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An analytical bulk mobility model for hydrodynamic transport equations is developed from a
microscopic level and designed for silicon device simulation. Applying Kohler’s variational method
extended to the regime of nonlinear transport yields the general expression for the mobility as
function of carrier temperature, lattice temperature, and doping. Assuming a nonparabolic, isotropic
band model and a heated Maxwellian allows for the analytical calculation of the collision integrals.
A nonelastic approximation for intravalley acoustic-phonon scattering is proposed, which improves
the model in the low-temperature range. Intervalley scattering is treated in a one-mode, equipartition
approximation. Here, an accurate analytical approach for all carrier temperatures is derived. For
impurity scattering the Brooks-Herring theory is used including Fermi statistics and the effect of
dispersive screening. The influence of other effects like anisotropic valleys and perturbation of the
density of states by heavy doping are discussed quantitatively. Despite the oversimplified band
structure, all essential features of the measured mobility in silicon can be reproduced except in the
heavy doping range. The adjusted deformation potentials coincide with estimated sums of the
corresponding sets used in full-band Monte Carlo simulation. The method has the potential of an
extension to the Si�SiO2 system. © 1996 American Institute of Physics.
�S0021-8979�96�09701-5�

I. INTRODUCTION

The hydrodynamic �HD� transport scheme1,2 has become
a standard device simulation tool with the capability for de-
scribing nonlocal and nonstationary phenomena. Computa-
tion times compare favorably with those of Monte Carlo
�MC� simulations3 and methods based on a spherical-
harmonics �SH� expansion of the Boltzmann transport equa-
tion �BTE�.4 Thus, it is suitable also for more sophisticated
applications like power-device, multi-device or 3D-device
simulations. Using HD results as initial solution for the SH
and MC methods is a forthcoming issue.

The HD transport equations contain momentum relax-
ation times �RTs� as function of carrier temperature �or car-
rier energy�, depending on the particular method of mo-
ments. Usually, these quantities are obtained from bulk
homogeneous MC simulations. The lack of this procedure is
obvious: it is hardly possible to find complete tables or fit
functions for the mobility depending on average carrier tem-
perature, lattice temperature and doping. But even then, there
remains the problem of the mutual influence caused by lat-
tice temperature profiles �hot spots�, impurity density profiles
and field peaks met in modern devices. Furthermore, the
limitations of present-day MC programs which are calibrated
to pure and homogeneous silicon, do not allow to yield reli-
able mobilities near interfaces and in heavily doped regions,
whereas in the HD scheme heuristic models can be used.

An alternative way is to calculate the mobility as a func-
tion of carrier temperature Tc , lattice temperature TL , and
impurity density Nimp analytically from a microscopic level.
If the calibration of parameters using experimental and MC
data is done on the same microscopic level �deformation po-

tentials, phonon energies�, one can hope that a broad range of
conditions can be covered by such a model. It is the particu-
lar difficulty in this project to describe the mobility in both
high-field regions and heavily doped regions within one
model, which is however necessary for the purpose of device
simulation. This difficulty arises from the inability to use a
realistic band structure model for high energies and a realis-
tic density of states �DOS� for heavily doped silicon. In order
to achieve an analytical result, we will restrict ourselves to
an isotropic, nonparabolic one-band model. Despite its sim-
plicity, high-field effects like drift-velocity saturation can be
obtained correctly adjusting the nonparabolicity parameter.
The most demanding problem is to fit the impurity scattering
in heavily doped regions: as will be shown, for Nimp�1019

cm�3, the measured mobility can be reproduced only phe-
nomenologically.

The paper is organized as follows: in Section II the ana-
lytical model of the electron mobility is derived using
Kohler’s variational method for the BTE and assuming a
heated Maxwellian for the even part of the distribution func-
tion. The scattering mechanisms are listed and the analytical
integrations to obtain the partial mobilities are briefly out-
lined. Intravalley acoustic phonon scattering is treated in a
non-elastic approach. Various levels of complexity in de-
scribing impurity scattering are discussed. Section III com-
pares the model with experimental data and MC results, and
describes the parameter fitting. The essential features of the
model, i.e. the dependencies on ambient temperature, carrier
temperature and doping are demonstrated. The hole mobility
model is derived in Section IV. In Section V we present some
simulation results obtained with the new model, and conclu-
sions are given in Section VI.a�Electronic mail: schenk@iis.ee.ethz.ch
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II. ANALYTICAL MODEL OF THE ELECTRON
MOBILITY

A. Variational method with a heated Maxwellian

The subject of this paper is a bulk mobility model for
HD transport equations as they are used for the numerical
simulation of silicon devices. No spatial inhomogeneities, as
for the channel mobility in MOSFETs, will be considered
here. The derivation will be based on a variational method
�Kohler’s method5,6� to solve the BTE. In principle, this
method allows to treat all scattering mechanisms without the
assumptions which are necessary for the application of the
relaxation time approximation �RTA�. For the bulk case and
transients much slower than the inverse total scattering rate
we can restrict ourselves to the time- and space-independent
BTE

F

�
•�kf �k���

k�
	�1� f �k��Wkk�f �k��

��1� f �k���Wk�kf �k�
. �1�

Here F denotes the electric force and Wkk� the total first-
order transition probability from a state with momentum k�
into a state with momentum k. For the distribution function
f (k) the so-called ‘‘diffusion approximation’’7 is modified in
the following way:8 f (k) is split into an even part f (0)(k) and
an odd part f (1)(k), where in contrast to the regime of Ohm’s
law f (0)(k) is a zeroth order approximation for the non-
equilibrium distribution function. We assume that the heated,
non-displaced Maxwellian

f �0 ��k��
n

Nc
exp� �

Ek��Ek�1 �

kBTn
� �2�

can represent such an approximation even at high electric
fields. In Eq. �2� n denotes the electron density, Nc the total
effective density of band states, Tn the electron temperature,
� the nonparabolicity parameter, and Ek the band dispersion.
f (0)(k) is even, since Ek�E�k . We note that f (0)(k) repre-
sents the distribution in one valley; the zero- and second-
order moments yield
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for the isotropic band structure model which will be intro-
duced below. If the motion of the particles retains its random
character also at high Tn , the distribution function remains
weakly anisotropic in k-space, and the odd part f (1)(k) can
be regarded as a ‘‘small correction.’’ This concept seems to
be adequate for the various kinds of HD and thermodynamic
�TD� transport models, but must be expected to fail in situ-
ations where the electron motion becomes streaming. The
latter happens, e.g., in deep sub-micron MOSFETs near the
drain junction, where the ratio of drift to root-mean square
velocity reaches high values. Fig. 1 shows that Eq. �2� ap-
proximates well the distribution function from a full-band
MC simulation9 up to electron temperatures of about 1500 K.

For higher Tn a strong redistribution occurs from low to high
carrier energies, which cannot be reflected by the heated
Maxwellian. At room temperature, carrier densities larger
than 1019cm�3 require to use degenerate statistics. In the case
of a degenerate electron gas the heated Maxwellian has to be
replaced by a ‘‘heated Fermi distribution’’

f �0 ��k���exp� Ek��Ek�1 �

kBTn
�
n��1 ��1

�5�

with 
n�(EF ,n�Ec)/kBTn (EF ,n—quasi Fermi energy,
Ec—band edge�. In this case, the bulk mobility is fully de-
termined by impurity scattering, hence we will consider the
case of degeneracy only there.

The assumption f (1)(k)� f (0)(k) allows for a lineariza-
tion of the BTE in f (1)
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where we have introduced the collision operator

Pkk���1� f �0 ��k�� f �0 ��k��Wkk� . �7�

In thermodynamic equilibrium (Tn�TL , TL—lattice tem-
perature�, due to the principle of detailed balance
Pkk��Pk�k holds. Here, Pkk� is no longer symmetrical, since
f (0)(k) represents a state far from equilibrium. However, the
symmetry of the collision operator in the BTE is a precon-
dition for the variational method. To obtain a symmetrical
collision operator we write as usual

f �1 ��k�����k�
� f �0 �

�Ek

�
1

kBTn
�̃�k��1� f �0 ��k�� f �0 ��k�, �8�

with �̃(k)��(k)(1�2�Ek) and rewrite the BTE by intro-

FIG. 1. Normalized distribution function f (E)Nc /n of electrons in silicon.
The solid lines are results of a full-band MC simulation �see Ref. 9�, the
dashed lines represent the heated Maxwellian Eq. �2� with average carrier
temperatures from the MC simulation and ��0.5/eV.
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ducing symmetrical and antisymmetrical operators �kk�
s and

�kk�
a , respectively
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�
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, �9�

where vg(k) denotes the group velocity and

�
kk�

s
a �� P̃kk�� P̃k�k���Pkk��Pk�k�� f̃ �0 ��k��	 f̃ �0 ��k�� .

