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Drift-Diffusion Model 

Drift-Diffusion Model or van Roosbroeck’s equations: 
• Describe charge transport in semiconductor devices 
• Poisson equation, electron and hole continuity equations (in semiconductors) 
•  

−𝛻𝛻 ⋅ 𝜀𝜀𝛻𝛻𝜑𝜑 = 𝑞𝑞 𝑝𝑝 − 𝑛𝑛 + 𝐶𝐶  

q
𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

 − 𝛻𝛻 ⋅ 𝑗𝑗𝑛𝑛 = −𝑞𝑞 𝑅𝑅 

𝑞𝑞
𝜕𝜕𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝛻𝛻 ⋅ 𝑗𝑗𝑝𝑝 = −𝑞𝑞 𝑅𝑅 
 

• Completed by electron/hole current equations (using Einstein relation 𝐷𝐷 = 𝑈𝑈𝑇𝑇𝜇𝜇) 
 

𝑗𝑗𝑛𝑛 = −𝑞𝑞𝜇𝜇𝑛𝑛𝑛𝑛 𝛻𝛻𝜑𝜑𝑛𝑛 = 𝑞𝑞 𝜇𝜇𝑛𝑛 𝑈𝑈𝑇𝑇𝛻𝛻𝑛𝑛 − 𝑛𝑛𝛻𝛻𝜑𝜑  
𝑗𝑗𝑝𝑝 = −𝑞𝑞𝜇𝜇𝑝𝑝𝑝𝑝 𝛻𝛻𝜑𝜑𝑝𝑝 = −𝑞𝑞 𝜇𝜇𝑝𝑝 𝑈𝑈𝑇𝑇𝛻𝛻𝑝𝑝 + p𝛻𝛻𝜑𝜑  

 
• Physics: validity of equations, modeling of mobility 𝜇𝜇 and recombination 𝑅𝑅 

𝜇𝜇 = 𝜇𝜇 𝑥𝑥,𝛻𝛻𝜑𝜑        ,            𝑅𝑅 = 𝑅𝑅 𝑥𝑥,𝑛𝑛, 𝑝𝑝,𝜑𝜑  
Not topic of this lecture 
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DD: Boundary/Interface Conditions 

• Domain of equations: distinguish semiconductors, insulators, and metals  
• Artificial BCs: artificially introduced borders or the simulation domain 

 
𝛻𝛻𝜑𝜑 ⋅ 𝜈𝜈 = 𝑗𝑗𝑛𝑛 ⋅ 𝜈𝜈 = 𝑗𝑗𝑝𝑝 ⋅ 𝜈𝜈 = 0  

 
• Physical BCs: contact and material interfaces 

– Ohmic contacts: 
  𝑛𝑛𝑝𝑝 = 𝑛𝑛𝑖𝑖2  thermodynamic equilibrium 
  𝑝𝑝 − 𝑛𝑛 + 𝐶𝐶 = 0  charge neutrality 
result in Dirichlet BCs: 𝜑𝜑 𝑥𝑥 = 𝜑𝜑0 𝑥𝑥 ,𝑛𝑛 𝑥𝑥 = 𝑛𝑛0 𝑥𝑥 ,𝑝𝑝 𝑥𝑥 = 𝑝𝑝0(𝑥𝑥) 

– Schottky contacts: … 
– Semiconductor-insulator interfaces: 

  𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝛻𝛻𝜑𝜑𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖𝛻𝛻𝜑𝜑𝑖𝑖𝑛𝑛𝑠𝑠𝑖𝑖  
  𝑗𝑗𝑛𝑛 ⋅ 𝜈𝜈 = 𝑗𝑗𝑝𝑝 ⋅ 𝜈𝜈 = 0  (neglecting tunneling) 

– Heterointerfaces: … 
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Example Structure 

Schematic MOSFET model with underlying grid. 
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Drift-Diffusion Model 

Mathematical View: (only stationary case) 
o Task: find functions 𝜑𝜑,𝑛𝑛, 𝑝𝑝 satisfying the above equations 
o Simulation domain 𝛀𝛀 : introduce boundary conditions 
o Substitute current equations 𝑗𝑗𝑛𝑛,𝑝𝑝 into DD equations: 

nonlinearly coupled system of elliptic PDEs (of second order) 
o Typical questions: 

o Existence of solutions ? 
o Uniqueness of solution ? 
o Is problem well posed (i.e. continuous dependence of solution on ‘data’) ? 

o Nonlinearity: 
o drift term in the equations 
o Mobility and recombination models 
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DD: Some Analytical Properties 

1. Existence: 
The existence of solutions for the whole system is proven for situations close to 
equilibrium (assuming certain physical models for the problem). 
 

2. Uniqueness: 
In general, uniqueness can not be expected as the experience shows. 
 

3. Layer Behavior: 
Scalar diffusion-convection-reaction equations with dominant convection exhibit 
layer behavior (see Roos,Stynes,Tobiska). 
 

