Modeling and Simulation of SOI Devices

Andreas Schenk

Short Course, International SOI Conference, 2004

Andreas Schenk, ETH Zürich

Content

- Introduction
- Quantum-mechanical confinement effects

quantum V_T -shift (Si and poly) comparison single, double, triple, and surround gate quantum-mechanical mobility in DG SOI MOSFETs

• Tunnel generation in the drain-body junction

GIDL in floating-body PD SOI MOSFETs trap-assisted tunneling and the kink effect in PD SOI MOSFETs

Gate tunneling

direct and resonant tunneling leakage

gate-current-induced junction leakage in floating-body PD SOI MOSFETs stack dielectrics

valence-electron tunneling

Source-to-drain tunneling

quantum-ballistic simulations of FD DGSOI MOSFETs at the limit of scaling

Quasi-ballistic effects

strained silicon scalability of FinFETs, unstrained-Si and strained-Si FD SOI MOSFETs

• Outlook: Future simulation challenges

Introduction

Taxonomy of simulation models

	near equilibrium dissipative	quasi-ballistic	fully ballistic
quantum mechanics	Quantum drift– diffusion	NEGF with Büttiker probes	NEGF without S _{scatter}
\mathcal{M}		Wigner eq ⁿ	Scattering matrix
classical mechanics	Drift-diffusion Hydro	Boltzmann eq ⁿ (full band MC)	scattering free Boltzmann (analytic)

Output characteristics

Quantum effects in SOI devices

Quantum-mechanical confinement effects

Quantum V_T-shift

asymmetrical n⁺p⁺ DGSOI nMOSFET, t_{Si} =5 nm, t_{ox} =1.5 nm, L_{G} =90 nm

 N_{poly} =1e20 cm⁻³, A_{G} =1 μ m²

MOS (with poly) capacitor

eigenenergies

wave functions

 N_A =5e17 cm⁻³, t_{ox}=3 nm, V_G =3 V

$$N_A$$
=5e17 cm⁻³, t_{ox}=3 nm, A_G =1 μ m²

Electron density profile at poly-SiO₂ interface

• a "quantum dipole" forms as the electron waves are repelled from the poly-SiO₂ interface

 \bullet poly quantum depletion disappears with rising $V_{\rm G}$ (smoother poly band edge curvature)

Effect on CV curves

• strength of the quantum dipole depends on doping level within the first few nanometers

• no effect on CV, if $N_{poly} < 1e19 \text{ cm}^{-3}$ at the interface

Comparison single, double, triple, and surround gate

Influence of mesh refinement

Short Course, International SOI Conference, 2004

Andreas Schenk, ETH Zürich

Transfer characteristics

assumption: isotropic, classical mobility

- no corner effect (FD, no channel doping, 3x3 nm wire)
- only little improvement from double ? surround (gate overlap, e.g. triple gate is an effective ?-gate)

15

Transfer characteristics (contd.)

• quantum V_T -shift of ~ 64 mV, independent of gate configuration

• almost perfect shift on $V_{\rm GS}\text{-}axis$? quantum $V_{\rm T}\text{-}shift$ can be translated into work function difference

Quantum-mechanical mobility in DG SOI MOSFETs

"FINFET" with L_G=50 nm

P. M. Solomon and S. E. Laux, Proc. IEDM 2001, pp. 95-98

- doping gradient = 1 decade over 4 nm
- distance between pn-junctions = 8 nm
- length of source-drain barrier = 43 nm
- gate overlap = 21 nm

QM mobility model

phonon & surface roughness scattering yields $\mu_{eff}(E_{eff})$ as function of T, t_{Si} , t_{ox} , t_{box}

Coulomb scattering (roll-off) in channel, remote, and interface under development

Quantity	Front Interface	Back Interface
?	0.32 nm	0.32 nm
L _{corr}	1.5 nm	1.5 nm

- broad local maxima at t_{si}[~]10 nm caused by volume inversion
- reason: reduction of form factors $a_{N'N}=2dz |?_{N'}(z)|^2 |?_{N}(z)|^2$
- peaks at t_{si}[~]2 nm due to valley splitting, population, and form factor effects

