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Summary: Device simulation has two main purposes: to understand
and to depict the physical processes in the interior of a device, and to
make reliable predictions of the behavior of the next device generation.
Towards these goals, the quality of the implemented physical models is
decisive, forcing heuristic fit models to be replaced by “first-principle”-
based models. Since transport schemes using moments of the Boltzmann
equation are still dominant within the simulation community, the challenge
in developing models is given by a clever combination of sound physics with
functional simplicity. The extent to which this has been possible will be
demonstrated by means of two examples: band gap narrowing and band-
to-band tunneling. We point out the limitations set by the poor knowledge
of certain parameters, by the breakdown of common approximations, and
by unresolved principle problems.

1 Introduction

The description of transport in semiconductor devices requires models for both
the interaction processes and the embedding system. These models will have dif-
ferent form depending on the transport equations used. However, every transport
scheme demands expressions for the scattering of charge carriers with elemen-
tary excitations of the crystal as well as with each other, with impurities, device
boundaries or interior interfaces, and models of all generation-recombination
processes. The embedding system is given by material parameters, e.g. band
gap, intrinsic density, and by external quantities like the doping and defect pro-
files, boundaries, and others.

As there is an upward averaging of the transport equations by considering
mean values of the current density operator or the classical momentum, respec-
tively, a corresponding “philosophy” should be applied to the physical models for
the transport coefficients arising in these equations. The advantage is obvious:
derived quantities and parameters can be traced back to their physical origin,
and the performance of the device can be understood on physical grounds. How-
ever, because the coarsening procedure itself is difficult, and only in very rare
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cases the “first-principle”-based models agree satisfactory with the experimen-
tal data, often the preferred way is just the other way around. Simple analytical
functions and various adjustable parameters guarantee the required fit and short
computation times. This even can lead to the extreme case that a completely
wrong model shows a “perfect” agreement with measurements. From these rea-
sons, physical models should be at least consistent and transparent, which e.g.
means that changes in one model as response to some observed properties of the
device must be inevitably followed by corresponding changes in other models,
and that all parameters should allow a physical interpretation. On the other
hand, because it is generally necessary to apply certain models to the extrac-
tion of experimental data, it seems to be most reliable to use a consistent set of
measured parameters from one group instead of mixing the results of different
authors without comparing them thoroughly. Although empirical formulas have
been applied successfully in numerical device simulation, the trend to miniatur-
ization, vertical integration and higher doping forces the models to become more
microscopic and therefore more physics-based. For instance, tunneling phenom-
ena like band-to-band tunneling, defect-assisted tunneling or tunneling across
potential- and oxide barriers, require the incorporation of quantum-mechanical
models also into the classical equations by means of generation rates or proper
boundary conditions.

In this article we will focus on the class of models necessary for all transport
schemes that are based on taking moments of the Boltzmann transport equation
(BTE). Full-band Monte Carlo (MC) simulations of the BTE are becoming in-
creasingly important, but their application in an industrial environment is still
inhibited by very long computation times. To date, the so-called energy balance
(EB) model is widely used in simulating sub-micron devices, which extends the
familiar drift-diffusion (DD) model by conservation laws for the energy density
of the sub-systems (electrons, holes, lattice). In the next section we give a brief
summary of physical models needed for the EB equations. In order to keep the
advantage of (relatively) short computation times, it is crucial to derive the mod-
els in a simple analytical form avoiding numerical integrations or iterations, but
at the same time saving as much physical information as possible. In Sections
3 and 4 we will illustrate the extent to which this has been possible by means
of two examples: band gap narrowing and band-to-band tunneling. We restrict
ourselves to silicon as the technologically most important semiconductor. The
discussion in Section 5 will concentrate on the limitations raised by the poor
knowledge of certain parameters, by the breakdown of common approximations,
and by some principle problems that have been not resolved yet.