4. Maximum Principle for elliptic PDEs: 
coming soon 
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DD: Free Energy and Dissipation Rate 
Free Energy: 
 

 𝐹𝐹 𝜑𝜑,𝑛𝑛,𝑝𝑝 = 1
2 ∫ 𝜀𝜀 𝛻𝛻 𝜑𝜑 − 𝜑𝜑∗ 2𝑑𝑑𝑥𝑥Ω   

  + 𝑘𝑘𝐵𝐵𝑇𝑇 ∫ 𝑛𝑛 ln 𝑛𝑛
𝑛𝑛∗

− 1 + 𝑛𝑛∗ + 𝑝𝑝 ln 𝑝𝑝
𝑝𝑝∗

− 1 + 𝑝𝑝∗𝑑𝑑𝑥𝑥Ω  

 
Dissipation Rate: 
 

 𝐷𝐷 𝜑𝜑,𝑛𝑛,𝑝𝑝 =  ∫ 𝜇𝜇𝑛𝑛𝑛𝑛 𝛻𝛻𝜑𝜑𝑛𝑛 2
Ω 𝑑𝑑𝑥𝑥 +  ∫ 𝜇𝜇𝑝𝑝𝑝𝑝 𝛻𝛻𝜑𝜑𝑝𝑝

2
Ω + 𝑘𝑘𝐵𝐵𝑇𝑇 ∫ 𝑅𝑅 ln ( 𝑛𝑛𝑝𝑝

𝑛𝑛∗𝑝𝑝∗Ω )𝑑𝑑𝑥𝑥  

 
 
𝐹𝐹 is Lyapunov function for transient problem under equilibrium boundary conditions and 
we have: 

𝐹𝐹 0 − 𝐹𝐹 𝜕𝜕 =  �𝐷𝐷 𝜏𝜏
𝑡𝑡

0

 𝑑𝑑𝜏𝜏 
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Inverse Monotonicity of Elliptic Operators 
Let 𝐿𝐿 be a linear second order elliptic differential operator in divergence form  
 

𝐿𝐿 𝑢𝑢 ≔   −𝛻𝛻 ⋅ 𝑎𝑎 𝑥𝑥 𝛻𝛻𝑢𝑢 + 𝒃𝒃 𝑥𝑥 𝑢𝑢  
 
Then we have (e.g. Gilbarg, Trudinger, Theorem 9.5): 
• Inverse Monotonicity: 
 {𝐿𝐿𝑢𝑢 ≥ 0 on Ω and 𝑢𝑢 ≥ 0 on 𝜕𝜕Ω} ⟹ 𝑢𝑢 ≥ 0 on Ω   
 
• Comparison Theorem: 
 {𝐿𝐿𝑢𝑢 ≥ 𝐿𝐿𝐿𝐿 on Ω and 𝑢𝑢 ≥ 𝐿𝐿 on 𝜕𝜕Ω} ⟹ 𝑢𝑢 ≥ 𝐿𝐿 on Ω 
 
• Maximum/Minimum Principle: 
   {𝐿𝐿𝑢𝑢 ≥ 0 on Ω }   ⟹𝑚𝑚𝑚𝑚𝑛𝑛𝑥𝑥∈Ω 𝑢𝑢 𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑛𝑛𝑥𝑥∈𝜕𝜕Ω 𝑢𝑢 𝑥𝑥  

 
Similar results are valid even for quasilinear operators. 
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M-Matrices 

Definition (M-Matrix): The real-valued 𝑛𝑛𝑥𝑥𝑛𝑛-matrix 𝐴𝐴 is M-matrix if 
1.   𝐴𝐴𝑖𝑖𝑖𝑖 > 0 for all 𝑚𝑚, 
2.  𝐴𝐴𝑖𝑖𝑖𝑖 ≤ 0 for all 𝑚𝑚 ≠ 𝑗𝑗 , 

3.  𝐴𝐴 is invertible and 𝐴𝐴−1 is nonnegative (i.e. 𝐴𝐴−1 𝑖𝑖𝑖𝑖 ≥ 0 for all 𝑚𝑚 and 𝑗𝑗). 

 
Remarks: 
• Handy sufficient criterion: 

If 𝐴𝐴 fulfills the first two conditions and is irreducibly diagonally dominant (i.e. all 
variables are connected via nonzero offdiagonals, and |𝐴𝐴𝑖𝑖𝑖𝑖| ≥ ∑ |𝐴𝐴𝑖𝑖𝑖𝑖|𝑖𝑖≠𝑖𝑖 , and there 
exists one 𝑚𝑚0with strict diagonal dominance), then 𝐴𝐴 is M-matrix. 

• M-matrices are (positive) stable, i.e. the initial value problem in ℝ𝑛𝑛 
�̇�𝑥 + 𝐴𝐴𝑥𝑥 = 0               ,      𝑥𝑥 0 = 𝑥𝑥0 

converges for all initial values 𝑥𝑥0 against 0. 
Stable matrices with nonpositive offdiagonal entries are M-matrices (Horn,Johnson). 

