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The inclusion of quantization effects on the carrier densities is now the state of the art in modern
semiconductor device simulators and yields, for example, quantum-corrected threshold voltages and
quantum-mechanical models of the channel mobility. However, the effect of charge quantization on
nonradiative thermal generation–recombination has not received much attention. In this article,
Shockley–Read–Hall recombination is examined for situations in which electrons and/or holes are
confined in semiconductor devices. For the transitions between band states and a single deep level,
a previously developed multiphonon description is adopted. It is found that the lifetimes have to be
altered due to the same quantized local density of states that also accounts for the carrier
distribution. Numerical evaluation of this model for one-dimensional potentials and small phonon
energies results in spatially varying lifetime profiles that exhibit two opposite regimes. The
additional nonclassical offset of the subband eigenenergies causes an increased lifetime in the limit
of strong quantum confinement. For nondegenerate statistics, an analytical high-temperature
approximation is presented for this limit, where the activation energy of the lifetime is increased by
the lowest-subband offset. In the absence of confinement, however, high electric fields reduce the
lifetime due to carrier tunneling into the bandgap. © 2004 American Institute of Physics.
�DOI: 10.1063/1.1687992�

I. INTRODUCTION

The inclusion of quantum effects is crucial for the tech-
nology computer-aided design of modern deep-submicron
devices. Corresponding enhancements of usual drift-
diffusion device simulators are widely used by applying
Schrödinger solvers or density gradient models.1–3 These
methods provide good results for the quantum-mechanical
�QM� density profiles. However, in applying those methods,
the question arises of how other quantities—namely, trans-
port parameters such as mobility and generation–
recombination lifetimes—can be modeled in a consistent
way.

Two major types of nonradiative recombination must be
considered: recombination by Auger emission and via deep
trap levels in the bandgap. New mechanisms of Auger re-
combination in quantum wells were theoretically identified
by Zegrya and co-workers.4

With regard to device simulation, this work presents an
example for including the QM eigenstates in a model for the
Shockley–Read–Hall �SRH� recombination.5 For one-
dimensional confinement, the energetic separation between
the electronic states in conduction and valence bands and the
deep trap levels increases due to subband formation. There-
fore, in addition to an altered density, it is reasonable to also
expect a change of the SRH lifetime in the presence of quan-
tization.

The model adopted here describes capture and emission
of electrons between the trap and band states as multiphonon
processes, which transfer energy between the electronic and

the vibrational system of the crystal. The corresponding life-
times receive spatial dependence through a local density of
states �DOS� that is composed of the eigenstates of the con-
fining potential. This ansatz has also been used in order to
describe enhanced recombination due to tunneling as a func-
tion of the local electric field.6,7 This was done by accounting
for tunnel-assisted transitions, but using densities as in clas-
sical device simulation �without quantum correction�.

The article is organized as follows: in Sec. II, the model
is introduced, Sec. III presents numerically obtained lifetime
profiles for a simple triangular potential, and in Sec. IV, an
analytical approximation is derived for the limit of strong
quantization. In Sec. V, the model and the approximation are
applied to quantum states resulting from simulated one-
dimensional devices.

II. MODEL FOR THE SRH LIFETIME

A. Rate formula

SRH recombination occurs via deep trap levels in the
energy gap. In the following, we assume that all traps are
identical in nature and that they have a single level with
thermal binding energy Et measured from the local conduc-
tion band edge Ec(z). Furthermore, the system is assumed to
be homogeneous in the x – y plane. Under stationary condi-
tions, the net recombination rate is given by

R�
np�n1p1

�n�p�p1���p�n�n1�
, �1�

where n and p are, respectively, the electron and hole
densities.5 The quantities n1�n(1� f t

n)/ f t
n and p1�p f t
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�ft
p) have their usual meaning. The lifetimes �n�n/(Ntĉn)

and �p�n/(Ntĉp) contain the average capture coefficients

ĉn�� dE Nc�E �cn�E � f c�E � �2�

and

ĉ p�� dE Nv�E �cp�E ��1� f v�E �� , �3�

where Nc ,v denote the DOS of conduction and valence band,
respectively. The spectral capture rates �in units of cm3/s�
cn ,p(E) characterize the transitions from a certain energy
level E in the conduction or valence band to the deep trap
level in the energy gap. Different quasi-Fermi levels, EF

n and
EF

p , are used for both carrier species and their respective
distribution functions:

f c ,v�E ���g exp� E�EF
n ,p

kT � �1��1

, �4�

with g�1. The trap occupation probabilities f t
n ,p are ob-

tained by replacing E with the trap energy Ec(z)�Et , and g
with the ratio of the degeneracy factors of the empty and the
occupied trap level. Expressions for the emission coefficients
ên ,p are similar to Eqs. �2� and �3�. They are related to the
capture coefficients by ên� ĉn(1� f t

n)/ f t
n and ê p� ĉ p f t

p/(1
� f t

p).

