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On Density-Gradient Modeling of Tunneling through

Insulators
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SUMMARY  The density gradient (DG) model is tested for
its ability to describe tunneling currents through thin insulat-
ing barriers. Simulations of single barriers (MOS diodes, MOS-
FETs) and double barriers (RTDs) show the limitations of the
DG model. For comparison, direct tunneling currents are calcu-
lated with the Schrédinger-Bardeen method and used as bench-
mark. The negative differential resistance (NDR) observed in
simulating tunneling currents with the DG model turns out to
be an artifact related to large density differences in the semi-
conductor regions. Such spurious NDR occurs both for single
and double barriers and vanishes, if all semiconductor regions
are equally doped.
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1. Introduction

Quantum effects in modern deep-submicron devices are
of growing interest. A prominent unwanted quantum
effect in MOSFETsS is direct tunneling through the thin
gate dielectric, which increases the off-state power con-
sumption. Another important effect is quantum de-
pletion, the carrier density decay towards barriers. In
MOSFETsS this leads to a shift of the inversion charge
maximum away from the oxide interface which in turn
causes a shift of the threshold voltage, a lowering of the
gate capacitance and an apparent increase of the oxide
thickness.

There are several methods that can be com-
bined with conventional drift diffusion simulators to
include these effects: Quantum depletion effects can
be accurately modeled by solving the one-dimensional
Schrédinger equation along the confinement direction
self-consistently coupled with the device equations [1].

Established methods for modeling direct tunneling
[2] are the calculation of a transmission coefficient [3]
and the use of Bardeen’s transfer Hamiltonian [4], [5]
with either quasi-classical Wentzel-Kramers-Brillouin
(WKB) wave functions or self-consistently obtained nu-
merical solutions of the 1D-Schrédinger equation [1].

An interesting, computational efficient alternative
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for including quantum effects into conventional device
simulators is the density gradient (DG) model. This
model introduces a quantum correction term contain-
ing higher derivatives of the density or the electrostatic
potential into the usual drift-diffusion or hydrodynamic
device equations [6]-[9]. The DG model is known to de-
scribe quantum depletion effects very well [1]. It also
has been applied to one-dimensional insulator tunneling
[10] (using two carrier populations according to tunnel-
ing direction) and source-to-drain tunneling in ultra-
short channel MOSFETSs [11].

The aim of this paper is to demonstrate the de-
gree to which the DG transport model is capable of re-
producing direct tunneling currents through insulating
barriers. As a reference we use simulations solving the
one-dimensional Schrédinger equation combined with
Bardeen’s transfer Hamiltonian method for calculating
the tunneling current [1],[4]. All devices studied here
are silicon based with single or double SiO5 barriers.

The DG model and modifications for non-
equilibrium are described in Sect. 2. Simulations of tun-
neling characteristics with these models and the refer-
ence method are presented in Sect. 3. The findings are
discussed in Sect. 4.

2. Model

The density gradient (DG) model (or ‘quantum drift
diffusion,” QDD) [1],[7],[9], [12], [13] can be viewed as
a modification of the usual drift diffusion (DD) model.
A ‘quantum potential’ A is introduced into the classi-
cal formulas of the electron density n and the current
density J,, (we restrict the considerations below to elec-
trons, for holes corresponding expressions exist):

n= Ncexp[B (Epn — Ec. — A)] (1)
Jp = —pkTVn — pnV(E; + @ + A)
= —punVEp,, (2)

with 8 = 1/kT, the electron quasi-Fermi energy Ep ,,
the conduction band edge E. and a mass driving term
®,,, = —kT log N, from DOS discontinuities. In the for-
mulation presented here, A is the solution of the partial
differential equation:
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(4)

where € = 1, v is a fit factor and ® = E, + &,,, +
A. Together with Poisson and continuity equation the
formulas (1,2,4) form a system that has to be solved
self-consistently.

The density gradient model is derived as a mo-
ment expansion of the Wigner-Boltzmann [14] or a cor-
responding quantum Liouville equation [9] and a sit-
uation close to thermal equilibrium is assumed. The
derivation in [1] calculates an equilibrium solution for
the density matrix as a first order perturbation in F..
Additionally it is assumed that E. varies only slowly on
the scale of the thermal de-Broglie wavelength. The re-
sult is a formulation given by (1,2,3) with v = 1 where
instead of the density n actually the classical equilib-
rium density n. « exp(—BE.) appears in (3). When
this is replaced by the quantum mechanical density n
we obtain (3) with A appearing also on the right hand
side. This replacement generates a smooth ® even at
band edge jumps AE. > kpT, which violates the as-
sumptions made above, but corresponds to the situa-
tion encountered at the Si-SiOs interface. This step still
lacks a satisfactory justification. Nevertheless the DG
model is able to describe equilibrium densities in MOS
channels very well when compared to a more accurate
1D-Schrédinger solver [1].

‘Tunneling’ in the DG formulation originates from
the reduction of the barrier! by the presence of A in
the current equation (2). The carriers only have to
surmount the residual barrier ®. The tunneling current
is not separated from the drift-diffusion current and
hence is determined by the mobility pox in the oxide,
which we use as a fitting parameter. For each material
a constant mobility was used.

