
Simplified model for inelastic acoustic phonon scattering of holes
in Si and Ge

F. M. Bufler,a) A. Schenk, and W. Fichtner
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An averaging procedure is applied to inelastic acoustic–phonon scattering which leads to
lattice-temperature-dependent constants for the phonon energy and the square of the phonon wave
vector. The resulting scattering rate depends on energy only thus facilitating the search of
after-scattering states in full-band Monte Carlo simulations. The model still accurately reproduces
the velocity–field characteristics over a wide range of lattice temperatures, but in silicon the
hot-hole tail of the energy distribution is strongly enhanced compared with the elastic equipartition
approximation. © 2001 American Institute of Physics. �DOI: 10.1063/1.1388597�

Full-band Monte Carlo simulation has been established
as a powerful tool which allows one to incorporate sophisti-
cated scattering models on a microscopic level.1 However,
the incorporation of complicated models often significantly
increases the computational burden of the simulation and
may also lead to additional uncertainties when, e.g., approxi-
mate discretization schemes are necessary for the inclusion
of those models. Therefore, approximations are often being
employed. One of the frequently used simplifications is the
elastic equipartition approximation for acoustic–phonon
scattering. Using this elastic model, it has been possible to
reproduce the experimental data for the drift mobility or ve-
locity of holes in Si or Ge both in the linear2,3 and in the
nonlinear4,5 regime over a wide range of lattice temperatures
to a high degree of accuracy. At the same time, the elastic
model has the advantage of involving a scattering rate, which
depends only on energy but not on the phonon wave vector,
thus greatly facilitating the determination of the state after
scattering during full-band Monte Carlo simulations. In ad-
dition, this model enables an exact computation of the ohmic
drift mobility in terms of the microscopic relaxation time
which requires only a one-dimensional integration over
energy.3,6 However, it has been recently found7 that the elas-
tic model in Si significantly underestimates the number of
hot holes compared to an inelastic model which takes the
acoustic–phonon dispersion into account and yields, after
recalibration of the acoustic and optical coupling constants, a
similar good agreement with experimental drift velocity data.
It is therefore the aim of this article to develop a model
which has the simple structure of the elastic model being
advantageous for full-band Monte Carlo simulation, but in-
volves on average essentially the same energy dissipation as
the inelastic model and hence yields the correct hole energy
distribution.

In general, the hole–phonon scattering rate is wave,
vector-dependent and can be written in the form �see, e.g.,
Ref. 7�
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where we have suppressed the band indices and approxi-
mated the overlap integral as unity. � is the mass density, V
the volume of the crystal, Nq the Bose–Einstein distribution,
and the phonon wave vector q is determined by wave vector
conservation. Upper and lower signs correspond to the ab-
sorption and emission of a phonon with energy 
	(q), re-
spectively, and the sum is over the final states k�. In the case
of optical phonons, both the coupling constant 
(q)�DtK
and the phonon energy 
	(q)�
	opt�kB�opt are usually
taken as constants introducing the equivalent phonon tem-
perature �opt . The acoustic phonons are characterized in the
isotropic approximation via 
(q)�Eq and an analytical de-
scription of the acoustic–phonon dispersion 	(q). For the
phonon dispersion, we adopt the formula 
	(q)�
(�SLq
�cLq2) of Ref. 7 which has the important property to repro-
duce the longitudinal sound velocity at q�0. The parameters
in Si �Ge� are �SL�9.0�105 cm/s (5.4�105 cm/s) and cL

�2.0�10�3 cm2/s (1.2�10�3 cm2/s).
In order to reduce the wave-vector-dependent acoustic

scattering rate to an expression which depends only on en-
ergy, we replace both q2 and 
	(q) by constants instead of
applying the elastic equipartition approximation. These con-
stants are obtained by an averaging procedure in the follow-
ing way. First, the modulus of the phonon wave vector, q
��k��k� , is averaged over a sphere in the spirit of an iso-
tropic, parabolic band structure with the result q�4/3 k .
Then the phonon energy, which is emitted or absorbed by a
hole with a wave vector k, is averaged with the equilibrium
distribution function, i.e., the Maxwell–Boltzmann distribu-
tion. This leads to
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 where the effective mass m(�) is taken to be
the energy-dependent effective density-of-states mass.8 Of
course, the mean acoustic–phonon energy actually depends
on the strength of the electric field. But at high fields,
optical–phonon scattering is dominant so that inaccuracies of
the acoustic–phonon model are less important in this regime.
An analogous averaging procedure is used to compute the
mean value of the squared phonon wave vector, �q2�. As a
consequence of this approach, �
	(q)� and �q2� become
lattice-temperature dependent which is shown in Figs. 1�a�
and 1�b�, respectively. The similar shapes of averaged pho-
non energy and squared wave vector indicate that the non-
linear contribution of the phonon dispersion is negligible.
The smaller phonon energy of Ge in comparison to Si is due
to the smaller sound velocity. Finally, we note that the un-
derlying full-band structure of the three valence bands is cal-
culated via the nonlocal empirical pseudopotential method9