Physical Models for Device Simulation 3

2 Physical Models for Energy Balance Equations

Originally, Stratton [1] applied the first three moments of the BTE to formu-
late equations of flow for charge carriers and energy in semiconductors. Later,
Blgtekjeer described a model with zeroeth through third order, thus including
also the energy flux density as an unknown [2]. The schemes of both authors
differed in the treatment of the relaxation time. More recent work by Bringer
et al. [3] and Azoff [4, 5] has also included the third-order moment. Based on
the work of Blotekjer, Rudan and Odeh [6] gave a detailed derivation of the
hydrodynamic (HD) transport model and also proposed a discretization tech-
nique for the steady-state case, including appropriate boundary conditions. A
discretization of the full time-dependent HD model was presented by Forghieri
[7]. By neglecting a term which is quadratic in the current density (the so-called
convective term) and the drift part of the kinetic energy as compared with the
carrier mean thermal energy %kBTc, Cook and Frey [8] proposed a simplified
carrier and energy transport model which has come to be known as the energy
balance (EB) model (see also Blatekjeer [9]). Fukuma et al. [10] and Meinerzha-
gen [11, 12] have subsequently applied extensions of this model.

Fig. 1 shows a sketch of the EB model for the electronic sub-system. The first
three BTE moments were closed with the phenomenological constitutive relation
Q,, = — £, VT, between the conductive heat flow vector @Q,,, the electron ther-
mal conductivity %, and the electron temperature T,, according to Blgtekjzer [9].
The choice of this closure has recently been cast in doubt by Stettler et al. [13].
Further symbols, not explained explicitly in Fig. 1, have the following meaning:
Jn electric current density of electrons, F' = -Vt  electric field, o, = qunn
— electric conductivity, 5, — electron energy flux density, G — R — net gener-
ation rate, T — lattice temperature, ¢ — elementary charge, kg — Boltzmann
constant. The keywords in solid frames represent the models that have to be
provided for the physical description of transport coefficients (upper part) and
device phenomena (lower part). The latter were attached to different regions of
an erasable programmable read only memory (EPROM), which can be regarded
as a metal-oxide-semiconductor field effect transistor (MOSFET) containing a
floating gate for charge storage. Besides various mechanisms of charge transport
across interfaces and the non-ideal behavior of metal-semiconductor contacts, we
emphasized the so-called MOSFET degradation, which is one of the most severe
problems in modern microelectronics. It is produced by a long-term shift of the
threshold voltage due to charge trapping and eventual defect generation at the
interface caused by hot carriers in the channel.

We will not attempt here to give an overview of all the models cited in Fig. 1.
Taking only the mobility in silicon, there are dozens of published models (or
even hundreds when counting all the slight modifications). Excellent summaries
of the most widely used models can be found in the work of Selberherr [14, 15]
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and Baccarani et al. [16].
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Figure 1 Schematic of important transport parameters and related physical
models for energy balance equations (upper part). Important device phenomena

in different regions of an EPROM (lower part).
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3 Band Gap Narrowing

Heavy doping of certain device regions results in a shrunk band gap, thus the
effective intrinsic density can increase by orders of magnitude there. Band gap
narrowing (BGN) has a strong impact on device operation, in particular on the
current gain of bipolar transistors as shown in Fig. 2.
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Figure 2 Current gain of a bipolar transistor. Left part: doping profiles from
sheet resistance measurements (SRP), SIMS data, and 1D process simulation
(TESIM), right part: current gain simulations using different empirical BGN
models. Adapted from Ref. [17]

Application of different empirical BGN models has a tremendous effect on the
simulated current gain, which is for an npn-transistor proportional to npase /Perm ~
exp(—AE,/kgT), where AE, denotes the BGN in the emitter [18].

From a theoretical point of view BGN results from many-body effects and
from potential fluctuations caused by the disordered impurities. In addition,
electron-hole plasmas can modify the electron-impurity interaction.

3.1 Doping-Induced Rigid Shift of the Band Edges

The main contribution to BGN is caused by many-body effects. Low-concen-
tration measurements of the band gap correspond to calculated effective one-
particle band structures of an ideal, intrinsic semiconductor. At high doping
concentrations or/and under high excitation the electron-impurity interaction
and the strong correlation between the carriers result in qualitative changes of
the energy spectrum. The difference between ideal and interacting dispersion, the
so-called quasi-particle shift, is equivalent to a rigid shift of the band edges. Here
and in the following paragraph, we disregard a possible electron-hole plasma.