- mobility enhancement around t_{si}[~]10 nm survives
- surface-roughness scattering flattens the curves
- mobility independent of $\rm E_{eff}$ for $\rm t_{Si}{<}2~nm$

• mobility enhancement in FINFETs amounts to 15% at $E_{eff}=5x10^5$ V/cm (depending on S-R scattering parameters)

• no enhancement in FD DGSOI

• FD DGSOI is almost identical to single-gate SOI MOSFETs Dependence of effective mobility on t_{box}

- decrease of effective mobility towards bulk value with increasing t_{box}
- two equally filled channels are precondition for enhancement
- density of upper channel almost unaffected by an increase of t_{box}

Tunnel generation in the drain-body junction GIDL in floating-body PD SOI MOSFETs

Floating-body PD SOI MOSFETs: where does the GIDL current go to?

band-to-band rate acts like base current in a parasitic bipolar!

Trap-assisted tunneling and the kink effect in PD SOI MOSFETs

generated holes lower the body potential (in eV) drain current increases

Artificial NDR effect in floating-body SOI MOSFETs by "hydrodynamic" simulation

- hot electrons diffuse (~ $?T_n$ /?r) into the body and recombine with holes
- the potential (in eV) increases ? drain current decreases
- impact ionization generates holes which remove hole depletion in the body ? the potential decreases ? drain current increases (kink effect)

Short Course, International SOI Conference, 2004

non-local TAT

Fermi level splitting over tunnel length

Gate tunneling

direct and resonant tunneling leakage

Gate current profiles in a MOSFET

Sensitivity on oxide shape at drain

poly re-oxidation can strongly reduce in-tunneling (and hence off-state power consumption)

gate-current-induced junction leakage in floating-body PD SOI MOSFETs

stack dielectrics

drain current only affected for strong in-tunneling

more likely: resonant tunneling

 $e_{ox} = 3.9, e_{Ni} = 7.5$ $m_{ox} = m_{Ni} = 0.42 m_0$

valence-electron tunneling (?)

UMC claims 30% enhancement of PMOS drive current by direct tunneling

S. S. Chen et al., IEEE TED 51(5) 2004, pp. 709-714

Floating-body PD SOI nMOSFET, t_{ox} = 1.6nm, V_{DS} = 1.2 V

Source-to-drain tunneling

quantum-ballistic simulations of FD DGSOI MOSFETs at the limit of scaling

Experiment:

H. Kawaura et al., APL 76(25) (2000)

Is source-to-drain tunneling a fundamental limitation to CMOS scaling?

★ Coherent transport

- ∃ inelastic scattering.
- An e^- remains in a fixed Ψ (solution of Schrödinger eqⁿ).
- When occupied, Ψ carries a current $I(\Psi) \propto \text{transmission probability } T(\epsilon)$.
- * Thermal carrier injection at the contacts.
- \Rightarrow Landauer–Büttiker formula:

$$\begin{split} I &= -\frac{2e}{h} \sum_{v,i} \int_{\epsilon_{v,i}^{0}}^{\infty} \mathrm{d}\epsilon \ T_{v,i}(\epsilon) \left(f\left(\beta(\epsilon - \epsilon_{\mathsf{Fermi}}^{\mathsf{src}})\right) - f\left(\beta(\epsilon - \epsilon_{\mathsf{Fermi}}^{\mathsf{drn}})\right) \right) \qquad \underline{1D} \\ I &= -\frac{2e}{h} \sqrt{\pi} \frac{W}{\lambda_{\mathsf{th}}} \sum_{v,i} \int_{\epsilon_{v,i}^{0}}^{\infty} \mathrm{d}\epsilon \ T_{v,i}(\epsilon) \left(\mathfrak{F}_{-\frac{1}{2}} \left(\beta(\epsilon_{\mathsf{Fermi}}^{\mathsf{src}} - \epsilon)\right) - \mathfrak{F}_{-\frac{1}{2}} \left(\beta(\epsilon_{\mathsf{Fermi}}^{\mathsf{drn}} - \epsilon)\right) \right) \underline{2D} \end{split}$$

W: width of the device $\lambda_{\rm th}$: electron thermal wave–length $h/\sqrt{2m^*k_{\rm B}T}$

J. Wang and M. Lundstrom, Proc. IEDM 2003

in simulation:

longer S/D, full oxide coverage

FINFET with (100)-SOI thickness of 1 nm, $V_{SD}=1\mu V$

FINFET with (100)-SOI thickness of 3 nm, $V_{SD}=1\mu V$

reason for the high off-current

height and width of source-drain potential barrier decrease drastically with shrinking gate length!

height of source-drain potential barrier only weakly dependent on channel doping!

