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Single electron transistors are studied by self-consistent 3D quantum mechanical simulation. Computa-
tion of the linear-response conductance requires the calculation of thermal ensemble averages. The
evaluation of these quantities can be substantially accelerated by means of Monte-Carlo sampling.

1 Introduction A single electron transistor (SET) is a three terminal device without a classically
conducting path from source to drain: between source and drain resides a capacitatively gated island
with tunnel junctions on either side (cf. Fig. 1). As long as the dimensions of the island regions are
large compared with the electron thermal wavelength, an SET may be readily described in terms of
the ‘orthodox theory’ [1]. For islands with dimensions comparable to the electron thermal wavelength,
however, quantum confinement effects and energy-dependent tunnelling rates render the orthodox the-
ory inapplicable. It is these quantum dot SETs that the present paper addresses. Computation of the
conductance of such devices calls for a microscopic approach, that accounts correctly for both the
quantum mechanics and the statistical mechanics of the quantum dot and its surroundings.

2. Simulation Method Our simulation approach is based on the self-consistent evaluation of the
electronic structure inside a 3D geometry model of the device under study [2]. The simulation volume
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Fig. 1 (online colour at: www.interscience.
wiley.com) Simulation geometry of a nano-
scale SOI SET with charge density iso-sur-
face.



is sub-divided into quantum well, quantum wire and quantum dot regions depending on the degree of
confinement along the different spatial directions. For each region we solve the finite temperature
generalisation [3] of the effective mass Kohn–Sham equations in local density approximation (LDA).
Bardeen’s transfer Hamiltonian method [4] is invoked for the computation of tunnelling rates G src

i
(Gdrn

i ) between source (drain) region and the i-th single particle level of the quantum dot. In the
presence of low potential barriers a 3D generalisation [5] of the transfer Hamiltonian is used for the
quantum dot region; this allows us to apply Dirichlet boundary conditions at the surface of an (en-
larged) Schr�dinger domain without running the risk of introducing spurious states in artificial poten-
tial wells near the domain walls.

For each value of the gate voltage, these computations are carried out for various electron numbers
N on the quantum dot, giving rise to N-dependent Kohn–Sham orbital energies Ei;N and tunnelling
rates G

src=drn
i ðNÞ, as well as N-dependent Hartree (Ee�eðNÞ), exchange-correlation (ExcðNÞ) and ex-

change-correlation potential (Exc�potðNÞ) energies.

3 Conductance extraction If the lifetime of the (quasi-)localised quantum-dot states exceeds the
inelastic scattering time inside the quantum dot, the dominant mechanism for charge transport from
source to drain is sequential tunnelling through the quantum dot. In this transport regime, the linear
response conductance of the device is given by Beenakker’s conductance formula [6]:

G ¼ e2

kBT

P
fnig

P
�
fnig

�P
i

G src
i Gdrn

i

G src
i þ Gdrn

i

dni;0 f
E0i;N � EF
kBT

� �

¼ e2

kBT

P
N

PðNÞ
P
i
ð1� Pðni ¼ 1jNÞÞ G src

i Gdrn
i

G src
i þ Gdrn

i

dni;0 f
E0i;N � EF
kBT

� �
: ð1Þ

Here E0i;N is the energy needed to populate the i-th single electron orbital in a given configuration.
PðNÞ is the probability for having a total electron number of N on the quantum dot; Pðni ¼ 1 jNÞ is
the N-particle Gibbs distribution, i.e. the probability for occupation of single electron orbital i pro-
vided that the total electron number on the quantum dot is N.

The Pðni ¼ 1 jNÞ are identical to the phase space averages nih iN over the N-particle sub-space
(subsequently denoted as fnigN) of the internal phase-space of the quantum dot. Likewise, the
PðNÞ / exp ð�bðFðNÞ � NmÞÞ may be expressed in terms of phase-space averages �h i, by writing the
free energy as

FðNÞ ¼ Eh iN�T � SðNÞ ;
SðNÞ ¼ �kB
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In order to make the task of phase-space averaging tractable, constant interaction is assumed inside
each N-particle segment of phase-space, i.e. Ee�e, Exc and Exc�pot depend only on N ¼

P
i
ni, not on

the specific single-particle configuration fnig. Thus, the difference in energy between two single parti-
cle configurations fnig at equal N reduces to the difference in Kohn–Sham orbital energy
Eorbital

�
fnig

�
¼

P
i
niEi;N .