• M-matrices are a discrete analogon to the inverse monotonicity of elliptic operators. 
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Numerical Discretization 

Continuous Problem: formulated in infinite dimensional function spaces 
 
TASK: make finite dimensional 
 
Popular methods: 
• Finite differences 
• Finite elements 
• Box method 

 
Necessary steps: 
1. Grid/mesh generation 
2. Discretization of the differential operators 
3. Solution of nonlinear equations 
4. Solution of linear equations 

 



Solution Procedures 
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Nonlinear Problem 

The discretization results in the nonlinear problem in ℝ𝑛𝑛 
 

𝐹𝐹 𝑢𝑢 =  
𝐹𝐹𝜑𝜑(𝑢𝑢)
𝐹𝐹𝑛𝑛(𝑢𝑢)
𝐹𝐹𝑝𝑝 𝑢𝑢

= 0     ,𝑢𝑢 = 𝜑𝜑,𝑛𝑛, 𝑝𝑝 ∈ ℝ𝑛𝑛 

 
Nonlinear equations can only be solved iteratively. 
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Newton Algorithm 
The well-known Newton iteration: 
Given a starting point 𝑢𝑢0, iterate 
 

𝐹𝐹′ 𝑢𝑢𝑛𝑛 ⋅ 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛 = −𝐹𝐹(𝑢𝑢𝑛𝑛) 
 
Remarks: 
• Quadratic convergence: For sufficiently good starting points (assuming smooth 

functions 𝐹𝐹 and an isolated root 𝑢𝑢∗), we have 
 

𝐹𝐹 𝑢𝑢𝑛𝑛+1 = 𝐹𝐹 𝑢𝑢𝑛𝑛 + 𝐹𝐹′ 𝑢𝑢𝑛𝑛 ⋅ 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛 + 𝑂𝑂 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛 2  
 
therefore we conclude 
 
  𝐹𝐹 𝑢𝑢𝑛𝑛+1 = 𝑂𝑂 𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛 2 = 𝑂𝑂( 𝐹𝐹 𝑢𝑢𝑛𝑛 2)  
  𝑢𝑢𝑛𝑛+1 − 𝑢𝑢𝑛𝑛 = 𝑂𝑂 𝐹𝐹 𝑢𝑢𝑛𝑛 = 𝑂𝑂 𝑢𝑢𝑛𝑛 − 𝑢𝑢𝑛𝑛−1 2  
 

• Modifications of pure Newton: 
degradation of quadratic convergence, improvement of domain of attraction 
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Alternative Nonlinear Solution Procedures 

Gummel Iteration: 
– Iteration: 

   𝜑𝜑𝑘𝑘 ,𝑛𝑛𝑘𝑘 ,𝑝𝑝𝑘𝑘 given: 
   𝐹𝐹𝜑𝜑    ⋅ ,𝑛𝑛𝑘𝑘 ,𝑝𝑝𝑘𝑘 = 0            ⟶            𝜑𝜑𝑘𝑘+1 

   𝐹𝐹𝑛𝑛 𝜑𝜑𝑘𝑘+1 , ⋅ ,𝑝𝑝𝑘𝑘 = 0            ⟶            𝑛𝑛𝑘𝑘+1 
   𝐹𝐹𝑝𝑝 𝜑𝜑𝑘𝑘+1,𝑛𝑛𝑘𝑘+1,  ⋅ = 0            ⟶            𝑝𝑝𝑘𝑘+1 

 
– Convergence: might converge in case of weak coupling of equations 
 

Multigrid Procedures: 
– Idea: solve problem on different grids with different resolutions, 

thereby resolving low-frequency components on coarse grids 
and high-frequency components on fine grids 

– Variants: on geometric level (grid) or on the algebraic level (matrix) 



© 2017 Synopsys, Inc.  18 

Solution of Linear Equations 
Consider the linear equation (𝐴𝐴 ∈ 𝑀𝑀𝑛𝑛𝑥𝑥𝑛𝑛 ℝ , 𝑏𝑏 ∈ ℝ𝑛𝑛): 
 

𝐴𝐴𝑢𝑢 = 𝑏𝑏 
Remarks: 
1. Sparsity: matrices from FD/FE/BM discretizations are sparse, i.e. most entries are zero 
2. Nature of Matrix: different procedures for specific sparse matrix problems (e.g. band-

structured, symmetric, diagonally dominant, structurally symmetric, … ) 
 
Two Solver Categories: 
• Direct Methods: 

– based on Gauss-algorithm, perform LU factorization 

– Complexity: dense 𝑂𝑂 𝑁𝑁3 , sparse 2D 𝑂𝑂(𝑁𝑁3/2), sparse 3D 𝑂𝑂 𝑁𝑁2  
– Experimental memory: 2D about 6 times matrix size, 3D about 20 times 

 

• Iterative Methods: 
– splitting methods 
– Krylov subspace methods (CG, GMRES) 
– algebraic multigrid 
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Matrix Condition Number 
The condition number of a matrix (Golub, van Loan, ‘Matrix Computations’, 1989) 
 