6 Andreas Schenk

Mahan [19] used a variational method to calculate the self-energy from electron-
impurity scattering assuming that the donors are distributed on a fce-lattice.
Berggren and Sernelius [20] derived these contributions from second-order per-
turbation theory for a random system of impurities. They found the same order
of magnitude for the impurity-induced shift of the valence band in n-type silicon.
Logan and Egley [21] calculated the screening parameter for highly doped p-type
silicon using band dispersions based on a 6 x 6 Hamiltonian and applying the full
random phase approximation (RPA) expression of the dielectric function (disper-
sive screening). The screened potential of electron-electron and electron-impurity
interaction then was used to determine the self-energies in a finite-temperature
dielectric-response formalism: a statically screened Hartree-Fock exchange po-
tential and the second-order perturbation term of electron-impurity interaction.
The resulting BGN in p-type silicon agreed quantitatively with the photolumi-
nescence data by Wagner [22] both at 20K and 300K. Following the lines of
Mahan, i.e. using the many-body technique (ground state, no band tails, high
density regime) but aiming at simple results usable in device simulation, Jain
and Roulston [23] derived the formula

AE A1 095 Rpin 157
— =+ 1+

§ =183 ——+ .
Rinaj n;/S Ts r§/4 Rynaj n;/3r2/2

(3.1)

Here R4 .min denote the effective Rydberg energy of the majority or minority
band, respectively, 75 is the density parameter defined from 4w (r;ap)3/3 =
1/Naop, np is the number of valleys for n-type silicon or the band multiplicity for
p-type silicon, and A =1 (n-type) or A = 0.75 (p-type), respectively. Eq. (3.1)
contains the four major contributions to BGN; (1) the shift of the majority band
edge due to exchange interaction; (2) the shift of the minority band edge due to
electron-hole interaction; (3) the shift of the majority band edge due to carrier-
impurity interactions; and (4) the shift of the minority band edge due to carrier-
impurity interactions. If potential fluctuations due to local changesin the density
of impurities are neglected in many-body calculations, the band gap becomes a
local quantity. Selloni and Pantelides [24, 25] have calculated the real density of
states (DOS) of heavily doped n-type silicon applying the jellium model for the
electron-electron interactions (Inkson [26]), linear-response theory for electron-
impurity interaction with the impurities assumed to be on an ordered lattice,
and in a third step, introduced disorder assuming fluctuations in the impurity
concentration about its average value. They found that if multivalley scattering
is neglected, as in Ref. [20], electron-impurity interactions cause only a negligible
shift in the conduction band edge and do not change the free-electron character
of the DOS near the band edge. In contrast, including intervalley scattering
caused a shift comparable to that produced by electron-electron interactions
and even modified the DOS near the band edge. With multivalley scattering the
calculated zero-phonon photoluminescence spectra and their high-energy edges
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Figure 3 Comparison of different theoretical BGN models based on calculations
of the rigid shifts of the band edges. References are given in the text. The points
from Logan and Egley refer to 20 K.

in n-type silicon showed a remarkable agreement with experimental results. The
disorder-model of Selloni and Pantelides only smoothed out the sharp features
of their DOS, whereas Berggren and Sernelius [27] found that the model of
complete disorder produces a large shift due to electron-impurity interactions
even without the inclusion of multivalley scattering.

3.2 Band Tails

Besides many-body calculations under the assumption of certain dopant config-
urations, the band tailing has been studied by many authors ignoring exchange-
correlation effects. The pioneering semi-classical treatment by Kane [28] over-
estimated the number of states deep in the tails, but becomes accurate with
increasing energy. Halperin and Lax [29, 30] corrected the failure of the semi-
classical method in the deep band tail region by adding the kinetic energy of
localization [31]. Their tail model fails for energies near the unperturbed band
edge. Sa-yakanit [32, 33, 34] used the Feynman path integral method, which
yields an exact expression of the average over the random potential. He ob-
tained the semi-classical result and the result of Halperin and Lax as limiting
cases for small times (high energy) and large times (low energies), respectively.
The calculated DOS curves in Kane’s and Sa-yakanit’s models intersect at a
certain energy below the unperturbed band edge. Sa-yakanit proposed to use his
model up to this intersection point, but Kane’s model for higher energies. All ap-
proximations leading to Gaussian statistics for the potential fluctuations require



8 Andreas Schenk

high doping levels (high-density limit) [31]. Van Mieghem et al. [35] modeled the
effect of band tailing for a non-interacting system as an equivalent downward
shift of the Fermi level. After various approximations (high-density limit, screen-
ing calculated with unperturbed DOS) an analytical expression was presented
which actually can be simplified to the following form:

0.41 Rz

ABp = ———7 >
BIE

(3.2)

where R.g is the effective Rydberg energy. AEr was implemented into a device
simulator as additional BGN effect. For silicon the shift amounts about 15 meV —
35meV in the density range 3 x 101% cm 2 — 1 x 10?! em 3. Hence, for emitter
dopings larger than 102° cm™3 the current gain of bipolar transistors becomes
strongly reduced.