B. Multiphonon capture rate

The capture and emission processes are modeled accord-
ing to the theory of multiphonon emission and absorption.8

See Refs. 6, 7 and references therein for the development of
this theory. Here, the trap states are assumed to be strongly
localized and, therefore, to relate only to the charge densities
at the same point in space. Furthermore, only a single pho-
non mode of frequency �0 is assumed to interact with the
electron. The spectral capture rates thus have the following
form:

cn ,p�E ��cn ,p
0 �

l	0

� l�S �2

S
L� l �
� l��0�Ec�Et�E �,

�5�

where the lower signs apply to cp .6,7 The function

L� l ��e�S�2 f B�1 �� f B�1

f B
� l/2

I l�2S�f B� f B�1 �� �6�

contains the modified Bessel function I l of order l and the
Huang–Rhys factor S defining the lattice relaxation energy
�R�S��0 . Further ingredients are the Bose–Einstein occu-
pation probability for the phonon mode with energy ��0 ,
f B��exp(��0 /kT)�1��1 and the energetic separation Et of
the trap levels in the bandgap from the local conduction band
edge Ec(z). The factor (l�S)2/S is replaced by unity to
avoid the artificial disappearance of the probability of ther-
mally induced transitions for l*�S . As discussed in detail in
Ref. 7, this artifact is related to the violation of first-order
perturbation theory when, in a configuration-coordinate dia-
gram, the lower potential parabola �bound state� crosses the
upper parabola �band state� at its minimum, leading to a

completely anharmonic lattice potential around this crossing
point.9 It should be noted that the factor does not appear in a
two-phonon model with accepting and promoting modes.10

We assume that the parameters of the recombination
center (Et , S, and �R) are not changed by the confining
potential and hence will not become position dependent. Due
to the assumption of a 
-like trap potential, the influence of
the quantum confinement on binding energy and wave func-
tion of the center will be small as long as its distance to the
interface remains larger than its localization radius. How-
ever, stronger deviations with respect to the bulk values must
be expected in the case of charged centers with a long-range
part of the potential. In addition, alterations of the phonon
system due to confinement are ignored as well.

From the spectral capture rate one obtains the lifetimes

�n�z ��1�
Ntcn

0

n�z � �l	0
L� l �Nc�El ,z � f c�El� �7�

and

�p�z ��1�
Ntcp

0

p�z � �l	0
L� l �Nv�El ,z ��1� f v�El�� , �8�

with

El�� Ec�Et�l��0 , for electrons

Ec�Et�l��0 , for holes.
�9�

From now on, all considerations are restricted to electrons.
Holes can be treated analogously.

C. Density of states for quantization in one
dimension

The DOS entering ĉn is the same as in the densities n
and n1 . If n is the QM density, then n1 , ĉn and the lifetime
�n are also affected by quantization.

In the following, quantization is considered for motion
along the z axis. This leads to a description in terms of a
local DOS which is further detailed in the appendix. Here,
only the resulting DOS expressions are given. The band
structure is assumed to be parabolic and, for the moment,
only one valley is considered. Without confinement and for
vanishing field, the envelope wave function consists of plane
waves in all three dimensions, and the usual bulk DOS ap-
plies:

Nc�E ,z ��
1

22 � 2m*

�2 � 3/2

�E�Ec�z � ��E�Ec�z �� ,

�10�

with m*�(mxmymz)
1/3 and mi for i�x , y, z being the ef-

fective mass tensor components along the principal axes.
These are chosen to coincide with the Cartesian coordinate
axes for the sake of simplicity.

For a homogeneous electric field F in the z direction
�only one classical turning point�, Eq. �10� is replaced by

Nc�E ,z ��� 2m*

�2 � 3/2 ���z

2
F � Ec�z ��E

��z
� , �11�
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with �z��e2F2/(2mz�)�1/3, Ec(z)�Ec(0)�eFz , and the
electro-optical function F(x)ª�Ai�(x)�2�x Ai(x)2.11 This
expression contains a nonvanishing DOS contribution decay-
ing into the energy gap, as described for the first time by
Franz and Keldysh for optical absorption in semiconductors
in a field.12,13

Secondly, consider that in the z direction, the particle is
confined from both sides �two classical turning points�. This
leads to the following DOS �see Eq. �A6��:

Nc�E ,z ��
mxy

�2 �i
�� i�z ��2��E�Ei�, �12�

where � i(z) denotes the envelope wave function of the ith
eigenstate, Ei its energy, and mxy��mxmy. Using this DOS,
the QM density profile is obtained as follows:

n�z ��� dE Nc�E ,z � f c�E �

�
kTmxy

�2 �
i

�� i�z ��2F0� EF
n�Ei

kT � , �13�

where F0(x)�ln(1�exp(x)) denotes the Fermi integral of
order 0.

In the following, the different DOS expressions, Eq. �11�
for continuous eigenspectrum in a constant field and Eq. �12�
for a discrete spectrum, will be referred to as Franz–Keldysh
and quantum-confined DOS �FKDOS and QCDOS�, respec-
tively.