𝜅𝜅 𝐴𝐴  ≔   𝐴𝐴 ⋅ 𝐴𝐴−1  

characterizes the sensitivity of the perturbated equation 
 

𝐴𝐴 + 𝜀𝜀𝐹𝐹  𝑢𝑢𝜀𝜀 =   𝑏𝑏 + 𝜀𝜀𝜀𝜀 
It can be derived 

||𝑢𝑢𝜀𝜀  − 𝑢𝑢0 ||
| 𝑢𝑢0 |

≤ 𝜅𝜅 𝐴𝐴 𝜀𝜀
| 𝐹𝐹 |
| 𝐴𝐴 |

+ 𝜀𝜀
| 𝜀𝜀 |
| 𝑏𝑏 |

 +   𝑂𝑂(𝜀𝜀2) 

 
We have machine precision 𝜀𝜀 ≈ 10−16  
(ANSI/IEEE Standard 754-1985 for ‘double floating point numbers’: 64 bit – 1 sign bit, 11 exponent bits, 52 fraction bits) 

 
 Maximal number of valid digits of solution 𝒖𝒖      ≈     16 − log10(𝜅𝜅 𝐴𝐴 ) 
 
Device simulation: matrices are stiff, i.e. large condition numbers 
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GMRES 
Generalized Minimal Residual (GMRES) Method: 
Let 𝑥𝑥0, … , 𝑥𝑥𝑘𝑘 be given, 𝑟𝑟𝑘𝑘  ≔ 𝑏𝑏 − 𝐴𝐴𝑥𝑥𝑘𝑘 the residuals, and 𝑉𝑉𝑘𝑘+1  ≔ 𝑥𝑥0 +  𝑟𝑟0, … , 𝑟𝑟𝑘𝑘  a 
(𝑘𝑘 + 1)-dimensional space. Define 𝑥𝑥𝑘𝑘+1 by: 
 

∥ 𝑏𝑏 − 𝐴𝐴𝑥𝑥𝑘𝑘+1 ∥2=  𝑚𝑚𝑚𝑚𝑛𝑛𝑥𝑥∈𝑉𝑉𝑘𝑘+1 ∥ 𝑏𝑏 − 𝐴𝐴𝑥𝑥 ∥2  

 
Remarks: 
• Detailed algorithm is technical, omitted here. 
• Algorithm requires only matrix-vector products 𝐴𝐴𝑥𝑥 , but not the matrix itself. 
• The sequence 𝑥𝑥𝑘𝑘 𝑘𝑘 converges in at most 𝑛𝑛 steps. 
• Need to store 𝑘𝑘 vectors to compute 𝑥𝑥𝑘𝑘+1. 
• GMRES may stagnate (well known, but not really understood). 
• A popular variant is the GMRES(m), a restarted GMRES method: 

stop after 𝑚𝑚 iterations and initialize the procedure again. 
• If 𝐴𝐴 is positive definite, GMRES(m) converges for any 𝑚𝑚 ≥ 1. 
• General convergence results for GMRES(m) are not available. 
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Preconditioning 
Idea: Instead of solving 𝐴𝐴𝑥𝑥 = 𝑏𝑏 we solve 
 

𝑃𝑃𝐿𝐿−1𝐴𝐴 𝑥𝑥 = 𝑃𝑃𝐿𝐿−1𝑏𝑏 
Remarks: 
• 𝑃𝑃𝐿𝐿should be easier to invert than 𝐴𝐴. 
• Convergence: If 𝑃𝑃𝐿𝐿 is close to 𝐴𝐴, we have ∥ 1 − 𝑃𝑃𝐿𝐿−1𝐴𝐴 ∥ < 1, sufficient  for convergence 

of simple methods. 
• Right preconditioning: solve 𝐴𝐴𝑃𝑃𝑅𝑅−1𝑦𝑦 = 𝑏𝑏 for 𝑦𝑦, compute 𝑥𝑥 = 𝑃𝑃𝑅𝑅−1𝑦𝑦. 
• Right vs left preconditioning: 

Left preconditioning minimizes the preconditioned residual. 
Right preconditioning minimizes the unpreconditioned residual. 
For ill-conditioned systems this makes a difference. 
 

Some preconditioning strategies: 
• Incomplete LU factorization ILU (with/without threshold). 
• Think about physically motivated preconditioners. 



Discretization of the 
Drift-Diffusion Model 
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BVP: Strong and Weak Formulation 

Elliptic boundary value problem (BVP) of the following form: 
  𝐿𝐿𝑢𝑢 ≔ −𝛻𝛻 ⋅ 𝑎𝑎𝛻𝛻𝑢𝑢 + 𝑏𝑏𝑢𝑢 = 𝜀𝜀  on Ω 

    𝑎𝑎 𝜕𝜕𝑖𝑖
𝜕𝜕𝑛𝑛

= 𝑔𝑔  on 𝜕𝜕Ω𝑁𝑁 

    𝑢𝑢 = 0  on 𝜕𝜕ΩD 
Strong formulation of the problem: Find a function 𝑢𝑢 ∈ 𝐻𝐻 with the above properties. 
 