�10�

In �10� f̃ (0)(k)� f (0)(k)(1�2�Ek) and P̃kk�
�Pkk�(1�2�Ek�). It is obvious from Eq. �8� that the as-
sumption f (1)(k)� f (0)(k) is equivalent to �(k)�kBTn .
Therefore, we can neglect both �kk�

a and the second term of
�kk�

s , which is negligible in the case of Boltzmann statistics
anyway. All these terms are proportional to �(k)/(2kBTn)
and, therefore, can be neglected as compared to
(Pkk��Pk�k) on the left-hand side of Eq. �9�. The BTE now
can be written as operator equation

�1��2��s� �11�

with
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With the symmetrical collision operator in �11� the varia-
tional method is straightforward. Applying the electric field
in z-direction and taking into account only the first-order
term in the linear combination of �(k) with trial functions
kz

n : �(k)�a0kz , the BTE is transformed into the algebraic
equation

b0�d00a0 �15�

with

b0���1��2 ,kz�, d00��kz ,�skz�, �16�

where (� ,�) denotes the inner product 1/��k�(k)�(k) ��–
crystal volume�. On the other hand, the electron conductivity
is defined by

�n�
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�

2e2
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Inserting �(k)�a0kz and using �15�–�16� we obtain

�n��
2e2

Fz
2d00

���1 ,kz�
2���1 ,kz���2 ,kz�� . �18�

It is easily proven that

��1 ,kz���
Fz

2�
n �19�

without any assumptions on the band structure. The second
term in Eq. �18� contains the inner product

��2 ,kz���
1

� �
kk�

�Pkk��Pk�k�kz

��
1

� �
kk�

Pkk��kz�kz��. �20�

All scattering mechanisms discussed in the following section
have transition probabilities with the property
Pkk��P�k�k� . Therefore, (�2 ,kz) vanishes.

According to �18� and �19� the mobility is determined by
the quantity d00 which contains the whole microscopic infor-
mation. With �14� and �16� it takes the form

d00��
1

4 �kBTn
�
kk�

� P̃kk�� P̃k�k��kz��kz�
2

��
1

2 �kBTn
�
kk�

�1� f �0 ��k�� f �0 ��k��Wkk�

��1�2�Ek���kz��kz�
2. �21�

The electron mobility follows from �18�, �19� and
�n�e�nn

�n��
en

2�2d00
. �22�

�n will be a function of the carrier temperature Tn via the
heated Maxwellian, a function of the lattice temperature via
the phonon occupation numbers, and a function of the dop-
ing concentration. To calculate �n , we have to choose a
model for the band structure and to evaluate the six-fold
integral �kk� for the relevant scattering mechanisms. In sili-
con the electrons populate six equivalent valleys. For very
small �k�k0

(v)� the iso-energy surface of a valley v is a pro-
late ellipsoid of revolution with its center located at about
k0

(v)�0.85�/a in �100�-direction (a—lattice constant�. With
rising energy the band dispersion becomes nonparabolic. In
first-order k•p-theory the nonparabolicity parameter � is in-
dependent of direction. Hence one can write

Ek
�v ���Ek

�v ��1 ��
�2

2
��k�k0

�v ��,m̂ �v �
�1�k�k0

�v ��� . �23�

In order to be able to integrate analytically we use the spheri-
cal model

Ek��Ek�1 ��
�2k2

2mdn
, �24�

where mdn denotes the DOS effective mass of one valley:
mdn�(mt

2ml)
1/3. Then, the distribution function �2� is the

same for all six valleys and summation over initial states
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k� has to include a factor 6 to account for valley multiplicity.
The spherical model �24� is in accordance with many HD
transport models in silicon device simulation and also with
earlier MC programs.3,10 On the other hand, there would be
no essential improvement taking anisotropy into account,
since the effective mass factors are multiplied by the defor-
mation potential constants, the latter being fit parameters of
the mobility model. For certain scattering mechanisms, as
intravalley elastic ac-phonon scattering, the inverse RT is
proportional to the DOS. Then, both �23� and �24� yield the
same result. More generally, intravalley ac-phonon and intra-
valley scattering are randomizing in the sense of Herring and
Vogt11 making the scattering rates dependent on the DOS
effective mass.12

Ionized impurity scattering is not randomizing; thus we
will give the explicit expression of the partial mobility in the
Born approximation using ellipsoidal energy surfaces �23�.
Comparison with the result based on the spherical model
�24� will show that the anisotropy effect is at most 20%.

In contrast, nonparabolicity was found to be crucial, e.g.,
to reproduce drift velocity saturation. In Fig. 2 we compare
the nonparabolic DOS model �resulting from Eq. �23��

Dn�E ��
2

��

Nc

�kTn�3/2 �E��E�1�2�E�1 � �25�

with the realistic DOS of a pseudopotential calculation.9 The
nonparabolic model with ��0.5/eV is in reasonable agree-
ment with the MC DOS up to E�1 eV.

It is worthwhile to shed some light on what distinguishes
the variational method from the more familiar RTA. First of
all, the latter is not strictly valid for a number of scattering
mechanisms considered here: nonelastic acoustic-phonon
scattering, nonpolar optical-phonon scattering �holes�, and
intervalley scattering �electrons�. If, nevertheless, the RTA is
applied to the linearized form of the BTE �1�, it follows that

f �1 ��k�����Ek�� � f �0 �

�Ek
�vg�k�•F. �26�

Inserting into �17� yields after short algebra

�n�
e

3n� dEkDn�Ek�� �
� f �0 �

�Ek
� �n�Ek����1�kEk�

2,

�27�

which is the well-known result from linear response theory
�see Refs. 13, 14, and 15, page 545�. For a more direct com-
parison it is useful to consider the case of elastic ac-
scattering, where a RT exists in rigor

�n ,ac
�1 �E ��

�Dac ,n
2 kBTL

��cl
2 Dn�E � �28�

�for symbols see below�. After inserting �n ,ac into Eq. �27�,
�n ,ac can be calculated exactly and then be compared with
the result �44� of the variational method. One finds that the
ratio is given by �n ,ac

Kohler�(9�/32)�n ,ac
RTA which is the known

failure of the Kohler method in first order (�(k)�a0kz).16

For the goal of this work—the derivation of a closed-
form expression that combines high- and low-field
mobility— the RTA has still another drawback: even if ap-
proximate RTs would be used, the reciprocal summation rule
to obtain the total RT finally would prevent an analytical
integration.

B. Scattering mechanisms

1. Intravalley acoustic-phonon scattering

The transition probability for deformation potential cou-
pling to longitudinal acoustic phonons reads

Wk�k
ac

�
�Dac ,n

2 q

��cl
	 f B�q ��k�k��q,0��Ek��Ek��clq �

�� f B�q ��1��k�k��q,0��Ek��Ek��clq �
,
�29�

where f B(q)�	exp��clq/(kBTL)��1
�1 denotes the phonon
occupation number �Bose function�. Dac ,n is the deformation
potential constant, � the mass density, and cl the longitudinal
sound velocity. The dispersion is taken into account by a
linear, isotropic approximation Eq��clq . The contribution
of transverse acoustic �TA� modes will be included in the
final fit of the coupling constants.

2. Intervalley scattering

Intervalley scattering by optical and acoustic modes will
be described neglecting phonon dispersion as well as the
indirect, anisotropic band structure. The different contribu-
tions of optical and acoustic modes and the different defor-
mation potential constants and phonon energies of f- and
g-type processes will be lumped into a single effective de-
formation potential constant Dint ,n and a single effective
phonon energy �� int ,n . These parameters will be obtained
by a proper root square sum of the various coupling con-
stants used in first-principle MC simulations or by fitting the
experimental mobility data. The simplified model for inter-
valley scattering then takes the form

Wk�k
int

�
�Dint ,n

2

��� int ,n
� f B��Ek��Ek��� int ,n�

�� f B�1 ���Ek��Ek��� int ,n�� �30�

FIG. 2. Electron density of states Dn(E) in silicon. The solid line represents
the nonparabolic model �25� with DOS effective mass. The dotted line with
circles is a pseudopotential full-band result used in MC simulation �see Ref.
9�. The dashed curve is obtained setting ��0 in �25�.
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with f B�	exp���int,n /(kBTL)��1
�1.

