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Introduction

SEMICONDUCTOR nanowires (NW) are assumed to
play an important role in the future of nanoelectronics

as they can act both as active devices (transistors) and as
wire connectors. Several materials such as Si, GaAs, and
Ge can be used for building NWs with different cross sec-
tional shapes and channel orientations. Computer simu-
lations of NWs help to gain deeper physical insights and
support the experimental development techniques in con-
junction with the fabrication of such novel devices. In the
regime of a few tenths of nanometers the quantum me-
chanical treatment, i.e.the solution of the Schrödinger equa-
tion, becomes inevitable. A possible way to include the
atomistic character of NWs is given by the pseudopoten-
tial [3] method. Further simplifications lead to the more
manageable empirical pseudopotential methods (EPM) [4]
which have been extensively investigated in the case of sili-
con [5]. The effective mass approximation finally represents
the most popular approach used in present device simula-
tors [1].
The first part of this work is concerned with the application
of the EPM to silicon nanowires as well as the introduction
of the EMA. The discrepancy between the EMA and EPM
are discussed in the case of a weak harmonic potential and
a simple improvement of the EMA is presented in the end.

Theory

IN this work the NWs are assumed to be carved out of
a bulk crystal without any a posteriori relaxation treat-

ment. The single-particle Schrödinger equation describing
an electron in an arbitrary crystal is given by[

− ~2

2me
∆ + V (~r)

]
Ψ(~r) = EΨ(~r), (1)

where me is the electron mass and V (~r) is periodic with re-
spect to a unit cell Ω spanned by three vectors {~a1, ~a2, ~a3}.
Blochs theorem states that the solution of Eq. (1) has the
form

Ψ(~r) → Ψ
n,~k

(~r) = exp(i~k~r)u
n,~k

(~r)

E → En(~k), (2)

where n ∈ N and En(~k) is referred to as the bandstructure.
The vector ~k belonging to the so called reciprocal space is
restricted to Ω̂ ≡ span{~b1, ~b2, ~b3}, where ~bi are given as the
columns of the matrix 2π(~a1, ~a2, ~a3)−1 for i = 1, 2, 3. Further-
more, the function u~k(~r) from Eq. (2) is periodic w.r.t. the
unit cell Ω and can be expressed in terms of plane waves

u
n,~k

(~r) =
∑
~G∈Λ

c(~G) exp(i ~G~r), (3)

where Λ = {n1
~b1 + n2

~b2 + n3
~b3 | n1, n2, n3 ∈ Z}. For com-

putational purposes the set Λ from Eq. (3) is reduced to
Λ̃ ≡ {~G ∈ Λ | ~2 ~G2/(2me) ≤ C} for a given cutoff energy
C. In order to obtain an equation for u

n,~k
(~r) the ansatz from

Eq. (2) is used in Eq. (1) yielding the secular equation[
~2

2me

(
−i~∇ + ~k

)2
+ V (~r)

]
u
n,~k

(~r) = En(~k)u
n,~k

(~r). (4)

For a given vector ~k the secular problem given in Eq. (4)
is solved on the unit cell Ω yielding a discrete set of eigen-
values parametrized by n which finally compose the band-
structure En(~k). The EMP employs a superposition of
atomic pseudopotentials Vatom(|~r|), i.e.

V (~r) =
∑
~Ratom

Vatom(|~r − ~Ratom|), (5)

in order to approximate the screened potential V (~r) from
Eq. (1). The effective potential Vatom(|~r|) given in Eq. (5)
is adjusted to fit either experimental or ab-initio calculated
data. In Ref. [5] the Vatom are fitted to the bulk Si bandstruc-
ture, effective masses, and the surface work function.

Nanowire Bandstructure

THE unit cell containing the wires portion from which the
entire nanostructure is generated via periodic contin-

uation is given by Ω = [0, Lx] × [0, Ly] × [0, Lz]. While
Lx = a = 0.543 nm the Ly and Lz delimit the transverse
wire extensions including the hydrogen passivated surface
as well a vacuum layer. The wires interior mainly consists
of silicon blocks of size a × a × a which are transversally
aligned. A plot of a nanowire consisting of 4 × 4 blocks is
given in Fig. 1. In the following the wires are assumed to

have a square cross section and the width is specified by
a number of blocks. The wire bandstructure can be com-
puted according to Eq. (1) and a plot of the bandstructure
belonging to the 4× 4 nanowire described in Fig. (1) is plot-
ted in Fig. (2). Note the presence of an energy gap similar
to the bulk case. The minumum of the upper energy por-
tion is referred to as the lowest unoccupied molecular or-
bital (LUMO) and its probability density |Ψ

n,~k
(~r)|2 is plotted

in Fig. (3).

Figure 1: The wire unit cell consisting of 4 × 4 blocks. A
block is highlighted by the green box. Hydrogen and silicon
atoms are denoted by the blue and red spheres respec-
tively. The black box finally delimits the vacuum layer.
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Figure 2: The wire bandstructure plotted from (−π/a, 0, 0)
to (π/a, 0, 0) according to the parametrization of Ref. [5].
The minimum of the upper energy portion is referred to as
the lowest unoccupied molecular orbital (LUMO).

Figure 3: The probability density of the lowest unoccupied
molecular orbital. The bounding box is identical to the one
shown in Fig. (1).

EMA compared to the EPM

THE effective mass approximation considerably simpli-
fies the expression given in Eq. (1) by dropping the po-

tential term V (~r) at the cost of a slightly modified kinetic
operator, i.e.

− ~2

2me

~∇TM~∇F (~r) = EF (~r), (6)

where F (~r) is an approximation to the envelope of Ψ(~r) and
M is parametrized according to Ref. [5]. Following Ref. [6]
the case of a nanowire is mimicked by imposing Dirichlet
boundary conditions to Eq. (6) according to the wires width.
The LUMO energies computed via the EMA are compared
to the EPM results for a set of wires and summarized in
Fig. (4). The overestimation of the EPM energies by the
EMA is a consequence of the confinement.
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Figure 4: The LUMO energies computed via the EMA are
compared to the EPM results for different wire widths, i.e.
number of blocks.

Harmonic Perturbation

THE nanowire described in the previous section is now
subjected to a weak harmonic perturbation of the form

U(~r) = α(y2 + z2), (7)
where α is width dependent and kept smaller than 0.05
eV/nm2. The resulting LUMO energies are lifted with re-
spect to the free (unperturbed) case and summarized in
Fig. (5). Again, the EMA is found to overestimate the EPM
results. As the confinement is considered to be the major
cause of this discrepancy compared to the harmonic per-
turbation a first step would be to reduce the EMA energies
by the overestimation shown in Fig. (4), i.e. the free case.
The shifted EMA energies are notably closer to the EPM
results as can be seen in Fig. (5). Similar observations
have already been made [6] while studying currents through
silicon nanowires. The remaining difference between the
shifted EMA and the EPM is roughly half as large as the
effect caused by the harmonic perturbation and is related
to the treatment of the boundaries as well as nonparabolic-
ity or multi band effects which require more advanced ap-
proaches.
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Figure 5: The LUMO energies after adding a harmonic per-
turbation as described in Eq. (7). The circles denote the
EMA results after shifting the values by the overestimation
given in Fig. (4).

The secular problem described in Eq. (4) is expressed in
terms of plane waves as shown in Eq. (3). For the largest
wires considered in this work the matrices reach sizes up
to 9635× 9635 and are solved by means of the ScaLAPACK.
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