Alternative: Choose a test function 𝐿𝐿 ∈ 𝐻𝐻0 =  𝑢𝑢 ∈ 𝐻𝐻 ∶ 𝑢𝑢 = 0 𝑜𝑜𝑛𝑛 𝜕𝜕Ω𝐷𝐷 , multiply the strong 
problem and integrate by parts. 
 
Weak formulation of the problem: 
Find 𝑢𝑢 ∈ 𝐻𝐻𝐷𝐷 = 𝑢𝑢 ∈ 𝐻𝐻 ∶ 𝑢𝑢 𝑠𝑠𝑎𝑎𝜕𝜕𝑚𝑚𝑠𝑠𝜀𝜀𝑚𝑚𝑠𝑠𝑠𝑠 𝐷𝐷𝑚𝑚𝑟𝑟𝑚𝑚𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝜕𝜕 𝐵𝐵𝐶𝐶𝑠𝑠 𝑜𝑜𝑛𝑛 𝜕𝜕Ω𝐷𝐷  such that for all 𝐿𝐿 ∈ 𝐻𝐻0 we have 

 𝐵𝐵 𝑢𝑢,𝐿𝐿 ≔ 𝑎𝑎𝛻𝛻𝑢𝑢,𝛻𝛻𝐿𝐿 + 𝑏𝑏𝑢𝑢,𝐿𝐿 = 𝜀𝜀,𝐿𝐿 −  ∫ 𝑔𝑔𝜕𝜕Ω𝑁𝑁
 𝑑𝑑𝑑𝑑(𝑥𝑥) 
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1D Laplace Equation: Standard FE  
Laplace equation 1D 
  𝐿𝐿𝑢𝑢 ≔ −𝛻𝛻 ⋅ 𝛻𝛻𝑢𝑢 = 𝜀𝜀  on Ω 
   𝑢𝑢 = 0  on 𝜕𝜕Ω 
Weak formulation: Find 𝑢𝑢 ∈ 𝐻𝐻01 (Sobolev space) with 

 𝐵𝐵 𝑢𝑢,𝐿𝐿 = ∫ 𝛻𝛻𝑢𝑢 𝑥𝑥 ⋅ 𝛻𝛻𝐿𝐿(𝑥𝑥)Ω  𝑑𝑑𝑥𝑥 =  ∫ 𝜀𝜀𝐿𝐿Ω  𝑑𝑑𝑥𝑥 = (𝜀𝜀,𝐿𝐿) 

 
Standard FE on grid 𝒙𝒙𝟎𝟎, … ,𝒙𝒙𝑵𝑵 : 

 Ansatz: 𝑢𝑢 𝑥𝑥 =  ∑ 𝑢𝑢𝑖𝑖𝜉𝜉𝑖𝑖(𝑥𝑥)𝑖𝑖 , where 𝜉𝜉𝑖𝑖 is hat function at 𝑥𝑥𝑖𝑖 

Computation per element 𝐾𝐾 = 𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑖𝑖+1 , 𝐷𝑖𝑖 ≔ 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 

 𝐵𝐵𝐾𝐾 𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖 =  ∫ 1
ℎ𝑖𝑖

2

𝐾𝐾  𝑑𝑑𝑥𝑥 = 1
ℎ𝑖𝑖

  

 𝐵𝐵𝐾𝐾 𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖+1 = − 1
ℎ𝑖𝑖

 

Element matrix:  𝐴𝐴𝐾𝐾 =  1 𝐷𝑖𝑖⁄ −1 𝐷𝑖𝑖⁄
−1 𝐷𝑖𝑖⁄ 1 𝐷𝑖𝑖⁄  

Global matrix: 𝐴𝐴 = 𝜕𝜕𝑟𝑟𝑚𝑚𝑑𝑑𝑚𝑚𝑎𝑎𝑔𝑔 ( −1 𝐷𝑖𝑖−1⁄ , 1 𝐷𝑖𝑖−1⁄ +  1 𝐷𝑖𝑖⁄  ,−1 𝐷𝑖𝑖⁄  ) 
We get a M-matrix 
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2D Laplace Equation: Standard FE 
Laplace equation with homogenous Dirichlet BCs in 2D 

  𝐵𝐵 𝑢𝑢,𝐿𝐿 = ∫ 𝛻𝛻𝑢𝑢 𝑥𝑥 ⋅ 𝛻𝛻𝐿𝐿(𝑥𝑥)Ω  𝑑𝑑𝑥𝑥 =  ∫ 𝜀𝜀𝐿𝐿Ω  𝑑𝑑𝑥𝑥 = (𝜀𝜀,𝐿𝐿) 

 
Remarks: 
1. Bilinear form 𝐵𝐵 can be evaluated on 𝑈𝑈ℎ × 𝑈𝑈ℎ, hence 𝐵𝐵ℎ is uniformly elliptic. 
2. The right integral can not be computed exactly for general 𝜀𝜀 ∈ 𝐿𝐿2(Ω): 

Ansatz 𝜀𝜀 = ∑ 𝜀𝜀𝑖𝑖𝜉𝜉𝑖𝑖(𝑥𝑥)𝑖𝑖  leads to discrete form 𝑀𝑀𝜀𝜀 

3. Resulting linear system 
𝐴𝐴 𝑢𝑢 = 𝑀𝑀 𝜀𝜀 

4. 𝐴𝐴 is positive definite, hence stable. 
5. A is not necessarily M-matrix, but we have in 2D: 