3. Impurity scattering

Scattering by ionized impurities will be considered only
in Born approximation here. The Brooks-Herring theory, us-
ing a screened Coulomb potential, yields

Wk�k
imp

�
2�Nimp

�� � 4�e2Z

�s
� 2 1

�q2��q
2�2 ��Ek��Ek�. �31�

Nimp denotes the total concentration of ionized dopants, Z is
the charge number, �s the static dielectric constant, and
�q

�1 the screening length. The latter becomes a function of
relative momentum q , if the polarization of the screening
cloud is taken into account.17 This effect, as well as those
related to the degeneracy of the electron gas, the non-
spherical form of the valleys, and the perturbed DOS as re-
sult of heavy doping, will be addressed in Section II C 3.

C. Analytical results for the partial mobilities

According to Eq. �22� the mobility is determined by the
quantity d00 defined in Eq. �21�. We insert
Wkk��Wkk�

ac
�Wkk�

int
�Wkk�

imp and use the abbreviation
(1�2�Ek)���(Ek), which is the derivative of

��Ek��Ek�1��Ek� �32�

with respect to Ek . Collision integrals with Maxwellian dis-
tribution functions were calculated in the early days of semi-
conductor transport theory, mostly in connection with ana-
lytical solutions of the BTE.7,18–23 In this section we use the
heated-Maxwellian approximation to evaluate the mobility in
closed form �as function of lattice temperature, carrier tem-
perature and doping�, which goes beyond the calculation of
the momentum relaxation time, since it requires additional
integrations. Furthermore, nonparabolicity will be fully taken
into account.

1. Non-elastic approach for intravalley acoustic-
phonon scattering

Inserting the transition probability �29� into the expres-
sion for d00 Eq. �21� we find

d00
ac��

3�Dac ,n
2

kBTn�8�3�2�cl
� d3k� d3qq3 cos2 �
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�Ek��clq ��� f B�q ��1���E �k�q��Ek��clq �
,

�33�

where � denotes the angle between vector q and z-axis. In
the doping range where phonon scattering dominates the mo-
bility, Boltzmann statistics can be applied and the factor
1� f (0) can be neglected. All angular integrations can be
done exactly. The energy conservation �-function yields up-
per and lower boundaries for the phonon wave vector q as a
function of electron momentum k. With the new variable
z��clq/(kBTL) we obtain

d00
ac��

Dac ,n
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kBTL
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The boundaries are given by
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4El

kBTl

���Ek�

�1�4�El�
� vg�k �
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�1 ��� vg�k �
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�1 � ,
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where vg(k)��k/(mdn��(Ek)) is the value of the group ve-
locity, and for the LA-mode

El�
mdn

2
cl

2�2.3
mdn

m0
•10�4 eV. �39�

If the group velocity is smaller than the sound velocity, the
absorbed phonon cannot fall short of a certain value given by
�35�, and phonon emission is impossible at all due to the step
function in �38�. As can be seen from the Bose functions in
�34�, the upper limits are of the order z��cl2k/(kBTL)
(2k is the diameter of the energy sphere�. Inserting the value
of cl , this gives at room temperature: zmax�1.1�E with E
measured in eV. The equipartition approximation of the Bose
distribution � f B(z)�1/z , z�1] is therefore well justified, as
long as the average electron energy does not exceed 0.2 eV.
For an average energy up to 1 eV it is still an useful approxi-
mation which enables analytical z-integration. At even higher
energies the validity of various assumptions made so far be-
comes questionable anyway. With the equipartition approxi-
mation the integral �34� turns into

d00
ac��

Dac ,n
2 n

12kBTn�2��3�

mdn
2 kBTL

�4clNc
�

0

�

d�e�
�
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�� �
4 ���� ��

�cl
�

8�

5
 ���� �

� �
4 ���� ��

�cl
�

8�

5
 ���� ����0���� �40�

with

 �����
4�0

�cl
� �����

El
� �41�

�0�
El

1�4�El
�El . �42�
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The elastic limit El→0,  �→2k enables also the last inte-
gration to be performed exactly, because

Iac�Tn��
1

�kBTn�3�
0

�

d�e�
�

kBTn��2�2

��
0

�

dxe�xx2�1�4�kBTnx �2

!2�1�12�̃ �. �43�

The dimensionless nonparabolicity �̃��kBTn will be used
in what follows. Thus, we obtain in the elastic approximation

d00
ac ,el��

4Dac ,n
2 n

3�4��3/2 � 2mdn

�2 � 5/2 �kBTnkBTL

��cl
2 Iac�Tn�. �44�

The nonelastic case can be solved approximately, making use
of the small parameter

xl�
El

kBTn
. �45�

Eq. �39� shows that xl remains small down to very low elec-
tron temperatures (Tn�10 K�. We only give the first-order
correction here, which is sufficient even for 77 K applica-
tion:

d00
ac ,nonel�d00

ac ,elexp ��xl��1��8xl�1�8�̃ �. �46�

Fig. 3 illustrates the nonelastic correction as a function of
temperature assuming cold electrons. At room temperature
the scattering strength is larger by about 16%, which in-
creases to about 30% at 77 K, as compared to the elastic
approximation.

2. Intervalley scattering

With the above mentioned assumptions, i.e., single ef-
fective phonon energy �� int ,n and single effective deforma-
tion potential constant of intervalley scattering Dint ,n , and
isotropic but nonparabolic valleys, one obtains the following
exact expression for d00

int :

d00
int��

Dint ,n
2 n

3�4��3/2 � 2mdn

�2 � 5/2 �kBTn

�� int ,n
f BIint�Tn ,TL�, �47�

with

f BIint�Tn ,TL�

��
0

�

dx e�x� f B�1�4�̃x�� f B�1 �e�2���1�4�̃x�2�̃��

���1�4�̃x�4�̃�����1�4�̃x�4�̃��

��2x�2���1�4�̃x�2�̃���

��x�x�2���1�4�̃x�2�̃��� . �48�

Here, the characteristic parameter is the dimensionless pho-
non energy

��
�� int ,n

2kBTn
. �49�

If the carrier temperature is high enough that ��1 holds,
collisions are quasi-elastic and �48� turns into its high-
temperature limit

f BIint
el �Tn ,TL��2�2 f B�1 �Iac�Tn�. �50�

If the carriers are cold, nonparabolicity is of minor impor-
tance, and �48� can be evaluated with ��0 �parabolic ap-
proximation�. This gives

f BIint
par�Tn ,TL��2� f Be��� f B�1 �e����

�

�

dz e�zz�z2��2

�2� f Be��� f B�1 �e����2K2���

�2 sinh�1����2K2���, �51�

where K2(�) denotes the modified Bessel function of second
order.24 Obviously, �50� and �51� can be combined to the
final analytical form

f BIint�Tn ,TL��sinh�1����2K2���Iac�Tn�. �52�

The error of this approximation is about 3% almost indepen-
dently of the electron temperature �see Fig. 4�. At high car-
rier temperatures (��1) due to

lim
�→0

�2K2����2 �53�

this turns into

f BIint�Tn→� ,TL��2�2 f B�1 �Iac�Tn�. �54�

3. Impurity scattering including dispersive screening

Isotropic valley: We first consider isotropic valleys. In-
serting �31� into the expression for d00 we obtain

d00
imp��

4Nimpmdn
2 e4Z2

�5�kBTn�s
2 �

0

�

d���2 f �0 ����

��1� f �0 ������
qmin

qmax
dq

q3

�q2�LD
�2J�q ,���2

�55�

FIG. 3. Ratio of the scattering strengths of intravalley LA-phonon scattering
calculated in elastic �44� and nonelastic approximation �46� for thermalized
carriers (Tn�TL). The temperature dependence of the DOS effective mass
was taken into account by the relation mt(TL) Eq. �96�.
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with

qmin�0, qmax�2�2mdn�

�2 . �56�

In Eq. �55� LD denotes the Debye screening length, which in
the Thomas-Fermi approximation is calculated by the for-
mula �contribution of holes and ionized impurities to screen-
ing neglected here for simplicity�

LD
�2�

4�e2Z

�skBTn

�n

�
n
. �57�

The factor J(q ,�) accounts for both the dispersive screening
and the effect of nonparabolicity on screening. Analytical
expressions will be derived below. There it will be shown
that J(q ,�) is a slowly varying function of q around q̂ , the
momentum for which the q-integrand in �55� becomes maxi-
mum. This momentum q̂ can be determined approximately
setting J(q ,�)�J(0,0)�1, the limit of q-independent
screening and parabolic bands. Then,

q̂��3LD
�1 . �58�

With frozen J( q̂ ,�) the q-integral in �55� is straightforward
and we obtain

d00
imp��

2Nimpmdn
2 e4Z2

�5��s
2 I imp�an� �59�

with

I imp�an��an�
0

�

dx�1�4�̃anx � f �0 ��x ��1� f �0 ��x ��

�� ln�1�x ��
x

1�x � , �60�

the Fermi function f (0)(x)��exp(anx�
n)�1��1, and the
screening parameter an

an�
�2LD

�2

8mdn

J� q̂ ,��

kBTn
. �61�

The integral �60� can be solved exactly in the two cases of
nondegenerate and completely degenerate statistics, respec-
tively. In the first case f (0)(x)→exp(
n�anx), and