In order to allow for transport modeling, a space
dependent quasi-Fermi energy is introduced in (4).
This expression can be generalized by setting £ # 1
[15]. As the derivation of Eq. (3) is valid close to equi-
librium only, the proper value for £ is not known from
theory. For tunneling, Er , varies significantly over the
barrier, and the value for & matters. Therefore, we ex-
amine the cases £,x = 1 and &, = 0 in oxide regions.
In semiconductor regions, Iy, varies little and we use
¢ =1 throughout.

3. Simulations and Results

Single and double barrier devices were studied with the
simulation tool DESSIS 1sg. The implementation of
the density gradient model is described in [15]. As a
reference, the one-dimensional Schrodinger equation is
solved self-consistently with the Poisson equation in a
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Fig.1 Gate ‘tunneling’ currents in n-channel MOSFETSs. Den-
sity gradient results (symbols) are compared to Schrodinger-
Bardeen (lines).

region covering oxide and part of the substrate next to
it. The direct tunneling current is then calculated by
the Bardeen method a posteriori using the numerically
computed wave functions and assuming plane waves in
the polysilicon gate [1].

3.1 N-Channel MOSFET

Gate tunneling characteristics (gate current Igate ver-
sus gate voltage Vgg) were produced for symmet-
ric n-channel MOSFETs!T with two oxide thicknesses
(Fig.1). Source, drain and back contact were kept at
zero potential.

For {x = 1 and small positive bias (Vgs <
0.5V) one obtains DG curves close to Schrodinger-
Bardeen (SB) results by using an oxide mobility pox =
0.05 CmQ/VS. However, for Vag < 0 there is a strong
discrepancy, the most peculiar feature being a current
peak very close to 0V and a minimum enclosing a re-
gion —1V< Vigg < 0V where negative differential re-
sistance (NDR) occurs.

Using &« = 0 yields monotonously rising currents,
which are, however, too high for positive and too low for
negative bias. Hence, fitting pox does not improve the
situation. Ounly in the very vicinity of Vgg = 0 (equi-
librium) DG ‘tunneling’ currents match the reference
curves given by the SB method.

For the 2 nm device additional SB simulations have
been carried out including a self-consistent current cal-
culation. Apart from a worse convergence behavior no
difference was found for the Igaie-Vas characteristics.

TThe insulator is treated as a semiconductor with a wide
band gap and insulator parameters.

For all simulated devices the term MOS actually im-
plies a highly n-doped (10*° cm™#) polysilicon region instead
of metal.
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Fig.2 DG ‘tunneling’ currents for MOS diodes (structure

nT Polysilicon-Oxide-Si) with different Si dopings. All curves are
shown for &o,x = 1 unless indicated otherwise.

The current is too small to add a significant contribu-
tion to the substrate space charge.

3.2 MOS-Diode

For the simpler structure of a one-dimensional MOS-
diode with 2nm oxide thickness, similar DG current
characteristics are obtained as for the MOSFET (sym-
bols in Fig.2). The label Vg now applies to the volt-
age at the nT-polysilicon ‘gate’ contact with respect to
the substrate. Here, having no source and drain con-
tact, the carrier supply is limited by thermal genera-
tion. For a better comparability, the lifetimes of SRH
generation/recombination in the substrate were set to
extremely small values. Exploring the case {x = 1
for different substrate doping (Fig.2) we find that the
NDR behavior becomes weaker, if the p-type substrate
is changed to n-type and finally vanishes for symmetric
doping, as expected for a symmetric device structure.
The electron density n and the residual barrier ®
are shown for £ = 0 and &y = 1 in Figs.3(a) and
(b), respectively. The inset in Fig.3(b) compares the
conduction band edge E. with the effective band edge ®
for the case of thermodynamic equilibrium. The barrier
is largely reduced. In equilibrium the two cases for &«
are equivalent, but with ceasing inversion they exhibit
different profiles in the oxide as well as in the substrate
region next to it. Most striking is the discontinuity of
the density at the oxide-silicon interface for & = 0.

3.3 Resonant Tunneling Diode

NDR is an effect known to occur in resonant tunneling
devices (RTDs). The results with single barrier MOS-
structures motivated the investigation of the DG model
applied to silicon RTDs with two SiO, barriers enclos-
ing a quantum well of varying thickness. The structure
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Fig.3 Electron density n (a) and effective band edge ® (b)
along a MOS diode at different gate voltages for {ox = 1 (filled
symbols) and £ox = 0 (open symbols). The structure (from left
to right) is: nT-Polysilicon-Oxide-Si. The oxide-semiconductor
interfaces are located at 0 and —2nm, respectively. The inset
in b) shows the equilibrium effective barrier P compared to the
conduction band edge E.. The small steps in ® at the interfaces
are due to the DOS discontinuities ®,, that are not included in
this graph.

Fig.4 Structure of a RTD as used in the simulations. The
well consists of an intrinsic silicon region sandwiched between
two SiOg barriers of 1 nm width.

is shown in Fig.4. The well is intrinsic and the outer
regions are highly n-doped (102°cm~3). The barriers
are 1nm wide. For all following results &, = 1 was
used.