For triangulations without obtuse angles, then 𝐴𝐴 is M-matrix. 
6. Mesh geometry determines matrix properties. 
7. Similar results hold for the Poisson equation 

 
  𝐵𝐵 𝑢𝑢,𝐿𝐿 = ∫ 𝑎𝑎 𝑥𝑥  𝛻𝛻𝑢𝑢 𝑥𝑥 ⋅ 𝛻𝛻𝐿𝐿(𝑥𝑥)Ω  𝑑𝑑𝑥𝑥 =  ∫ 𝜀𝜀𝐿𝐿Ω  𝑑𝑑𝑥𝑥 = (𝜀𝜀, 𝐿𝐿) 
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Box Method (BM) 

Assumption: Divergence form of operator 
 

𝐿𝐿𝑢𝑢 𝑥𝑥 = −𝛻𝛻 ⋅ 𝑭𝑭 𝑥𝑥,𝑢𝑢 = 𝜀𝜀(𝑥𝑥) 
 
and partition of Ω into boxes 𝐵𝐵𝑖𝑖 . 
Gauss theorem per box 𝐵𝐵𝑖𝑖: 
 

� 𝐿𝐿𝑢𝑢(𝑥𝑥)
Bi

 𝑑𝑑𝑥𝑥 = − � 𝛻𝛻 ⋅ 𝑭𝑭(𝑥𝑥,𝑢𝑢 𝑥𝑥 )
𝐵𝐵𝑖𝑖

 𝑑𝑑𝑥𝑥 = −  � 𝑭𝑭 𝑥𝑥 ⋅ 𝜈𝜈𝑖𝑖 𝑥𝑥
𝜕𝜕𝐵𝐵𝑖𝑖

 𝑑𝑑𝑑𝑑(𝑥𝑥) 

Remarks: 
• Transform divergence form from volume integral into surface integral 
• We need approximation for 𝑭𝑭 𝑥𝑥 ⋅ 𝜈𝜈𝑖𝑖 𝑥𝑥  on box boundary. 
• Form of boxes not yet specified. 
• Relation to FE: The test function is the characteristic function of the box, 

trial functions are not yet specified. 
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BM: Voronoi Boxes 

Voronoi boxes: defined by mid-perpendicular ‘planes’ of all grid edges: 
 

𝐵𝐵𝑖𝑖 =    𝑥𝑥 ∈ Ω  ∶   𝑥𝑥 − 𝑥𝑥𝑖𝑖| ≤ 𝑥𝑥 − 𝑥𝑥𝑖𝑖  𝜀𝜀𝑜𝑜𝑟𝑟 𝑎𝑎𝐷𝐷𝐷𝐷 𝑗𝑗 ≠ 𝑚𝑚 } 

Box method with grid vertices (   ) 
and dual Voronoi grid (blue) 
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BM: Delaunay Property 

 
 
 
Delaunay Property: 
The (inner of the) circumsphere/circle 
of each grid element does not contain 
any grid point. 
 
 
Remarks: 
• Delaunay guarantees overlap-free 

partitioning of Ω with Voronoi boxes. 
 

• Obtuse angles (i.e ≥ 𝜋𝜋/2 ): 
 
 𝑠𝑠𝑇𝑇1𝑖𝑖,𝑖𝑖 < 0  ,    𝑠𝑠𝑇𝑇2𝑖𝑖,𝑖𝑖 > 0 
 
Delaunay guarantees 
 
 𝑠𝑠𝑖𝑖,𝑖𝑖   ≔ 𝑠𝑠𝑇𝑇1𝑖𝑖,𝑖𝑖 + 𝑠𝑠𝑇𝑇2𝑖𝑖,𝑖𝑖  ≥ 0 
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BM: Poisson Equation  
Poisson Equation: 

𝐿𝐿𝑢𝑢 𝑥𝑥 = −𝛻𝛻 ⋅ 𝑎𝑎 𝑥𝑥 𝛻𝛻𝑢𝑢 = 𝑔𝑔 𝑥𝑥  
 
Mid-perpendicular box method: 
 

− � 𝛻𝛻 ⋅
Bi

𝑎𝑎 𝑥𝑥 𝛻𝛻𝑢𝑢 𝑑𝑑𝑥𝑥 = − � 𝑎𝑎 𝑥𝑥 𝛻𝛻𝛻 x ⋅ 𝜈𝜈𝑖𝑖
𝜕𝜕Bi

 𝑑𝑑𝑑𝑑 𝑥𝑥 ≈ −  �𝑎𝑎𝑖𝑖𝑖𝑖
𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖

 𝑠𝑠𝑖𝑖𝑖𝑖
𝑖𝑖(𝑖𝑖)

 

 

� 𝑔𝑔(𝑥𝑥)
𝐵𝐵_𝑖𝑖

 𝑑𝑑𝑥𝑥 ≈ 𝐵𝐵𝑖𝑖  𝑔𝑔𝑖𝑖 

with 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎 𝑥𝑥𝑖𝑖 + 𝑎𝑎 𝑥𝑥𝑖𝑖 /2 some average of 𝑎𝑎 on the edge. 