I imp
ndg�an��

n

Nc
	��an�1 �E1�an�ean�1��1�4�̃an�

�4�̃E1�an�ean
, �62�

where E1 is the exponential integral function.24 In the second
case f (0)(x)→�(
n�anx). Assuming still that the DOS is
ideal, i.e., Eq. �25� holds, it follows that

I imp
dg �an��� ln� 1�


n

an
��


n

an�
n
��1�4�̃
n�. �63�

The assumption of an unperturbed DOS in the heavy doping
regime is not well justified as will be shown below. In �60�–
�63� the screening parameter an and the normalized Fermi
level 
n are functions of the carrier density. If degenerate
statistics has to be applied, Fermi level and density are re-
lated by the Fermi integral F1/2 , again under the assumption
of an unperturbed DOS. With a model for the perturbed DOS
the 
n(n)-relation becomes extremely complicated, since the
screening length itself is the parameter of the DOS model.

For the moment we assume an ideal DOS given by Eq.
�25� over the entire doping range. For the purpose of device
simulation an analytical 
n(n)-relation is desirable to enable
fast computation of the screening parameter and the scatter-
ing integral I imp . It is important to note that due to the
choice of the distribution function f (0)(k) Eq. �5� the elec-
tron density is indeed given by the usual Fermi integral
(n�NcF1/2) and not by its nonparabolic modification
(n�NcJ1/2), discussed, e.g., in Ref. 16. This can be easily
proven evaluating the zeroth moment of f (0)(k). The screen-
ing length is determined by the Fermi integral F�1/2 . We
adopt the approximation given in Ref. 25 �corrected for ty-
pographical errors and slightly improved in accuracy�

�n

�
n
�

�� 5.97455�
n

Nc
� n

1�0.3536
n

Nc
�0.0099� n

Nc
� 2

�0.000375� n

Nc
� 3

�

1.5�� n

Nc
�5.97455�Nc� n

Nc
� 1/3

1.209�0.6803� n

Nc
� �4/3

�2.55� n

Nc
� �8/3 . �64�

The Fermi level 
n is determined by the inverse function of
the Fermi integral. The approximation analogous to �64�
reads25

FIG. 4. Intervalley scattering strength as a function of carrier temperature.
Solid line: numerical integral �48�, dashed line: analytical approximation
�52�.
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n��� 5.97455�
n

Nc
� � ln� n

Nc
��0.3536� n

Nc
�

�0.00459� n

Nc
� 2

�0.000125� n

Nc
� 3�

��� n

Nc
�5.97455� �1.209� n

Nc
� 2/3

�0.6803� n

Nc
� �2/3

�0.85� n

Nc
� �2� . �65�

In Fig. 5 we compare the calculated mobility curves as
function of the concentration of ionized impurities �assuming
neutrality, i.e., n�Nimp) against experimental data.26 The ef-
fect of dispersive screening was not included, and the DOS
was assumed to be ideal even at the highest densities. The
theoretical mobility comes out too large for all doping levels,
and exhibits a particularly strong deviation in the range
1019 cm�3�1020 cm�3. Furthermore, calculating the screen-
ing parameter with Boltzmann statistics yields completely
unphysical results �i.e., an increase in � with doping� for
carrier densities beyond 1019 cm�3. Fortunately, if I imp

ndg with
the correct screening is used, the result differs only little
from the exact one obtained by evaluating the integral I imp

Eq. �60� numerically. This is illustrated in Fig. 6.
Anisotropic Valley: The influence of the ellipsoidal en-

ergy surface on the partial mobility � imp��en/(2�2d00
imp)

will be studied for the two valleys along �001�- and �100�-
direction, respectively. The rotational axes of these valleys
are parallel and orthogonal to the applied electric field �z-
direction�, respectively. In the first case we can still take
advantage of the cylindrical symmetry and carry out the po-
lar q-integration exactly, whereas in the latter case the ap-
proximation sin2��cos2��1/2 must be used. The result is

d00,j
imp��

Nimpmdn
2 e4Z2

�5��s
2 �

0

1

d��2
m jmdn

� j
2���

I imp� an

mdn

� j��� � ,

�66�

where the index j equals either l �longitudinal� or t �trans-
verse� and Iimp is a function of � . The mass � j(�) is defined
by

� l�����2�ml�mt��mt , �67�

� t����� 1
2 ��2�ml�mt���ml�mt�� . �68�

For clarity we rewrite �66�:

d00,l
imp��

Nimpmdn
2 e4Z2

�5��s
2

ml

2�ml�mt�
3/2

��
mdn/ml

mdn/mt
dy�mdn /y�mtIimp�yan�, �69�

d00,t
imp��

Nimpmdn
2 e4Z2

�5��s
2

�2mt

�ml�mt�
3/2

��
2mdn/�ml�mt�

mdn/mt
dy��ml�mt�/2�mdn /yIimp�yan�.

�70�

FIG. 5. Calculated mobility as function of doping. �a� Log-lin plot; �b� Log-log plot. Parameters: Tn�TL�300 K, ��0.5/eV. Solid curve: with I imp
ndg Eq. �62�

and Boltzmann statistics in the screening parameter; dashed curve: with Iimp
ndg Eq. �62� but correct screening �Eqs. �64� and �65��; dotted curve: with I imp

dg Eq.
�63� but correct screening �Eqs. �64� and �65��; filled circles: experimental data �see Ref. 26�.

FIG. 6. Mobility calculated with I imp
ndg Eq. �62� �solid line� and the numerical

integral Eq. �60� �dashed line�. Parameters: Tn�TL�300 K, ��0.5/eV.
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From �66�–�70� it turns out that the isotropic scattering inte-
gral is averaged over the effective mass in the screening
length with an anisotropic weight function. For the two lon-
gitudinal valleys the mass varies between the extremes ml

and mt , whereas for the four transverse valleys the variation
is between the mean value (ml�mt)/2 and mt . There is no
analytical approach for the integrals in �69� and �70�. In Fig.
7 the numerical evaluation is shown in terms of the ratio
between the scattering strengths in ellipsoidal and spherical
valleys. When anisotropy is taken into account, the scattering
strength increases in the longitudinal valleys, whereas it de-
creases in the transverse valleys. This can be understood
from the weight functions in Eqs. �69� and �70�: in the lon-
gitudinal valley the ‘‘integral’’ effective mass is larger than
the DOS mass, which makes screening less efficient. At the
same time, the ‘‘integral’’ DOS prefactor increases. The op-
posite holds for the transverse valleys. The total mobility is
determined by the average (d00,l

imp�2 d00,t
imp)/3. Compared to

the isotropic case, this average is smaller by about 15% in
the low doping range. Thus, all six valleys together yield a
rather small anisotropy effect. Decreasing carrier tempera-
ture and rising doping level intensify the effect as shown in
Fig. 7. We note that the above results are in qualitative agree-
ment with those of Refs. 27, 28 where the momentum relax-
ation time in the diffusion approximation and in the regime
of Ohm’s law was calculated including anisotropic scattering
by ionized impurities.

Dispersive Screening: The correct description of screen-
ing is crucial, if one aims at a good agreement between the
calculated and measured mobilities in the range of moderate
and heavy doping. We use the model distribution function �5�
in order to derive an analytical expression for the factor
J(q ,�) which appears in Eq. �61� for the screening param-
eter. This extends the treatment given by Takimoto17 to
Fermi statistics and nonparabolic bands. Our starting point is
the dielectric function in the random phase approximation
�RPA� �see e.g., Ref. 29, p.158� restricted to the lowest con-
duction band

��q��1�
e2

q2�2�s
� d3kf �0 ��k�� 1

Ek�Ek�q
�

1

Ek�q�Ek
� .