Effect of channel doping

height of source-drain potential barrier pinned by gate bias! S2D-tunneling not significantly reduced by channel doping!

Effect of channel orientation /

<u><110></u>

4 in-plane valleys with $2m_lm_t/(m_l+m_t) = 0.31m_0$, but 2 valleys with $m_t = 0.19m_0$? no advantage

<u><111></u>

all six valleys with $3m_1m_t/(2m_1+m_t) = 0.26m_0$? strong suppression of S2D-tunneling

Effect of gate configuration

Quasi-ballistic effects

strained silicon

biaxial tensile strain:

Effect on band structure and drift mobility

Measured current improvement (IBM)

K. Rim et al., Symp. on VLSI Techn., 59 (2001)

• nMOSFET with strained Si channel, L_{eff} =67nm • 35% improvement at V_{GS} - V_{th} =1.0V, V_{DS} =1.2V

Non-linear and quasi-ballistic transport

- strain doesn't change saturation drift velocity
- 4% anisotropic stationary velocity at the most
- 35% anisotropic quasi-ballistic velocity

FBMC simulation of current scaling

Velocity and field profiles

- velocities at field peak are almost equal
- source-side velocity
 higher than saturation
 velocity
- anisotropic sourceside velocity

• ? quasi-ballistic transport near source is responsible for current improvement! Do we understand strained-Si MOSFETs?

population effect only ~15% larger

confinement already lifts valley degeneracy

stronger SR scattering (less screening) ?

(as tensile strain does)

lower mobility at higher E_{eff}

M. V. Fischetti et al., JAP 92(12) 2002, pp. 7320-24

Scalability of FinFETs, unstrained-Si and strained-Si FD SOI MOSFETs

- L_G scaling: 50? 25? 10nm; Si orientation = <110>
- constant off-current I_{off} =100nA/µm @ V_{DS} =0.9V by scaling of t_{Si} : 34.4? 17? 6nm
- corresponding scaling of source/drain, spacer length, doping steepness: 5? 2.5? 1m/dec

- strain defined by Si_{0.8}Ge_{0.2} buffer
- t_{Si} scaling unstrained: 14.8? 7.4? 2.7nm
- t_{si} scaling strained: 14.2? 7? 2.54nm
- strained needs thinner SOI to compensate for higher I_{off} (smaller gap)

• FinFET has the best scalability, but strained-Si FDSOI has the best on-current

- strain-enhanced I_{on}'s are due to source-side velocity overshoot
- velocity improvement for strained-Si FDSOI upon scaling to L_G =10nm cannot compensate the reduced sheet density ? on-current gets maximum
- problems: missing B2B and S2D tunneling (higher I_{off}), missing QM confinement

Outlook: Future simulation challenges

15

16 nm < 1 nm

Semiconductor-based nanodevices

(SEMs and SETs with strong confinement)

- "extension" of 'top down' CMOS, convergence of physics
- tolerances < 1nm, surface states, stray charges, wiring problem, power dissipation

Molecular nanodevices

(e.g. oligo-thiophen, C_{60})

• 'bottom up' strategy, no inherent tolerance problem (identical units)

• integration (self-assembly), yield, extremely small currents, sensitivity to contacting

Carbon nanotube devices

• 1D, ballistic transport at 300K up to 250nm? very high 'mobility', identical n- and p-type, ...

• "switch" based on Schottky barriers, integration, stray charges, sensitivity to chiral angle

quantum dai

Acknowledgement

ISE AG

Dr. Fabian Bufler

Dr. Andreas Wettstein

Dr. Axel Erlebach

Dr. Oleg Penzin

<u>ETHZ</u>

Dr. Frederik Heinz

Dr. Bernhard Schmithüsen

54

Timm Höhr