Remarks: 
• M-matrix property depends on averaging of 𝑎𝑎. 
• Laplace operator: std FE and BM coincide in 2D, but differ in 3D (except for equilateral 

tetrahedra which do not fill the whole space). 
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1D Drift-Diffusion: Model Problem  

Drift-diffusion operator on the interval 0; 1 : 
   − 𝑛𝑛′ − 𝜑𝜑′𝑛𝑛 ′ = 0  
   𝑛𝑛 0 = 0   , 𝑛𝑛 1 = 1 
and assume 𝜑𝜑′ = 𝛽𝛽 to be constant 
 

o Exact solution:  𝑛𝑛 𝑥𝑥 =  exp 𝛽𝛽𝑥𝑥 −1
exp 𝛽𝛽 −1

 

o Solution is strictly monotonously increasing (independent of sign of 𝛽𝛽) 
o Well known: large drift causes problems in discretization, leading to instabilities 
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1D Drift-Diffusion: FD Discretization 
Equidistant grid: 𝐷 = 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 

Gradients on intervals left and right: 𝑠𝑠− ≔  𝑛𝑛𝑖𝑖−𝑛𝑛𝑖𝑖−1
ℎ

 and 𝑠𝑠+ ≔  𝑛𝑛𝑖𝑖+1−𝑛𝑛𝑖𝑖
ℎ

 

Equation: 
−
𝑠𝑠+ − 𝑠𝑠−

𝐷
+ 𝛽𝛽

𝑠𝑠+ + 𝑠𝑠−
2

 = 0 

−
𝑛𝑛𝑖𝑖+1 − 𝑛𝑛𝑖𝑖 + 𝑛𝑛𝑖𝑖−1

𝐷2
+ 𝛽𝛽

𝑠𝑠𝑖𝑖+1 − 𝑠𝑠𝑖𝑖−1
2𝐷

= 0 

Matrix: 

𝐴𝐴 =
1

2𝐷2
𝜕𝜕𝑟𝑟𝑚𝑚𝑑𝑑𝑚𝑚𝑎𝑎𝑔𝑔(−2 − 𝐷𝛽𝛽, +4,−2 + 𝐷𝛽𝛽) 

 

• We get  𝑠𝑠+
𝑠𝑠−

= 1 + ℎ𝛽𝛽
2

1 − ℎ𝛽𝛽
2

�  or in words 

 
 
• The equation poses requirements grid or discretization 
• The resulting matrix is not M-matrix 
• The characteristic quantity 𝑃𝑃 = 2/𝛽𝛽 is called mesh Peclet number 
• Some words: upwinding method, exponential fitting 
 
 
  

The solution oscillates if 𝒉𝒉𝒉𝒉 > 𝟐𝟐 !!! 
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1D Scharfetter-Gummel Discretization 
Assumptions: 𝑥𝑥0,𝑥𝑥1  interval, 𝐽𝐽 constant current density, and 𝑢𝑢 ≔ exp −𝜙𝜙  the 
Slotboom variable, then 

𝐽𝐽 = −𝜇𝜇𝑛𝑛 𝜙𝜙𝜙 = 𝜇𝜇 exp 𝜑𝜑 𝑢𝑢𝜙 
𝜇𝜇 constant, and 𝜑𝜑 linear in 𝑥𝑥, and use notation Δ𝑥𝑥 ≔ 𝑥𝑥1 − 𝑥𝑥0 
Solve BVP for u: 

Δ𝑢𝑢 =  �
𝐽𝐽
𝜇𝜇

exp ([−𝜑𝜑1 𝑥𝑥 − 𝑥𝑥0 − 𝜑𝜑0 𝑥𝑥1 − 𝑥𝑥 ]/Δ𝑥𝑥)  𝑑𝑑𝑥𝑥 

= ⋯ =  
𝐽𝐽
𝜇𝜇

 
Δ𝑥𝑥
Δ𝜑𝜑

 [exp −𝜑𝜑0 − exp(−𝜑𝜑1)] 

Express J in terms of densities: replace 𝑢𝑢𝑖𝑖 = exp −𝜑𝜑𝑖𝑖 𝑛𝑛𝑖𝑖, then 
 

𝐽𝐽 =  
𝜇𝜇
Δ𝑥𝑥

Δ𝑢𝑢 Δ𝜑𝜑
1

exp −𝜑𝜑0 − exp (−𝜑𝜑1)
=

𝜇𝜇
Δ𝑥𝑥

Δ𝜑𝜑
exp Δ𝜑𝜑 − 1

𝑛𝑛1 +
Δ𝜑𝜑

1 − exp (−Δ𝜑𝜑)
𝑛𝑛0  

 
=  

𝜇𝜇
Δ𝑥𝑥

 𝑏𝑏 Δ𝜑𝜑 𝑛𝑛1 − 𝑏𝑏 −Δ𝜑𝜑 𝑛𝑛0                                                                         

where we used the Bernoulli function 𝑏𝑏 𝑥𝑥 ≔ 𝑥𝑥/(exp 𝑥𝑥 − 1). 
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SG Current Density 