�71�

First, we consider non-degenerate statistics. Inserting the
heated Maxwellian �2� into Eq. �71� gives:

��q��1�
�̃

LD
2 q2

1

"��
�

0

�

dxxe�x2�
�4"x

4"x

dz

�� 1

�1�4�̃x2��1�4�̃�x2�4"2��4�̃z

�
1

�1�4�̃x2��1�4�̃�x2�4"2��4�̃z
� , �72�

with

"�"�q ��
�q

�8mdnkBTn

. �73�

The integral in z can be solved exactly. As in the case of
parabolic bands17 it remains one integration which cannot be
performed analytically:

��q ��1�
1

q2LD
2 J�" ,�̃ �, �74�

where

J�" ,�̃ ��
1

��"
�

0

�

dxxe�x2� �1�4�̃�x�2"�2

��1�4�̃�x�2"�2��1�4�̃x2 ln

���1�4�̃�x�2"�2��1�4�̃x2

�1�4�̃�x�2"�2��1�4�̃x2� � . �75�

FIG. 7. �a� Ratio of the scattering integrals d00,l
imp/d00

imp �longitudinal�, d00,t
imp/d00

imp �transverse�, and (d00,l
imp�2 d00,t

imp)/(3d00
imp) �average�. �b� Anisotropy effect on

mobility as function of carrier density. Parameters: Tn�TL�300 K, ��0.5/eV. Solid curve: with (d00,l
imp�2 d00,t

imp)/3 �Eqs. �69� and �70��; dashed curve: with
d00

imp �Eq. �59��. In both cases the analytical form �60� was used for I imp .
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In order to avoid the numerical evaluation of J(" ,�̃) we look
for an analytical interpolation between the limits "→0 and
"→� . In the first case one obtains

J�0,�̃ ��
2

��
�

0

�

dxe�x2 �1�8�̃x2�

�1�4�̃x2
��1�6�̃�2�̃2.

�76�

The last approximation is satisfactory up to electron tem-
peratures of Tn�10 000 K. In the second case one obtains

J�� ,�̃ ��
��̃

"
�

1

��"2 �0

�

dxx2e�x2�1�4�̃x2

�
��̃

"
�

�1�4�̃

4"2 � �̃#0 �. �77�

A good fit to J(" ,�̃) for all " and �̃ is provided by the
expression

J�" ,�̃ ��
J�0,�̃ �

2 	 � 1�
2

3
"4� �1

��1�
1

2

J�0,�̃ �

J�� ,�̃ �
��1
 . �78�

Fig. 8 compares this approximation with the numerical inte-
gral �75� for different carrier temperatures. With rising Tn the
J(q ,�̃)-factor increases at each q, indicating that screening is
enhanced as the electrons become more energetic.

The main contributions to the mobility come from
q-values of the order �3LD

�1 �see Eq. �58��. Therefore, the
dominant wave numbers increase with rising carrier density.
From a certain density (�1018 cm�3) on, the screening pa-
rameter is reduced and the mobility drops. Since densities
beyond 1019 cm�3 require Fermi statistics, we still need the
expression of J(" ,�̃) for this case. It can be shown that �78�
may be used in this case as well, the only difference being
that J(0,�̃) has to be replaced by

J�0,�̃ ,
n��� F�1/2�
n�

F1/2�
n�
�6�̃�2�̃2

F3/2�
n�

F1/2�
n� �
1/2

. �79�

The effect of dispersive screening on the mobility is illus-
trated in Fig. 9. It causes a drop in the mobility for densities
greater than about 1018 cm�3. If I imp

ndg Eq. �62� is used, the
mobility becomes too low and the error in the range
n�1020 cm�3 increases �dashed curve�. With the numerical
integral of Eq. �60� �solid curve�, the fit improves.

Effect of Perturbed DOS: If the doping concentration
exceeds a certain level, the silicon DOS changes near the
band edge of majority carriers. We adopt the models pro-
posed by Kane30 and Morgan31 for the tail states and the
impurity bands, respectively, to study the effect of a per-
turbed DOS on mobility. It turns out that—again—the largest
effect is on the screening parameter, whereas the scattering
integral I imp remains almost unchanged, except for very low
temperatures and extremely high doping (Nimp�1020

cm�3�. Energy levels of the order $kBTn measured from the
unperturbed DOS edge, which yield the major contribution
to the mobility, are still well separated from the impurity

band for concentrations Nimp
Nc . As Nimp increases fur-
ther, the DOS near the original DOS edge becomes com-
pletely extrinsic and the results will depend solely on the
DOS model and its parameters. A quantitative analysis of the
mobility in the ultra-heavy doping range is further compli-
cated by the breakdown of the Born approximation and pos-
sible clustering of impurity atoms.

The DOS effect on the screening length is more pro-
nounced, since an$�n/�
n is sensitive to the shape of the
DOS edge when the Fermi level approaches it. We use the
envelope of Kane’s tail state model and Morgan’s impurity
band model �see Ref. 32 and references therein�, and evalu-
ate the electron density by

n��
�Eg/2

�

dE f �0 ��E �max�Dc�E �,Dib�E �� , �80�

with the conduction band DOS model Dc(E) including tail
states,30 and the impurity band DOS model Dib(E)31 de-
scribed by

Dc�E ��
2Nc

���kBTn�3/2
��cvY � E�Ec

�cv
� , �81�

Dib�E ��
2ND

�

���DA

exp� �
�E�ED�2

�DA
2 � . �82�

In these models the standard deviations have the form

�cv�
q2

�4��s

��ND
��NA

��� exp� �
a

2� � �83�

�DA�1.0344�cv exp� �
1

�11.3206��ND
��NA

���3� .

�84�

The function Y is defined by

Y �x ��
1

��
�

��

x

due�u2�x�u , �85�

a denotes the lattice constant and � the screening length. The
screening length is a function of the DOS, hence Eqs. �81�
and �82� represent a problem to be solved self-consistently.
Here we restrict ourselves to the zeroth order solution with
��LD and LD calculated with the ideal DOS �25�. The
shape of the total DOS is sensitive to the dependence of the
binding energy ED of the donor electron on the doping con-
centration. This dependence primarily determines the screen-
ing parameter an in the heavy doping range. Following Refs.
33 and 34 we assume that

ED�ND
���ED�0 ��3.1�10�8�ND

��1/3. �86�

The resulting DOS is illustrated in Fig. 10. The effect of the
perturbed DOS on the mobility is illustrated in Fig. 11. If the
model �81�–�86� is applied only to the screening parameter
an , the mobility increases in the heavy doping range
Nimp�1020 cm�3 �solid curve�. A further strong increase of
the mobility for densities larger than 1019 cm�3 results, if the
scattering integral �60� is evaluated numerically, with the
model �81�–�86� also applied to the DOS factor in I imp �dot-
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dashed curve�. The mobility edge which separates localized
electronic states below from extended states above �see Ref.
15, page 932�, was assumed to coincide with the former band
edge. Since the DOS becomes extrinsic near the band edge
for Nimp�1019 cm�3, the Fermi level at a given carrier den-
sity is lower than in the case of an ideal DOS. As a conse-
quence, the contribution from the distribution function to the
scattering integral �60� decreases, and the mobility increases.
This is partly compensated by the growing scattering
strength due to the DOS factor in I imp . The combined action
of these two effects yields the shoulder in the mobility curve
around Nimp�1020 cm�3. A similar shoulder appears in the
experimental data. The subsequent drop �‘‘second drop’’� of
the mobility is sometimes attributed to clustering of impurity
atoms.35

The major conclusion of this paragraph is that the real
DOS has a strong impact on the mobility of silicon for dop-
ing concentrations larger than 1019 cm�3. Theoretical results
depend on the model assumptions and the computation time

strongly increases. The latter fact makes the inclusion of
real-DOS effects in device simulation codes impractical.

III. PARAMETER FIT AND COMPARISON WITH
EXPERIMENTAL DATA

A. Fit procedure

The final form of the mobility model is:

�n�TL ,Tn ,Nimp�

�
�n

�0 ��TL�

f ac�TL ,Tn�� f int�TL ,Tn�� f imp�TL ,Tn ,Nimp�
, �87�

with a ‘‘scaling’’ mobility

�n
�0 ��TL��

9 e�

mdnkBTL
�457.2� 300

TL
� � m0

mdn
� cm2

Vs
, �88�

FIG. 8. Comparison of the analytical approximation for J(q ,�̃) given by
Eq. �78� �dashed curves� and the numerical integral Eq. �75� �solid curves�
for three different carrier temperatures. Parameters: TL�300 K,
��0.5/eV.

FIG. 9. Effect of dispersive screening on the mobility. Dotted curve: without
dispersive screening and with I imp

ndg �Eq. �62��; dashed curve: with dispersive
screening and I imp

ndg �Eq. �62��; solid curve: with dispersive screening and the
numerical integral �60�; filled circles: experimental data �see Ref. 26�. Pa-
rameters: Tn�TL�300 K, ��0.5/eV.