3.3 Plasma-Induced Shift of the Band Edges

High injection levels occur frequently in silicon devices even in lightly doped
regions as in the base and collector of bipolar transistors, in photoconductive
switches or in concentrator solar cells under conditions of strong optical exci-
tation. In heavily doped regions the presence of an electron-hole (e-h) plasma
reduces the dopant-carrier interaction with a corresponding reduction of the
BGN because of the screening by the excess carriers. Abram et al. [36] used the
plasmon pole approximation (Hedin 1969 [37]) including a ¢* term in the plas-
mon dispersion relation which gives an accuracy close to the Lindhard dielectric
function [37]. Lowney [38] generalized the zero temperature theory of Abram et
al. to room temperature. A fit to his results was proposed by Shaheed et al. [39]:
AFE, ._p =3.81x 10791238 meV with the plasma density » in cm 2. This model
was implemented into a device simulator within an iteration loop assuming a cer-
tain value for the band offset X (AE, = XAE, . », AE, = (1-X)AE, . 1).
Since in a bipolar transistor the plasma-induced BGN is very nonuniform both
across the emitter-base junction and throughout the base, it affects the barrier
for minority carriers in the junction and the effective drift field in the base. Both
effects depend on the value of the band offset X. It was found that X = 45%
gave the best fit to measured DC-current gain characteristics in the temperature
range 77K — 310 K.

Zimmermann [40] derived an RPA expression for the quasi-particle shift in a
symmetric e-h plasma (important for laser modeling and the on-state of power
diodes), which is valid at all temperatures:

3.24 Rp
2/t (140047873 T2)*

ApE(roy T) = — (33)
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Here, the density parameter r, is calculated with the plasma density and 7 =
kBT/RCﬁ. For R g the reduced effective mass has to be used. Eq. (3.3) repro-
duces both the correct limit for T' = 0 and the limit of the Debye shift at high
temperatures [40]. The case of an asymmetrical plasma (extrinsic semiconductor
with plasma excitation) has been worked out by Roesler et al. [41]. They con-
sidered the ions as dynamical quantities with infinite mass assuming complete
disorder. Their final RPA result is restricted to 7' = 0K, and a fit formula was
ouly presented for GaP.

3.4 BGN Models in Device Simulation

From the above review of theoretical work on BGN we may conclude that up
to now there is no satisfactory unified theory of many-body effects and disorder
for silicon at finite temperatures. Moreover, for device simulation purposes some
analytical expression AE (n,p, Na, Np,T) similar to Eq. (3.3) is desirable, ex-
tended to the general case. However, even provided the existence of such a model,
its application would lead to a complicated iteration n = n[AE4(n, ...)]. Hence, in
todays device simulators BGN is mostly accounted for by oversimplified models

of the form (del Alamo et al. [42])

Np \
app __ -3
AEgPP = 187 X 10 In <W) CV (34)

for Np > 7 x 101" em ™3, and zero at lower doping levels. Eq. (3.4) was derived
for n-type silicon by studying simultaneously pn-product, diffusion length and
lifetime of minority carriers in bipolar transistors. Because this electrical method
yields a gap narrowing, which contains the effect of everything not considered
elsewhere in an analytical or numerical transistor model, del Alamo et al. claimed
only to measure an “apparent gap narrowing” AEZPP . It is not surprising that
the model (3.4) from experience [17] is the most successful BGN model for the
simulation of current gains in bipolar transistors.