Still, the computational effort for direct evaluation of �h iN will be prohibitive for large electron
numbers, especially at elevated temperature. Then, the number of single-particle orbitals #orb that
need to be taken into account will be considerably larger than the number of electrons, thus making

the number of possible configurations, card
�
fnigN

�
¼ # orb

N

� �
, very large. This has given rise to

approximations, e.g. restriction to a T ¼ 0 ground-state (‘‘Slater rule”) or replacement of the free

energy F with the internal energy E and use of a shifted Fermi function (with ~EEF chosen such that the
total electron number N is reproduced) instead of the Gibbs distribution.
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We have developed a Monte-Carlo (MC) sampling scheme that allows for full evaluation of the
statistical mechanics of the quantum dot at moderate computational effort even in the case of very
large phase spaces. This allows us to study the validity of customary approximations.

4 Monte-Carlo sampling scheme The thermal average of a quantity A may be written as

Ah iN ¼
P
fnigN
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provided that the set MN is chosen in such a way, that the number of occurrences of a micro-state fnig in
MN is proportional to P

�
fnig jN

�
. It has been shown by Metropolis [7] that this condition is automati-

cally met, if MN is constructed as a sequence of states s1; s2;2 fnigN according to the following rules:
Transition: sn ! snþ1:
1. Choose a random state s ) energy: EðsÞ.
2. Accept s as snþ1 with probability

P ¼
1 if EðsÞ < EðsnÞ ;

exp � EðsÞ � EðsnÞ
kBT

� �
otherwise :

8<
:

3. If s is not accepted, go back to step 1.

The finite sub-sequences Mn
N :¼ fs1; . . . ; sng of MN may be used to obtain estimates Ah inN for Ah iN.

When estimating the error
�� Ah inN� Ah iN

��, it is important to note that the samples si are correlated.
Therefore, the error is augmented by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2t þ 1

p
relative to the uncorrelated case, t being the

correlation ‘‘time” of the sequence AðsiÞ. In our implementation, only transitions that transfer a single
electron to a different orbital are considered. This results in typical correlation times of about 4
sequence steps; the worst correlation time observed was about 50. A less restrictive transition matrix
might help reduce correlation times and thus speed up convergence. But, in contrast to the determinis-
tic evaluation of phase space averages, the Monte-Carlo scheme never dominated the total simulation
time; thus, little need was felt for optimisation at this stage.

5 Results The results in this section were obtained from simulations modelled on a GaAs split-gate
SET manufactured at the University of W�rzburg. The effect of Fermi level pinning due to surface
states was incorporated into the model as a Dirichlet condition on the conduction band edge at the
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Fig. 2 a) Charging curve of a GaAs SET. – : Monte-Carlo; � : S ¼ 0. Solid line: T ¼ 1 K; dashed: T ¼ 1:5 K.
b) Conductance as function of the electron number.



exposed GaAs surface. The value of the pinning energy was determined by matching the turn-on
voltage of the quantum point contact (QPC) that forms, when the source-dot tunnelling barrier is
lowered, to experimental data.

Figure 2 shows the simulated single electron charging curve and the conductance of this device;
conductance was plotted vs. electron number for better visibility. The results of the Monte-Carlo pro-
cess (displayed with heavy lines) were found to be practically identical (i.e. deviation in the electron
number �0:004) to the results of the full phase space sum –– the nif gN in this simulation contained
up to 155 million states, thus evaluation of the sum was still possible, albeit time consuming. Light
lines are used for displaying the results of the approximate evaluation of Eq. (1), in which entropy
was neglected and the Gibbs distribution replaced with a shifted Fermi function. The influence of the
approximations on the charging curve is noticeable, but quite small; this is due to the fact, that the
entropy term contributes only weakly to the free energy. Conductance is more strongly affected by the
approximations: deviations as large as a factor of three (both above and below the actual value) can
be observed; the distortion of the peak shapes can be seen even from a logarithmic plot.

The absolute values of the simulated conductance are extremely small. This might be a calibration
issue: recent simulations have shown the quantum dot electron number (and hence the SET conduc-
tance) to be much more susceptible to changes in the pinning energy than the QPC conductance used
in its determination. Thus, with the strong increase in conductance with electron number, a slight
modification of the surface pinning energy can give rise to a massive increase in linear response
conductance. Alternatively, transport through the quantum dot might be coherent rather then dephas-
ing –– preliminary calculations for the coherent mechanism suggest good agreement with experimental
data; but further work will be needed to clarify this point.

6 Conclusion When explicit evaluation of the statistical terms in the conductance formula becomes
intractable in large phase-spaces, Monte–Carlo sampling yields accurate results at much reduced com-
putational effort. This eliminates the need for ad hoc approximations of questionable validity.
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