FIG. 10. Calculated total DOS according to �81�, �82�, and �86� for donors
with ED(0)�0.045 eV.

FIG. 11. Effect of perturbed DOS on the mobility calculated with dispersive
screening. Dashed curve: with ideal DOS and I imp

ndg �Eq. �62��; solid curve:
only screening parameter calculated with perturbed-DOS model �81�–�86�,
scattering integral I imp

ndg �Eq. �62��; dot-dashed curve: full numerical integra-
tion with perturbed-DOS model �81�–�86� including self-consistent calcula-
tion of the Fermi level and introducing the DOS model for the density of
states in the scattering integral I imp ; filled circles: experimental data �see
Ref. 26�. Parameters: Tn�TL�300 K, ��0.5/eV, ��LD , ED�0.045 eV.
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which happens to give the right order of magnitude �1357
cm2/Vs at room temperature�. Recalling Eqs. �22�, �43�, �44�,
�46�, �47�, �52�, �59�, �61�, and �62�, the terms in the denomi-
nator can be expressed as

f ac�
48mdn

5/2

�2��3/2�3

�1�12�̃ �

��kBTn
�

j�LA ,TA

D j
2

x j
e�x j

��1��8x j�1�8�̃ � �89�

�3.53�10�4� mdn

m0
� 5/2�300

Tn

��1�12�̃ � �
j�LA ,TA

D j
2

x j
e�x j

��1��8x j�1�8�̃ �, �90�

f int�
24

�4��3/2 � 2mdn

�2 � 3/2 �kBTn

kBTL

�Dint ,n
2

�� int ,n

��1�12�̃ �sinh�1����2K2��� �91�

�1.34�10�19
Dint ,n

2

�� int ,n
� Tn

300� mdn

m0
� 3/2� 300

TL
�

��1�12�̃ �sinh�1����2K2���, �92�

f imp�12� �2

2mdn
� e2Z

�s
� 2 ��Nimp

kBTL�kBTn�3/2

�	��an�1 �E1�an�ean�1��1�4�̃an�

�4�̃E1�an�ean
 �93�

�5.88�10�19Nimp�m0

mdn
� 300

Tn
�

3
2� 300

TL
�

�	��an�1 �E1�an�ean�1��1�4�̃an�

�4�̃E1�an�ean
, �94�

where

x j�
mdnc j

2

2kBTn
, ��

�� int ,n

2kBTn
, �̃��kBTn . �95�

The following parameters are regarded as given quantities:
the nonparabolicity ��0.5/eV, the mass density ��2.329
g/cm3, the charge number Z�1, the static dielectric constant
�s�11.7, and the DOS effective mass mdn��mt

2(TL)ml�
1/3

with ml�0.9163m0 . The transverse effective mass mt is a
function of lattice temperature. We adopt the relation given
in Ref. 36

mt�TL��0.1905m0

1.206

1.206�2.73�10�4TL
. �96�

Intravalley acoustic phonon scattering was generalized to
both the LA branch and the degenerate TA branch: the sound
velocities are cLA�9.04�105 cm/s and cTA�6.22�105

cm/s, respectively.

The corresponding deformation potentials DLA , DTA

have to be specified. For intervalley scattering the effective
deformation potential constant Dint ,n and the effective pho-
non energy �� int ,n are needed. Furthermore, we allow for a
scaling factor in f imp to improve the fit where the mobility is
dominated by impurity scattering. Together these are five fit
parameters, which have been determined by comparison with
first-principle MC results37 and experimental data. The fit
procedure is as follows: first, the acoustic deformation poten-
tials DLA and DTA are fixed to the values based on empirical-
pseudopotential calculations and properly adjusted in the MC
code of Ref. 37: DLA�5.49 eV, DTA�2.58 eV. Second,
Dint ,n is estimated by a root square sum over all individual
intervalley deformation potentials used in Ref. 9. Then,
�� int ,n is adjusted to reproduce the value of the lattice mo-
bility at room temperature. As will be shown below, both the
experimentally observed dependence of the mobility on a
broad range of lattice temperatures and the saturation of drift
velocity �dependence on carrier temperature� are recovered.
Finally, the scaling factor in f imp is found for a reasonable fit
of the mobility as a function of doping concentration.

B. Dependence on ambient temperature

The lattice mobility at room temperature26 is reproduced
with Dint ,n�6.68�108 eV/cm and �� int ,n�0.0454 eV. The
effective deformation potential constant was calculated by
the root square sum

Dint ,n���
i

Di
2, �97�

with all X-X-valley f- and g-type and X-L-valley deforma-
tion potentials Di from Ref. 9 The value of �� int ,n is con-
siderably smaller than the LO-phonon energy, which is
caused by the contribution of acoustic modes. It should be
noted that �97� is appropriate for the calculation of energy
RTs, in the case of mobility a weighted sum including pho-
non energies and phonon occupation numbers would be more
suitable. However, it turns out that there are many combina-

FIG. 12. Electron mobility as a function of lattice temperature �thermalized
carriers assumed�. Solid line: model of the present paper; dashed lines:
contributions of acoustic phonon intravalley �ac� and intervalley scattering
�int�, resp.; circles: the power law of Ref. 41; diamonds: exp. data of Ref.
28; squares: exp. data of Ref. 38; �: exp. point of Ref. 39; triangle: exp.
point of Ref. 40.
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tions of the couple of parameters 	Dint ,n ,�� int ,n
 all giving
a good fit of �n(TL ,Tn) over a broad range of temperatures.
With the choice of �� int ,n , the lattice-mobility curve is
‘‘pinned’’ to the correct room-temperature value with only
little influence on the shape of �n(TL ,Tn).

Figure 12 shows �n(TL) in the range 20 K�500 K
�solid line� compared with data points given in
Refs. 28, 38–40 and the power law �n(TL)
�1417 (TL/300)�2.42.41 Experimental results in the low-
temperature range were obtained making corrections for im-
purity scattering, which partially accounts for the consider-
able dispersion in the measurements. Our model fits well the
results of Ref. 28 over the entire temperature range.

Also shown are the individual contributions of intra- and
intervalley scattering �dashed lines�, respectively. Intravalley
acoustic phonon scattering dominates up to 150 K, whereas
comparable contributions are found in the range 200 K�
500 K.

C. Dependence on carrier temperature, velocity
saturation

Fig. 13 illustrates the dependence of the mobility on car-
rier temperature at TL�300 K and the individual contribu-
tions of acoustic phonon intravalley �ac� and intervalley scat-
tering �int�, respectively.

Since hot-carrier mobility data only exist as function of
the applied electric field, we need the dependence of carrier
temperature on field strength Tn(F). In order to obtain this
relation we ran bulk MC simulations with SIMC29 and
VEGAS.37 Furthermore, we applied the analytical formula

Tn�F ��TL�
2e

3kB
�E ,n�n�F �F2, �98�

where �E ,n denotes the energy RT of electrons and �n(F) the
heuristic high-field mobility model given by Canali et al.42

Eq. �98� is the solution of the homogeneous Boltzmann
equation in the RTA. The simulated average electron tem-
peratures were then used in the mobility model to compare
drift velocity saturation with data from Canali et al.42 The
intervalley scattering parameters Dint ,n�6.68�108 eV/cm
and �� int ,n�0.0454 eV were kept unchanged. Fig. 14 shows
the calculated drift velocities. The model reproduces the
saturation effect within the uncertainty caused by the
Tn(F)-relation. The latter differs between the two MC codes
owing to the different band structure models, deformation
potential constants, and impact ionization rates. We note that
a ‘‘perfect fit’’ could be obtained using Eq. �98� with an
adjusted �E ,n and slightly decreasing the nonparabolicity pa-
rameter � .

D. Doping dependence

To improve the fit in the low and intermediate doping
range a scaling factor in front of the scattering integral I imp

is sufficient. The reason for the calculated electron mobility
being systematically larger compared to the experimental
data in that range is not clear. This discrepancy was also

FIG. 13. Electron mobility as a function of carrier temperature at TL�300
K �solid line�, and individual contributions of acoustic phonon intravalley
�ac� and intervalley scattering �int�, respectively.