Scharfetter-Gummel (SG) approximation  
 
 
 
 
Remarks: 
• SG reduces for Δ𝜑𝜑 = 0 to pure diffusion. 
• Resembles an unsymmetrically weighted diffusion expresion (artificial diffusion). 
• BM with this SG approximation for J gives M-matrix independent of Δ𝜑𝜑 because 

 
𝜕𝜕𝐽𝐽
𝜕𝜕𝑛𝑛0

< 0    ,   
𝜕𝜕𝐽𝐽
𝜕𝜕𝑛𝑛1

> 0  

𝐽𝐽 =  
𝜇𝜇
Δ𝑥𝑥

 𝑏𝑏 Δ𝜑𝜑 𝑛𝑛1 − 𝑏𝑏 −Δ𝜑𝜑 𝑛𝑛0  
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Discretized Equations 
Higher dimensions: 
• The SG expression is used in the BM, extending to the SG-BM. 
• The one-dimensional character along grid edges remains. 

 
Discretized equations: 
 

𝐹𝐹𝜑𝜑 𝑖𝑖
=  �𝜀𝜀𝑖𝑖𝑖𝑖

𝑠𝑠𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖
𝑖𝑖(𝑖𝑖)

 −   Bi 𝑝𝑝𝑖𝑖 − 𝑛𝑛𝑖𝑖 + 𝐶𝐶𝑖𝑖 = 0 

  

𝐹𝐹𝑛𝑛 𝑖𝑖 =  �𝜇𝜇𝑖𝑖𝑖𝑖𝑛𝑛
𝑠𝑠𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

𝑏𝑏 𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖 𝑛𝑛𝑖𝑖 − 𝑏𝑏 𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖 𝑛𝑛𝑖𝑖
𝑖𝑖(𝑖𝑖)

 +  Bi 𝑅𝑅𝑖𝑖 = 0 

 

𝐹𝐹𝑝𝑝 𝑖𝑖
=  �𝜇𝜇𝑖𝑖𝑖𝑖

𝑝𝑝 𝑠𝑠𝑖𝑖𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

𝑏𝑏 𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖 𝑝𝑝𝑖𝑖 − 𝑏𝑏 𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖 𝑝𝑝𝑖𝑖
𝑖𝑖(𝑖𝑖)

 +  Bi 𝑅𝑅𝑖𝑖 = 0 
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SG-BM: Discussion 

• No closed theory is known for the SG-BM. 
• SG-BM guarantees stability on arbitrary boundary Delaunay meshes 

(extensively used in practice). 
• SG-BM as nonconforming Petrov-Galerkin method. 
• SG-BM is locally and globally dissipative: the dissipation rate per (non-obtuse) 

simplex is positive (Gajewski-Gartner). 
• Low convergence order is expected: experiments with grid adaptation show 𝑂𝑂(𝐷1/2). 
• The required boundary Delaunay property is quite restrictive (compared to simplex 

meshes). 



Grids 
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3D Example 
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Quad-Tree vs Normal-Offsetting 

Quad-tree and normal-offsetting mesh with current density. 
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SG-BM and Current Carrying Edges 

Observations 
• BM current along edge with one element 
  𝐼𝐼𝑖𝑖𝑖𝑖𝐸𝐸 = 𝑠𝑠𝑖𝑖𝑖𝑖𝐸𝐸  𝐽𝐽𝑖𝑖𝑖𝑖𝐸𝐸   

• SG-BM: element edge current densities 𝐽𝐽𝑖𝑖𝑖𝑖𝐸𝐸  
are not projections of one element vector 𝑱𝑱𝐸𝐸 

• Large element edge current densities might 
not be visible on other edges 

• Effect on total current: large 𝐽𝐽𝑖𝑖𝑖𝑖𝐸𝐸  with small 
Voronoi surface 𝑠𝑠𝑖𝑖𝑖𝑖𝐸𝐸  not visible 

 
 
Consequences 
• Edges should be aligned parallel and orthogonal to the local current density. 
• Highly anisotropic grids are desired in such situations (like channel of a MOSFET). 

 

Edge with Voronoi surface 
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Grid Effect on Terminal Current 

 
 
 
 
 
 
 
 
 
 
 
 
 
Huge current variations 
 
for a MOSFET structure 
during automatic grid  adaptation. 

Filled symbols indicate currents at same bias 
of AGM simulation. 
 
AGM: grid adapation 
REF: fixed grid 
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Concluding Remarks 

 
 
• We gave an introduction into discretization and solution strategies 

for the DD model. 
 

• We emphasized the importance of the 
M-matrix property, which seems to be indispensable. 
 

• We illustrated the relation between mesh and matrix properties. 
 

• Properties of the continuous problem are 
not automatically inherited by the discrete problem. 



Thank you for your attention ! 
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