Current characteristics obtained from DG simula-
tions are shown in Fig. 5 (dashed lines). In addition, a
curve for a single oxide barrier between intrinsic and n-
doped silicon is included (circles in Fig. 5) which seems
to be approached, if the well length is increased in the
double barrier device. Furthermore, the NDR-like fea-
ture vanishes, if the outer regions and also the well are
equally n-doped (solid line in Fig. 5).

The occurrence of the DG current peak and a cor-
responding NDR is related to the dimension of the in-
trinsic well region. It is present if the well extends
over 5nm or more. For a narrow well, measuring only
1nm, this effect does not appear (thin dashed line in
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Fig.5 Currents for RT'Ds with different well lengths calculated

with the DG model (§ox = 1). The small pictures illustrate the
device structure. There are three kinds: The RTDs have an
intrinsic well with different lengths (dashed lines, white middle
regions). One RTD has a n-doping of 102°cm~2 also in the well
(solid line, shaded middle region). The third structure is a single
barrier MOS-diode with an intrinsic substrate (e).
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Fig.6 DG current characteristics for an RTD with asymmetri-
cal (p-i-n*) doping (solid line) compared to Schrédinger-Bardeen
(symbols). A symmetrically doped device (nt-i-n™) is also shown
(dashed lines). Well and barriers are both 1nm wide.

Fig.5). For this small well length NDR reappears only
by switching to p-doping in one of the outer regions, i.e.
when the difference in density across the whole device
is increased, which is shown in Fig. 6 (solid line).

In Fig. 6 characteristics of SB and DG simulations
are compared for a RTD having a p-doped and a n™-
doped electrode and an intrinsic well with a length of
1nm. The SB characteristics exhibits two main res-
onance peaks (open circles in Fig.6) that are clearly
different in number, location and peak value from the
single current peak that is obtained for the same device
with the DG model (solid line in Fig.6).

For the corresponding symmetrically n™-doped de-
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Fig.7 N-MOSFET gate leakage current as a function of gate
voltage Vs for a drain voltage of Vpg = 1.2V. The oxide thick-
ness is 2nm. Density gradient results using &x = 1 (symbols)
are compared to Schrodinger-Bardeen (line).

vice with an intrinsic well, the peak is absent (dashed
line in Fig.6). As seen before, this is related to the
small well dimension. This curve, like for a WKB ap-
proximation, shows no resonance but seems to depict
an average of the SB characteristics.

3.4 N-MOSFET Off-State Leakage

The question to which extent the DG model may de-
scribe the tunneling contribution to off-state leakage is
of great interest for industrial application. Therefore,
simulations were performed at a fixed source-drain volt-
age (Vps = 1.2V) using either the Density Gradient
model with &, = 1, or the Schrédinger-Bardeen ap-
proach (Fig. 7). For gate voltages larger than 0.5V the
DG characteristics qualitatively follows the SB refer-
ence at a current level lower by almost one decade. Here
a better fit could be obtained by adjusting the oxide
mobility. In contrast, the currents differ dramatically
in the low and negative bias region. This behaviour
is fully consistent with the earlier observation that the
characteristics are best reproduced if the electron den-
sity is high on both sides of the barrier and that channel
depletion is accompanied by the occurrence of spurious
NDR (see results for Vpg = 0 and MOS-diode).

It is also striking that the reference model shows a
clear positive shift of the point of zero gate current com-
pared to the DG result. At this point the gate-to-drain
tunneling, which is already present in the off-state, is
counterbalanced by an opposite component from source
to gate that rises with increasing gate potential. The
DG model is unable to reproduce the correct position
of this point.
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4. Conclusion

The DG model has been used to simulate electron tun-
neling across oxide barriers in silicon MOSFETs, MOS-
diodes and RTDs. The modified model (£,x = 0) pro-
duces discontinuous carrier densities, if tunneling oc-
curs from high to low density regions. Non-monotonous
current-voltage curves are observed for standard (§,x =
1) DG simulations of single barrier as well as double
barrier structures. In a MOSFET this behaviour pre-
vents a qualitative reproduction of the off-state tunnel-
ing current.

The negative differential resistance vanishes, if
both sides of a barrier are symmetrically n-doped or
bias conditions are such that high electron densities
exist on both sides (inversion). Only in this case rea-
sonable I'V-curves turn out, which show similarities to
those obtained with the WKB approximation. Thus,
the presence of spurious NDR is related to large den-
sity differences across the heterostructure.

Particularly for RTDs a NDR-like feature in the
DG simulation disappears, if all semiconductor regions
are equally doped. If there were a resonance peak,
however, symmetric doping would only slightly change
the peak position due to a shift of the bottom of the
well. Furthermore, the resonances resulting from a
Schrodinger-Bardeen simulation of a RTD completely
differ in location from that of the spurious DG current
peak. Therefore, the latter is not related to resonant
tunneling. The similarities between single and double
barriers also indicate that these features are not caused
by quantum interference. This is also not expected,
since the DG model does not contain any phase infor-
mation.
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