FIG. 14. �a� Average carrier temperature vs electric field from simulations with the MC programs �see Ref. 9� �dashed curve� and �see Ref. 37� �solid curve�,
and from the analytical relation �98� �dotted curve� with �E ,n�0.6 ps. �b� Electron drift velocity vs electric field with the Tn(F)-relations calculated from �see
Ref. 9� �dashed curve� and �see Ref. 37� �solid curve�, and from the analytical relation �98� �dotted curve� with �E ,n�0.6 ps. Filled circles: experimental data
by Canali et al. �see Ref. 42�.
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observed in MC simulations including impurity
scattering.43,44 Partial wave phase-shift analysis by several
authors43,45,46 indicated that the drop of the majority carrier
mobility is only minor up to Nimp�1018 cm�3. Bennett and
Lowney47 even found that the Born scattering rate is greater
than the phase-shift scattering rate for donor densities less
than 2�1018 cm�3. On the other hand, it was shown that
including the second order perturbation term yields a re-
markable drop of the mobility even for the lowest doping
concentrations.44 Bennett and Lowney47 also introduced a
scaling factor for the screened Coulomb potential to account
for the non-point-ion nature of the electron-donor interac-
tion. They adjusted this factor to yield the measured ground-
state binding energy which differs from the result of the hy-
drogen model when central-cell corrections and valley
coupling are neglected. However, it remains open to which
extent such a factor can be applied to the continuum states.

In the present model based on the Brooks-Herring theory
a constant scaling factor of about 2.2 yields a good agree-
ment with the experimental findings of Masetti et al.26 up to
1018 cm�3, as shown in Fig. 15. Most likely, a major contri-
bution to this factor originates from short-range electron-
electron �e-e� scattering. High-energy carriers which are not
much scattered by ionized impurities, lose energy to low-
energy carriers that have been scattered by these impurities,
resulting in an overall decrease of the mobility. Appel48 ap-
plied the variational method to an isotropic multi-band
model for nondegenerate statistics and derived a numerical
curve for the mobility reduction due to e-e scattering in
terms of the ratio between electron wavelength and screening
length. The reduction factor approaches 0.573 in the high-
energy/low-density limit and 1 in the low-energy/high-
density limit, respectively. Keyes49 and Bate et al.50 obtained
similar factors using the RTA. Keyes49 found a strong en-
hancement of the effect of e-e scattering after addition of
anisotropy. According to these results, the use of a constant
scaling factor appears as a rather crude approximation and an
attempt should be undertaken to incorporate a corrected dis-
tribution function into the Brooks-Herring formula that re-

flects the effect of short-range e-e interaction in terms of
carrier temperature, density, Fermi statistics and anisotropy.

A further contribution to the required scaling factor 2.2
could be due to electron-plasmon interaction.47,51 Fischetti51

showed the importance of this effect at doping densities
above 1018 cm�3. For majority electrons its size strongly
depends on the assumptions about the dominant decay
mechanism. Fischetti considered only plasmons that survive
Landau damping long enough to decay mainly by momen-
tum dissipation and randomization, which affects the major-
ity carrier mobility directly. The half-width of the plasmon
line was approximated by %��/&�' with &�' given by the
single-particle RT due to phonon and impurity scattering.
Using &�'�5�10�14 s a 20% reduction of the electron mo-
bility at ND�1019 cm�3 was obtained.

The overestimation of the theoretical mobility around
1019 cm�3 could be furthermore attributed to multiple-
potential scattering.43 At higher densities the mobility is in-
fluenced by a variety of additional effects reviewed in Ref.
52, in the first place by dispersive screening, but also by the
real DOS as discussed in Section II C 3. For device simula-
tion purposes a practical solution has to be found, because
inclusion of additional effects leads to an increase in compu-
tation time, which would become unacceptable if, e.g., the
real-DOS model �81�–�86� was used. The solid line in Fig.
15 was calculated with the ideal DOS, with Iimp

ndg given by Eq.
�62� and neglecting dispersive screening. However, the good
fit in the range 1019 cm�3�1020 cm�3 is merely a coinci-
dence.

IV. HOLE MOBILITY

A. Band model

The hole spectrum in Si consists of three bands, the
heavy and light hole bands which are degenerate at k�0, and
the split-off band, separated by the spin-orbit energy
(�0.0443 eV at k�0. All three bands are warped because
of the p-like symmetry of the hole Bloch states. Furthermore,
they are nonparabolic due to the spin-orbit interaction. The
effect of nonparabolicity is largest in the &110'-direction and
at energies near (/3.53 Two approximate models are common
to calculate macroscopic quantities like DOS, hole concen-
tration, mobility etc.: a two-band model consisting of a
spherical nonparabolic heavy band and a spherical parabolic
light band, and a one-band model assuming a warped and
parabolic heavy band.53

For the purpose of fitting transport data for p-type sili-
con, a temperature dependent isotropic DOS effective mass
was calculated for each band in Refs. 54, 55. This was done
by equating the hole concentrations obtained with warped,
nonparabolic bands to those obtained with a free-electron
band model. A polynomial fit for the temperature dependence
of the total hole DOS effective mass, based on these calcu-
lations, was given in Ref. 56. This temperature dependence
originates from an occupation effect and hence, must not be
confused with the lattice temperature dependence due to a
change in the electron-phonon interaction. The latter is the
cause for the temperature dependence of the transverse elec-
tron effective mass which was related to the experimentally

FIG. 15. Electron mobility vs doping calculated with the ideal DOS. Solid
curve: without dispersive screening and with I imp

ndg �Eq. �62�� scaled by 2.3;
dashed curve: with dispersive screening and I imp

ndg �Eq. �62�� scaled by 2.2;
filled circles: experimental data �see Ref. 26�. Parameters: Tn�TL�300 K,
��0.5/eV.
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observed temperature dependence of the gap in Eq. �96�.
However, in the above mentioned calculations thermody-
namic equilibrium (Tp�TL) was assumed. Fig. 16 clearly
shows that the isotropic, parabolic model �dashed curves�
does not fit to the DOS in the range kBTp as the hole tem-
perature increases. Therefore, we will use an isotropic, non-
parabolic model with mdp(TL) in the following and treat the
nonparabolicity � as a fit parameter.

A further complication in the calculation of the hole mo-
bility arises from the fact that the p-like symmetry of the
hole wave functions results in an angular dependence of the
matrix elements. Simplified expressions for the transition
probability within the deformation-potential approach in-
clude a factor

G�)��	 1
4 �1�3 cos2)�, intraband transitions

3
4 sin2) , interband transitions,

�99�

where ) denotes the scattering angle.53 For the sake of sim-
plicity, and in accordance with the isotropic band model, we
will use the approximation G())�G(0) throughout, i.e.,
also for large-angle scattering. The error will be partly recov-
ered by adjusting the deformation potential constants.

B. Analytical model for the hole mobility

With the above simplifications we may adopt the formu-
las derived for electrons, replacing electron quantities by the
corresponding hole quantities. TA-phonon scattering is neg-
ligible due to the symmetry of the hole wave functions. The
final form of the hole mobility model reads:

�p�TL ,Tp ,Nimp�

�
�p

�0 ��TL�

f ac�TL ,Tp�� f opt�TL ,Tp�� f imp�TL ,Tp ,Nimp�
,

�100�

with a ‘‘scaling’’ mobility

�p
�0 ��TL��

9 e�

mdp�TL�kBTL

�457.2� 300

TL
� � m0

mdp�TL� � cm2

Vs
, �101�

which happens to yield the right order of magnitude �397
cm2/Vs at room temperature�. The terms in the denominator
are given by :

f ac�3.53�10�4� mdp�TL�

m0
� 5/2�300

Tp

��1�12�̃ �
Dac ,p

2

xLA
e�xLA�1��8xLA�1�8�̃ �,

�102�

f opt�1.34�10�19
Dopt ,p

2

��opt ,p
� Tp

300� mdp�TL�

m0
� 3/2� 300

TL
�

��1�12�̃ �sinh�1����2K2���, �103�

f imp�5.88�10�19Nimp� m0

mdp�TL�� 300

Tp
� 3/2� 300

TL
�

�	��ap�1 �E1�ap�eap�1��1�4�̃ap�

�4�̃E1�ap�eap
, �104�

with

xLA�
mdp�TL�cLA

2

2kBTp
, ��

��opt ,p

2kBTp
, �̃��kBTp �105�

and the screening parameter

ap�
��2e2Z

2mdp�TL��s

J� q̂ ,��

�kBTp�2

�p

�
p
. �106�

C. Dependence on ambient temperature, carrier
temperature, and doping

The acoustic deformation potential for holes Dac ,p and
the effective phonon energy for optical deformation potential
scattering ��opt ,p are adopted from Ref. 53: Dac ,p�2.2 eV,
��opt ,p�0.061 eV. Drift-velocity saturation is best repro-
duced with a nonparabolicity parameter ��0.15/eV. The
only free parameter left, the optical deformation potential
Dopt ,p , is fixed by fitting the hole mobility to the measured
low-field room-temperature value. This gives Dopt ,p

�4.26�108 eV/cm, in good agreement with the parameters
of the full-band MC program.37

The resulting dependence on ambient temperature in the
range 10 K–500 K is shown in Fig. 17, together with the
individual contributions of acoustic and optical phonon scat-
tering, and with experimental data from Refs. 53, 57, 58. The
dotted line represents the power law �p(TL)
�470.5(TL/300)�2.2 suggested in Ref. 41.

