift-Diffusion: Model Problem

Drift-diffusion operator on the interval $[0 ; 1]$:

$$
\begin{aligned}
& -\left[n^{\prime}-\varphi^{\prime} n\right]^{\prime}=0 \\
& n(0)=0, n(1)=1
\end{aligned}
$$

and assume $\varphi^{\prime}=\beta$ to be constant
o Exact solution: $\quad n(x)=\frac{\exp (\beta x)-1}{\exp (\beta)-1}$
o Solution is strictly monotonously increasing (independent of sign of β)
o Well known: large drift causes problems in discretization, leading to instabilities

1D Drift-Diffusion: FD Discretization

Equidistant grid: $h=x_{i+1}-x_{i}$
Gradients on intervals left and right: $s_{-}:=\frac{n_{i}-n_{i-1}}{h}$ and $s_{+}:=\frac{n_{i+1}-n_{i}}{h}$

Equation:

$$
\begin{gathered}
-\frac{s_{+}-s_{-}}{h}+\beta \frac{s_{+}+s_{-}}{2}=0 \\
-\frac{n_{i+1}-n_{i}+n_{i-1}}{h^{2}}+\beta \frac{s_{i+1}-s_{i-1}}{2 h}=0
\end{gathered}
$$

Matrix:

$$
A=\frac{1}{2 h^{2}} \operatorname{tridiag}(-2-h \beta,+4,-2+h \beta)
$$

- We get $\frac{s_{+}}{s_{-}}=\left(1+\frac{h \beta}{2}\right) /\left(1-\frac{h \beta}{2}\right)$ or in words

$$
\text { The solution oscillates if } \boldsymbol{h} \boldsymbol{\beta}>2 \text { !!! }
$$

- The equation poses requirements grid or discretization
- The resulting matrix is not M-matrix
- The characteristic quantity $P=2 / \beta$ is called mesh Peclet number
- Some words: upwinding method, exponential fitting

1D Scharfetter-Gummel Discretization

Assumptions: $\left[x_{0}, x_{1}\right]$ interval, J constant current density, and $u:=\exp (-\phi)$ the Slotboom variable, then

$$
J=-\mu n \phi^{\prime}=\mu \exp (\varphi) u^{\prime}
$$

μ constant, and φ linear in x, and use notation $\Delta x:=x_{1}-x_{0}$
Solve BVP for u:

$$
\begin{gathered}
\Delta u=\int \frac{J}{\mu} \exp \left(\left[-\varphi_{1}\left(x-x_{0}\right)-\varphi_{0}\left(x_{1}-x\right)\right] / \Delta x\right) d x \\
=\cdots=\frac{J}{\mu} \frac{\Delta x}{\Delta \varphi}\left[\exp \left(-\varphi_{0}\right)-\exp \left(-\varphi_{1}\right)\right]
\end{gathered}
$$

Express J in terms of densities: replace $u_{i}=\exp \left(-\varphi_{i}\right) n_{i}$, then

$$
\begin{gathered}
J=\frac{\mu}{\Delta x} \Delta u \Delta \varphi\left[\frac{1}{\exp \left(-\varphi_{0}\right)-\exp \left(-\varphi_{1}\right)}\right]=\frac{\mu}{\Delta x}\left[\frac{\Delta \varphi}{\exp (\Delta \varphi)-1} n_{1}+\frac{\Delta \varphi}{1-\exp (-\Delta \varphi)} n_{0}\right] \\
=\frac{\mu}{\Delta x}\left[b(\Delta \varphi) n_{1}-b(-\Delta \varphi) n_{0}\right]
\end{gathered}
$$

where we used the Bernoulli function $b(x):=x /(\exp (x)-1)$.

SG Current Density

Scharfetter-Gummel (SG) approximation

$$
J=\frac{\mu}{\Delta x}\left[b(\Delta \varphi) n_{1}-b(-\Delta \varphi) n_{0}\right]
$$

Remarks:

- SG reduces for $\Delta \varphi=0$ to pure diffusion.
- Resembles an unsymmetrically weighted diffusion expresion (artificial diffusion).
- BM with this SG approximation for J gives M-matrix independent of $\Delta \varphi$ because

$$
\frac{\partial J}{\partial n_{0}}<0, \quad \frac{\partial J}{\partial n_{1}}>0
$$

Discretized Equations

Higher dimensions:

- The SG expression is used in the BM, extending to the SG-BM.
- The one-dimensional character along grid edges remains.

Discretized equations:

$$
\begin{gathered}
\left(F_{\varphi}\right)_{i}=\left[\sum_{j(i)} \varepsilon_{i j} \frac{s_{i j}}{d_{i j}}\left[\varphi_{i}-\varphi_{j}\right]\right]-\left|\mathrm{B}_{\mathrm{i}}\right|\left(p_{i}-n_{i}+C_{i}\right)=0 \\
\left(F_{n}\right)_{i}=\left[\sum_{j(i)} \mu_{i j}^{n} \frac{s_{i j}}{d_{i j}}\left[b\left(\varphi_{i}-\varphi_{j}\right) n_{i}-b\left(\varphi_{j}-\varphi_{i}\right) n_{j}\right]\right]+\left|\mathrm{B}_{\mathrm{i}}\right| R_{i}=0 \\
\left(F_{p}\right)_{i}=\left[\sum_{j(i)} \mu_{i j}^{p} \frac{s_{i j}}{d_{i j}}\left[b\left(\varphi_{j}-\varphi_{i}\right) p_{i}-b\left(\varphi_{i}-\varphi_{j}\right) p_{j}\right]\right]+\left|\mathrm{B}_{\mathrm{i}}\right| R_{i}=0
\end{gathered}
$$

SG-BM: Discussion

- No closed theory is known for the SG-BM.
- SG-BM guarantees stability on arbitrary boundary Delaunay meshes (extensively used in practice).
- SG-BM as nonconforming Petrov-Galerkin method.
- SG-BM is locally and globally dissipative: the dissipation rate per (non-obtuse) simplex is positive (Gajewski-Gartner).
- Low convergence order is expected: experiments with grid adaptation show $O\left(h^{1 / 2}\right)$.
- The required boundary Delaunay property is quite restrictive (compared to simplex meshes).

Silicon to Software

Grids

3D Example

Quad-Tree vs Normal-Offsetting

Quad-tree and normal-offsetting mesh with current density.

SG-BM and Current Carrying Edges

Observations

- BM current along edge with one element

$$
I_{i j}^{E}=s_{i j}^{E} J_{i j}^{E}
$$

- SG-BM: element edge current densities $J_{i j}^{E}$ are not projections of one element vector \boldsymbol{J}^{E}
- Large element edge current densities might not be visible on other edges
- Effect on total current: large $J_{i j}^{E}$ with small Voronoi surface $s_{i j}^{E}$ not visible

Edge with Voronoi surface

Consequences

- Edges should be aligned parallel and orthogonal to the local current density.
- Highly anisotropic grids are desired in such situations (like channel of a MOSFET).

Grid Effect on Terminal Current

Huge current variations
for a MOSFET structure during automatic grid adaptation.

Filled symbols indicate currents at same bias of AGM simulation.

AGM: grid adapation
REF: fixed grid

Concluding Remarks

- We gave an introduction into discretization and solution strategies for the DD model.
- We emphasized the importance of the M-matrix property, which seems to be indispensable.
- We illustrated the relation between mesh and matrix properties.
- Properties of the continuous problem are not automatically inherited by the discrete problem.

SУПОРSУS

Silicon to Software

Thank you for your attention !