Let us come back to the question how far a model like Eq. (3.4) reflects the
complicated physics of BGN in a device simulation. First, it is implicitly assumed
that both band edges shift by AE,(Ni,,.,)/2, i.e. it is not distinguished between
conduction and valence band edge, and the BGN is considered to be a function
of the total doping concentration N;p,, only. Furthermore, the different physical
effects of electron-electron interaction, carrier-impurity interaction, electron-hole
interaction, and random potential fluctuations, as well as their respective con-
tribution to the total BGN are not separated from each other. Therefore, such
models yield e.g. equal gap narrowing both in neutral and depleted regions of a
device. The last problem becomes particularly severe for the influence of BGN
on the electron-hole pair generation in heavily doped and depleted regions, as in
the case of band-to-band tunneling or impact ionization.



10 Andreas Schenk

4 Band-to-Band Tunneling

As a result of device scaling very shallow junctions with high doping levels and
steep gradients came into use in recent years. Leakage currents due to defect-
assisted tunneling (DAT) and band-to-band tunneling (BBT) were observed in
the emitter-base junction of bipolar transistors [43, 44], in critical interface re-
gions of trench transistor DRAM cells [45, 46], and at the drain edge of MOS-
FETs [47, 48]. On the other hand, tunnel generation is intentionally used for
(band-to-band ?) tunneling-induced substrate hot-electron injection (BBISHE)
in non-volatile memories [49].

4.1 Microscopic Theory

BBT in silicon is phonon-assisted, which was experimentally shown already in
the early sixties. By measuring the derivative of the conductance in silicon
Esaki diodes at 4.2 K, Chynoweth et al. [50] could reveal twelve phonon and
phonon-combination energies, which agreed well with results of neutron scatter-
ing studies. Later Logan and Chynoweth [51] succeeded to decompose the tun-
neling current into a phonon-unassisted current (excess current), a TA phonon-
assisted current and a TO phonon-assisted component. The first calculations of
phonon-assisted BBT were presented by Keldysh [52, 53] and, independently, by
Price and Radcliffe [54] in 1958. Keldysh used second order perturbation the-
ory, Houston-type wave functions [55], and the saddle-point method, whereas
Price and Radcliffe applied the Wentzel-Kramers-Brillioun (WKB) approxima-
tion. Keldysh’s result was improved by Kane [56]. In all these papers the problem
was solved by determining the transmission coefficient of an electron striking the
junction barrier (illustrated in Fig. 4) and then calculating the current by the
number of generated carriers. The connection between transmission probability
and current density is unnecessary, if a macroscopic quantity is calculated which
directly determines the BBT current. This was done for the first time by Ender-
lein and Peuker [57] for a direct semiconductor. They used a Kubo formula [58]
for the differential conductivity of the crystal in a strong electric field. The band-
to-band part of the conductivity is determined by the off-diagonal elements of the
one-particle density matrix and arises, because the electrons change their place
when penetrating the barrier. The application of this method to the phonon-
assisted BBT in silicon was presented by Schenk [59]. There, electron-phonon
collisions were taken into account as a momentum source for the tunneling elec-
trons, and the crystal Hamiltonian was treated in effective mass approximation
(EMA), fully accounting for the anisotropy of the six conduction band valleys.
Since the size of the direct gap of silicon does not change dramatically within
the first Brillioun zone, transitions via both intermediate states opposite to the
band extrema of the indirect gap are equally important. In the course of the
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Figure 4 Electron-hole pair generation by band-to-band tunneling. Left part:
Boundaries z, for electron generation and z; for hole generation, respectively.
The marked area is the tunnel barrier. Right part: Locality at z is suggested
by the maximum overlap of the Airy functions within the gap. Ey denotes the
transition energy and I; the tunneling length.

derivation, a combination of three-particle Green’s functions occurs, which must
be decoupled by RPA. After utilizing the resulting delta functions, a sevenfold
nountrivial integral remains to be evaluated analytically. Explicit expressions for
the matrix elements (two momentum and two electron-phonon) have to be found.
The final form of the phonon-assisted BBT rate suitable for device simulation
reads

21 mgmi
Ri= 220 3 Y [ B (a]) + (a4 DE (5] (f - fo)

cm?3s B A L1
. (4.5)
with
. . o /3
Ai(x)  Ai'(x) . N 8\
Hz)=——+ ——+A , =(E, £h , 4,
(z) 2 T TAn (x) . x7 = (Eg £ hwo) LI°F? , (4.6
% _mi— (my —my)F2/F? 1 e = MM __ (47)
I MM My my — (my —my)F2/F