where in addition also the spin–orbit interaction is consid-
ered. An equidistant mesh in momentum space is employed
with a mesh spacing of 1/96�2�/a with a being the lattice
constant.

For the inelastic model, the acoustic and the optical cou-
pling constant, E and DtK , have been recalibrated in order to
reproduce the experimental velocity–field characteristics.
The resulting values are reported in Table I. In Figs. 2 and 3,
the full-band Monte Carlo results for the velocity–field char-
acteristics in Si and Ge, respectively, are compared with the
corresponding time-of-flight measurements at different lat-
tice temperatures. A similar good agreement as in the case of
the elastic model4,3 can be observed. Note, however, that the

optical coupling constant resulting from the adjustment is
smaller in the present model with inelastic acoustic phonons
than in the model employing the elastic equipartition ap-
proximation �the acoustic constants cannot be directly com-
pared because of the different definitions�. This is the same
tendency as for the elastic model of Ref. 5 compared to the
corresponding inelastic model with the full acoustic–phonon
dispersion in Ref. 7. The smaller optical coupling constant is
the reason why the inelastic models lead to an enhanced
high-energy tail of the energy distribution in silicon in com-
parison to their elastic counterparts. The energy distributions
resulting from the elastic and the inelastic models are shown
in Fig. 4. A similar enhancement of the number of hot holes
in the inelastic model as in Ref. 7 can be seen. On the other
hand, it is clear that the population of high-energetic hole
states can be still increased by simply further lowering the
optical coupling constant and readjusting the acoustic one in
order to recover, e.g., the ohmic drift mobility at room tem-

FIG. 1. Phonon energy �a�, expressed in terms of the equivalent phonon
temperature �ac��
	(q)�/kB , and mean modulus of the phonon wave vec-
tor �b�, defined via ��q2�, as a function of the lattice temperature are shown.

FIG. 2. Full-band Monte Carlo results for the velocity–field characteristics
of holes in Si at different lattice temperatures in comparison with corre-
sponding time-of-flight measurements �see Refs. 10 and 11� and microwave
time-of-flight measurements �see Ref. 12� are shown.

FIG. 3. Full-band Monte Carlo results for the velocity–field characteristics
of holes in Ge at different lattice temperatures in comparison with corre-
sponding time-of-flight measurements �see Ref. 13� are shown.

TABLE I. Coupling constants and material parameters for Si and Ge are
shown.

Material
E

�eV�
DtK

(108 eV/cm)
�opt

�K�
�

�g/cm3�
a

�Å�

Si 5.03 8.7 731 2.33 5.43
Ge 3.5 7.0 430 5.32 5.65
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perature. However, this would in particular lead to both an
underestimation of the experimental saturation velocity at
room temperature12 and an underestimation of the experi-
mental velocities at 77 K and low fields10 the latter being due
to a too large acoustic coupling constant. These tendencies
can indeed be observed in the literature.14,15 In contrast, the
energy distributions in Ge remain almost unchanged between
the elastic and the inelastic models and are therefore not
displayed. The reason is the much smaller acoustic–phonon
energy in Ge which in turn requires only a smaller reduction
of the optical coupling constant in order to reproduce the
experimental velocity–field characteristics with the inelastic
model. This explains why the elastic equipartition approxi-
mation works better in Ge than in Si.

In conclusion, a simplified model for inelastic acoustic–
phonon scattering of holes in Si and Ge has been developed.

The model has a scattering rate which depends only on en-
ergy thus facilitating the search of after-scattering states in
full-band Monte Carlo simulations, accurately reproduces the
experimental velocity–field characteristics over a wide range
of lattice temperatures and recovers in Si the enhanced hot-
hole tail of the energy distribution that results from a model
involving a wave-vector-dependent acoustic–phonon disper-
sion.
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FIG. 4. Energy distribution as a function of the hole energy at 300 K for a
field of 250 kV/cm in �100� direction is shown.
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