Fig. 18 illustrates the saturation of the hole drift velocity
against the experimental data of Canali et al.42 The hole tem-
perature versus electric field relation was obtained from a
bulk MC simulation with VEGAS37 �dots in the left part of

FIG. 16. Hole density of states Dp(E) in silicon. The solid line represents
the isotropic, nonparabolic fit model with the DOS effective mass taken for
Tp�TL�300 K and ��0.5/eV. The dotted line is a first-principle full-band
result used in the MC program �see Ref. 37�. The dashed curve is obtained
from the solid line setting ��0.
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Fig. 18� and by applying the analytical formula �98� to the
case of holes with an energy RT �E ,p�0.25ps �solid line in
the left part of Fig. 18�.

The dependence on doping is shown in Fig. 19 and com-
pared with measurements by Masetti et al.26 In the case of
holes no scaling factor is necessary to obtain a good fit in the
low and intermediate doping range. As in the case of elec-
trons, for concentrations larger than 1019 cm�3 the calculated
mobility strongly depends on the degree of approximation
necessary to account for Fermi statistics in the scattering
integral. In Fig. 19 the results from Eq. �104� and all effects
connected with heavy doping are shown.

V. SIMULATION RESULTS

The model was implemented into the device simulator
DESSIS�ISE �Ref. 59� which solves two current-transport
equations, two energy-balance equations, Poisson equation
and lattice-heat equation. The hard-coded version is given by

the solid line of Fig. 15 �no dispersive screening, with Fermi
statistics in the screening length, ideal DOS�. We compare
results against those obtained with two other carrier-
temperature dependent models. The first has been derived
from the Canali model42 under homogeneous time-
independent conditions:

��
� low

��1��2�wc�w0�*���wc�w0�*/2�2/*
�107�

with ���� low /(�evsat
2 )�*/2/2. Here � low is the default low-

field mobility model,26 �e is the energy relaxation time,
vsat the saturation velocity, wc the average carrier kinetic
energy, and * is the same as for the Canali model. Default
parameters have been used for the simulations that can be
found in Ref. 59. The second model is similar to the
Meinerzhagen-Engl model:60

FIG. 17. Hole mobility as a function of lattice temperature �thermalized
carriers assumed�. Solid line: model of the present paper; dotted line: the
power law of Ref. 41; dashed lines: contributions of acoustic phonon �ac�
and optical phonon scattering �opt�, resp.; triangles: exp. data of Ref. 57;
squares: exp. data of Ref. 58; circles: exp. data of Ref. 53.

FIG. 18. �a� Average hole temperature vs electric field from simulations with the MC program �Ref. 37� �filled circles� and from the analytical relation
corresponding to �98� �dotted curve� with �E ,p�0.25 ps. �b�: Hole drift velocity vs electric field with the Tp(F)-relations calculated from Ref. 37 �solid curve�
and from the analytical relation corresponding to �98� �dotted curve� with �E ,p�0.25 ps. Parameters: ��0.15/eV, Dac ,p�2.2 eV, Dopt ,p�4.26�108 eV/cm,
and ��opt ,p�0.061 eV. Filled circles: experimental data by Canali et al. �see Ref. 42�.

FIG. 19. Hole mobility vs doping calculated with the ideal DOS. Solid
curve: without dispersive screening and with I imp

ndg corresponding to Eq. �62�;
dashed curve: without dispersive screening and with numerical I imp corre-
sponding to Eq. �60�; dot-dashed curve: with dispersive screening and I imp

ndg

corresponding to Eq. �62�; dotted curve: with nondegenerate statistics in the
screening term; filled circles: experimental data �see Ref. 26�. No scaling
factor in front of the scattering integral has been used. Parameters:
Tp�TL�300 K, ��0.15/eV.
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��
� low

�1�� 3kB� low

Tc�TL

2e�evsat
2 � *� 1/* . �108�

Fig. 20 shows IV-characteristics of a nin-device with
ND�2�1018 cm�3 in the highly doped n-regions and
ND�2�1013 cm�3 in the i-region of 1 �m width. This fig-
ure demonstrates the good convergence behavior of the
model in conjunction with the default impact ionization
model of Ref. 59. The density of the symbols illustrates the
rate of convergence. Fig. 21 shows IV-characteristics of a
n�nn�-device with ND�2�1018 cm�3 in the highly doped
n�-regions and ND�5�1016 cm�3 in the lightly doped
n-region. The treatment of hot-carrier scattering by ionized
impurities in the n-zone is completely different in the new
model, hence one observes a larger variation of the IV-curves
for the n�nn�-device, in particular an advanced avalanche
breakdown.

Fig. 22 presents source-drain currents as a function of

gate voltage of a 0.5 �m-MOSFET at 0.1 V drain voltage for
different values of the substrate bias. The MOSFET was fab-
ricated and measured by Fujitsu. The presented mobility
model was used in conjunction with the default surface scat-
tering model of Ref. 59. The mesh had 2308 nodes and the
increase of total CPU time using the new model was less
than 2%.

VI. DISCUSSION

We derived an analytical model for the bulk mobility of
electrons and holes in silicon suitable for the implementation
in device simulators based on the hydrodynamic transport
equations. The mobility is given as a function of carrier tem-
perature, lattice temperature and doping. In the case of de-
generate statistics it also depends on the quasi Fermi ener-
gies. Analytical integration of the collision terms demanded
for a spherical band model, but nonparabolicity was found to
be crucial and, therefore, was taken into account throughout
the calculation. The adjusted coupling constants—
deformation potentials and phonon energies—are in good
agreement with effective values obtained from the corre-
sponding sets of deformation potential constants and phonon
spectra used in first-principle MC simulations. A good agree-
ment with the measured mobilities in the temperature range
20 K–500 K and for the high-field saturation of the drift
velocities was found. The results show that, despite the over-
simplified band structure, it is possible to reproduce the non-
linear behavior of the mobility, because the nonparabolicity
parameter allows for a sufficient approximation at higher en-
ergies.

In the case of scattering from ionized impurities the situ-
ation is less satisfactory, particularly in the range of heavy
doping. The electron mobility is overestimated by the first-
order scattering theory, whereas the hole mobility agrees
well with measured data up to the onset of degeneracy. After
the discussion of the most important effects related to impu-
rity scattering, it may be argued that the Born approximation
fails even for lowly doped n-type silicon. This conclusion is
supported by the results of MC simulations including first-
order scattering with ionized impurities,37 which show the

FIG. 20. Simulated IV-characteristics of a nin-device with ND�2�1018

cm�3 in the highly doped n-regions and ND�2�1013 cm�3 in the i-region
of 1 �m width according to different carrier-temperature dependent mobility
models.

FIG. 21. Simulated IV-characteristics of a n�nn�-device with
ND�2�1018 cm�3 in the highly doped n�-regions and ND�5�1016

cm�3 in the lightly doped n-region of 1 �m width according to different
carrier-temperature dependent mobility models.

FIG. 22. Drain current versus gate voltage at 0.1 V drain voltage for a 0.5
�m-MOSFET produced and measured by Fujitsu. The symbols represent the
experimental data, the curves were obtained with the mobility model of this
paper.
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same overestimation of the mobility in the intermediate dop-
ing range, but a sharp drop, when the second order term is
taken into account. A constant scaling factor is sufficient to
obtain good agreement with experimental data for n-type
silicon at room temperature up to Nimp�1019 cm�3. How-
ever, it remains an open question to which extent the dis-
agreement vanishes as the average carrier energy increases.

Beyond the onset of degeneracy the calculated mobility
is rapidly decreasing, if Fermi statistics is applied only to the
screening parameter, but using the same analytical form of
the scattering integral as in the nondegenerate case. Numeri-
cal integration improves the fit, but the modification of the
density of states due to heavy doping was found to have an
even stronger influence, and is difficult to be accounted for.
Both numerical integration and the inclusion of a model for
the real DOS lead to an unacceptable increase of the compu-
tation time when the model is included in a device simulator.
A way out could be to use a fitting function for the screening
parameter, which would account for both degeneracy and the
real DOS. However, as for the higher perturbation terms, the
significance of such a fitting function would become ques-
tionable as the average carrier temperature rises under high-
field conditions, since the perturbation of the ideal DOS
should be most pronounced near the band edges.
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