F is measured in Vem ™1, my 10 denote transverse, longitudinal, and rest mass,
respectively, fp is the phonon occupation number, Awg a representative phonon
energy, Ai’ the derivative of the Airy function, and Ai; its integral [60]. The
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upper sign has to be applied in the case of reverse biased junctions (generation,
fv > fe), whereas the lower sign holds for forward biased junctions (recombina-
tion, f, < f¢) in order to account for energy conservation in the electron-phonon
system [56]. The carrier distribution functions have to be evaluated at the tran-
sition energy Eq(z) given by

m, B, () + mil’ [Ec(z) £ huw]

7er + my,

Eo (.’1‘) =

(4.8)

The model (4.5) is not based on the WKB method and includes finite tempera-
tures as well as the anisotropy of the conduction band valleys. Apart from some
approximations to enable the complicated analytical integration, which are not,
very severe (e.g. neglection of phonon dispersion and taking f. . at the local band
extrema), two major uncertainties arise. The first originates from the momen-
tum matrix element containing Bloch factors. The second concerns the average
hole mass m,. One has to expect that the strong electric field responsible for
BBT leakage will remove the band degeneracy at k = 0 and, therefore, will also
change the effective hole mass to be used in the tunneling model. Because m,
enters the BBT rate in the exponent, a change within the range defined by av-
erage light and average heavy hole masses is followed by a large change of the
rate. This is shown in Fig. 5. Using the heavy hole mass instead of the light hole
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Figure 5 BBT rate in silicon for three values of the effective hole mass: m, =
0.16 mo (light hole mass) and m, = 0.49my (heavy hole mass) and m, = 0.24 my.
The direction of the applied field is [111].

mass decreases the rate by seven orders of magnitude for F = 4 x 10° Vem ™!

and still by two orders of magnitude at F' = 1.5 x 10¢ Vem ™ *. Applying two-level
perturbation theory yields just twice the value of a reduced hole mass built from
the heavy and light hole masses, i.e. 0.24my. Using this value gives the dotted
curve in Fig. 5.
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4.2 Evaluation of BBT Model Parameters

The above mentioned uncertain parameters of the model can be fixed by simulat-
ing a tunnel diode with precisely known doping profile. The 1D, vertical junction
with given area and SIMS profile allows to fit both the matrix element in the
prefactor and the value of the tunneling mass in the exponential by means of an
Arrhenius plot. For this, the tunnel peak of the forward I'V-characteristic and
the reverse branch can be used, where BBT is the dominant mechanism. Fig. 6
represents a simulation of the tunnel diode described by Esaki and Miyahara
in Ref. [61] with the device simulator DESSIS_igg [62]. The unknown doping
profile was adjusted by “reverse modeling” assuming a Gaussian distribution
and fitting the forward BBT current to the experimental tunnel peak. In the
simulation, BBT is “switched off” sharply, when the diffusion potential of the
diode becomes smaller than the band gap. In reality, a further increase and a
subsequent smooth “switch-off” occurs as a consequence of the band tails. The
question mark in Fig. 6 points to the voltage range between 0.1V and 0.3V with
negative differential resistance, where band tails or DAT can hardly explain the
strong current. It is obvious that the real DOS as well as the right BGN model
have a large effect on the simulated tunnel current. In the simulation BGN was
turned off, which was considered a better approximation in the depletion zone
as compared to any empirical BGN model from quasi-neutral regions. However,
the misfit of the peak maximum also indicates that BGN has a non-negligible
influence on the position of the tunnel “hump”.
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B BBT
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£ 1le-0lF 4 T .
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Figure 6 Simulation of the 298 K I'V-characteristic of the silicon tunnel diode
from Ref. [61]. Left part: Symbols — experimental data, solid curve — device sim-
ulation. Right part: Corresponding log-log plot with indication of the dominant
recombination mechanisms.
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4.3 Pseudo-local Formulation of the BBT Rate

In view of simulation of MOSFETSs, artificial electron-hole pair generation di-
rectly at the oxide-silicon interface, where no final conduction band states are
available but the normal electric field peaks, must be excluded. Therefore, a thin
sheet with a thickness of half the BBT length does not contribute to the BBT rate
in DESSIS_1sg. In this way a time-consuming searching procedure is avoided.
Similarly, a corresponding thin sheet is excluded from the DAT domain. Fig. 7
illustrates the effect in the case of BBT for a gated diode with 10V contact bias
and 10V gate voltage. The difference in the corresponding I'V-characteristics

G-B2B
I ; . 1/cm**3 s
+1le+18 +3e+19 +le+21 +3e+22 +le+24

Figure 7 Distribution of the BBT rate beneath the gate oxide of a MOS-gated
diode. Upper part: with exclusion of a thin sheet where no final conduction band
states exist, lower part: without exclusion.

is shown in Fig. 8. If the rate is set to zero in the region of vanishing tunnel
probability, the onset of the breakdown current is shifted to higher voltages, as
demonstrated in the right part of Fig. 8. The same exclusion routine is applied
to pn-junctions. As they become steeper, both the local generation models and
the drift-diffusion approach itself start to fail. Simulating very narrow junctions
with local DAT and BBT models, one can observe the following effect: At a cer-
tain reverse bias, DAT or BBT can generate such a large number of electron-hole
pairs at the point of maximum field strength, that the np-product reaches the
value of n;{eﬁ, and consequently, the rate will go into a pronounced minimum at
this point. In the self-consistent solution of the transport equations this leads to
a self-saturation of the generation current. In local versions of generation rates
the spatial separation of the generated “carriers” (i.e. classical point charges
moving along a trajectory) is not taken into account, which results in the above
mentioned effect.

The question arises how a tunneling rate can be efficiently formulated in the
picture, where the carriers appear or disappear as classical particles, i.e. at the
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Figure 8 Left part: Nonlocal generation of electrons and holes by BBT at the
classical turning points. Right part: BBT and DAT IV- characteristics of the
gated diode in Fig. 7.

classical turning points. In the rigid quantum-mechanical derivation of the BBT
rate in Subsection 4.1 locality is suggested by the sharp overlap of the envelope
wave functions within the band gap. Hence, the prefactor in front of the “driving
force” f.— f, is determined with the local field strength at this point. By calcu-
lating the carrier distributions at the transition energy Fy but not at the band
edges E(;(af:) and E,,,(w), respectively, defines a reasonable local version, which
reads after re-formulation of the driving force in terms of densities at the turning
points:

AEp ,+AEp ),

. RY , F5T — N.
Ay — AL AL\ (4.9)
N, + 7L(wc)eh?—f] [Nv + p(@,)e FrT
where AEp,, = Ep,(2) — Ep.(x.) and AEp, = Ep,(2,) — Er,(x) are the
drop of the quasi Fermi levels over the tunnel distances l;,, = | — @.| and
lip = |2y — x|, respectively (compare Fig. 8). The fully nonlocal description
leads to

n(xe)p(®y) — NN, .
[Ne + n(ze)] [No + p(s)]

Obviously, the drop of the quasi Fermi potentials over the tunneling length is
disregarded in Eq. (4.9). This difference is negligible up to a certain reverse
bias. However, for extremely strong generation such that n(z)p(z) — nlzpff,
a saturation of the BBT occurs in the local version (4.9). By experience, this
effect (occurring only near breakdown) vanished using the nonlocal description

fc(wc) - fv(a:v) = (410)
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in DESSIS _1sg even for the steepest junctions. Practically, the nonlocal version
was realized by a pseudo-local treatment, where the quasi Fermi potentials are
extrapolated to the turning points using constant gradients [63].

Fig. 9 compares simulated and measured jV-characteristics of a pTn™-diode
fabricated as a test structure in the BICMOS process of Microelectronic Marin.
The doping profile was generated by process simulation with DIOS _1sg [64]. The
peak donor and acceptor concentrations were 2 x 102 em ™3 and 5 x 10'% cm 3,

respectively. It can be clearly seen how the local DAT rate (which is superior to

"
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Figure 9 Reverse-bias jV-curves of a pTnT-diode simulated with nonlocal (nl)
and local (1) models of BBT and DAT in comparison with measured data.

BBT up to -6 V) causes a saturation of the total current for biases larger than
-1V, which even prevents impact ionization from igniting at -5V.

Finally, we briefly discuss the consequences if a bulk generation rate is treated
like a barrier transmission problem. In the latter concept the net rate would
have to be defined at the classical turning points, where the carriers appear in
generation and disappear in recombination, respectively. For clarity we consider
the 1D Esaki diode of Fig. 4. The rate (4.5) becomes different now for electrons
and holes, respectively:

Ryei(z) = A[F (x4 1)) { fe(z) = folz + 1i(2)]} O(z, —z) . (4.11)
Rioi(z) = A[F(z — )] {felz — l(2)] = fol(z)} O(z —21) . (4.12)

where Iy, and l;, denote the distances to the point of maximum overlap of the
valence and conduction band states. Inserting these expressions into the conti-
nuity equations for electrons and holes and skipping all the other contributions
to the current, one obtains
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vV-J = V- (jn—l—jp)
qA[F(z)] ({ fe(z) = folz + ()]} Oz, — z)—

—A{felzr = ()] = fo(z)} Oz — 21)) , (4.13)
where we have set for the prefactor A[F(z + l;n)] = A[F(z — lp)] = A[F(z)]

because of the assumption of a constant field over the tunneling distance in (4.5).
Obviously, V - J # 0. Integrating in the limits 0 and d it follows that

zrta;
Jd)-J0) = g / da A[F(z — 2] {Fo(x — 1) — Fo [7 — 71+ L(2)]} —

J Ty

d -
—g [ AF@I Ll - W] - A0} (@19)

1

In general, A[F(z—u;)] # A[F(z)] (the prefactor changes with the position in the
junction), z, # d — z; (the junction may be asymmetrical), and l:(z) # z; (the
tunneling length changes with the position in the junction). Hence J(d) # J(0),
i.e. the contact currents become different as consequence of the violation of local
charge conservation.

5 Discussion

It has been the main purpose of this paper to demonstrate the problems when
deriving physical models from “first principles” and bringing them into a form
suitable for the implementation in a device simulator. From the outlined exam-
ples we may set up the following criteria for the often used term “physics-based”:
A physics-based model should result from a microscopic theory and contain all
relevant effects observable from the macroscopic quantity. Parameters of the
model are correlated to microscopic parameters like coupling constants, scat-
tering cross sections, etc. These parameters can be tuned by comparison with
experimental data. Suitability for complex device simulations includes the fol-
lowing: The model has to be analytical with preferably simple functionality. The
implementation must be numerically robust. By experience, the model has to
be local (pseudo-local), otherwise convergency problems will be inevitable in
more complicated simulation examples. Finally, the model has to be tested for
a large variety of cases. This last point, which is often ignored, is may be the
most important one for the acceptance and successful application in an industrial
environment,.

Physics-based models allow a better understanding of the transport processes
in a device. However, the demands for short computation times and numeri-
cal robustness require a compromise between physical accuracy and analytical
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simplicity. The possible accuracy is also limited by the complexity of the prob-
lems. The example of BBT has shown that despite the enormous effort it is in
principle impossible to describe all parameters exactly. Limits are posed by the
complicated band structure and the not well predictable change of the DOS by
heavy doping and strong electric fields. Therefore, it is crucial to estimate the
range of validity of theoretical parameters, and, as it will be often necessary, to
release the problematic ones for a fit to experimental data. Here, “fit” has the
positive meaning of fine-tuning a physically well-defined quantity by comparison
with suitable measurements.

Unfortunately, many experiments on the physics of silicon and silicon devices
go back to the sixties or seventies, where e.g. doping profiles were not pre-
cisely known. Besides the desirable update of fundamental experiments, there
are completely new problems coming up for which no data exist at all. In modern
electrostatic discharge (ESD) protection devices current filamentation leads to
local hot spots, where the lattice temperature can approach the melting point.
Transport parameters at extremely high temperatures have never been mea-
sured, hence in simulations one can only hope that the extrapolation of the
temperature dependence into the high-temperature range will at least qualita-
tively reproduce the actual behavior. Another class of problems is related to
the spatial inhomogeneities resulting from todays VLSI technology, like hetero-
junctions, ultra-thin gate oxides, and narrow field peaks with the extension of a
few tens of nanometers. Common approximations, as the WKB and the EMA
approximations, become questionable in these cases. At the same time, the valid-
ity of the transport equations might be questioned, when the number of charge
carriers in the active region of a device becomes very small.
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