D. Electron lifetime profiles

For a multivalley band with anisotropic, parabolic val-
leys �labeled by the additional index �� the combination of
Eqs. �7�, �12�, and �13� yields the electron lifetime

�n�z ��1�

Ntcn
0 �

�
mxy

� �
i

���i�z ��2 �
l	l0

�i
�z �

L� l � f c�El�

kT �
�

mxy
� �

i
���i�z ��2F0� EF

n�E�i

kT � ,

�14�

where

l0
�i�z ��max� E�i��Ec�z ��Et�

��0
, 0	

is the minimal non-negative number of phonons necessary to
reach the subband at E�i from the local trap energy given by
Ec(z)�Et .

This expression will be further explored in two ways. In
Sec. III, lifetime profiles are numerically calculated for a
triangular potential in order to illustrate the effects of con-
finement as well as of an electric field. Secondly, the case of
strong confinement �i.e., increased separation between the
electronic states in the band and the trap level� is treated
analytically in Sec. IV. The results will often be presented
with respect to the classical lifetime �obtained from Eqs. �7�
and �10��:

1

�n ,cl
�

2cn
0Nt �

l	Et /��0

L� l ��l��0�Et f c�El�

� �kT �3/2 F1/2� EF
n�Ec

kT � , �15�

where F1/2(�)�(2/�)�0
�dx�x�1�exp(x��)��1 is the

Fermi integral of order 1/2.

III. LIFETIME PROFILES FOR A TRIANGULAR WELL

The quasi-Fermi energy EF
n is assumed to be constant

throughout the system, although this will lead to unrealisti-
cally large separations from the conduction band edge for
large distances z and high fields. The barrier at z�0 is set to
infinite height. The corresponding eigenstates are given in
the appendix �Eq. �A7��. Expression �7� was evaluated nu-
merically for the following DOS types: bulk �10�, FKDOS
�11�, and QCDOS �12�, the latter producing �14�. Here, a
single valley semiconductor with isotropic effective mass
equal to the longitudinal effective mass component ml of
silicon was considered. The parameters describing the trap
state are taken from the gold acceptor level in silicon as used
in Ref. 7, Et�0.55 eV, �R�0.238 eV and ��0�68 meV.
The former are kept fixed as the phonon energy ��0 is var-
ied. The temperature is always T�300 K. The resulting life-
time profiles are shown in Fig. 1.

For each subband, the minimum phonon number neces-
sary to reach the trap level changes by one at certain dis-
tances from the wall, which causes a sudden decrease of the
lifetime. The amplitude of these spikes is reduced by choos-
ing a smaller phonon energy. At about 5 nm distance, the
lifetime reaches the FK result, which itself is reduced with
respect to the bulk value �arrows in Fig. 1�. This reduction is
caused by field-enhanced tunneling into the bandgap. In con-
trast, the steep rise near the wall is caused by the additional
separation of the lowest subband from the trap level due to
quantization.

FIG. 1. Comparison of the lifetimes for a triangular well with a field
strength F�5�105 V/cm for different DOS models and two different pho-
non energies ��0 . Thick horizontal lines show the classical lifetime without
field enhancement or quantum effects. Thin horizontal lines show the results
of using the FKDOS. The arrows highlight the lifetime reduction due to the
field. The remaining lines indicate the results for the QCDOS including all
relevant eigenstates.
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In the following, the small phonon energy is retained,
but the sixfold valley band structure of silicon is used. The
coordinate axes are chosen to coincide with the �100�-
directions. The following values were used for the effective
mass components: longitudinal mass ml�0.9163 m0 and
transverse mass mt�0.1982 m0 , where m0 is the electron
rest mass.

Slope and magnitude of the lifetime profile in the part
near the wall clearly depend on the field �Fig. 2�. The curves
are more complicated because two sets of nonequivalent val-
leys exist, which have different quantization masses, ml and
mt �the latter are labeled with an additional prime on the
corresponding subband index�. The individual subband con-
tributions segregate spatially for very high fields �Fig. 3, for
F�106 V/cm) as the energetic separation of the subband lev-
els increases. Near the wall (z�3 nm), the inverse lifetime
is governed by the lowest subband of the unprimed set. The
absolute maximum is determined by the lowest primed sub-

band because of a larger penetration depth of its wave func-
tion into the bandgap. This maximum, which corresponds to
the subband energy E0� �see Fig. 3�, is found more than 3 nm
outside of the classically allowed region z��0, z0�� . Ac-
cordingly, the separation between E0� and the trap level at
this position is less than half of the separation in the classical
treatment �which is Et everywhere�.

Farther from the wall, the primed subbands continue to
dominate. They determine the constant lifetime in the distant
part of the profile, which coincides with the corresponding
FK result for the given field �dashed lines in Fig. 2�. This
field enhancement reaches a maximum around
7�105 V/cm for the chosen phonon energy and is reduced
for higher fields �arrow in Fig. 2�. This can be explained as
follows: With increasing field strength, the DOS extends into
the bandgap and consequently the density increases. The sum
in the numerator of Eq. �14�, however, is cut off at l�0
�which corresponds to trap-assisted tunneling without pho-
non assistance�. This means that tunneling cannot contribute
for energies below the local trap level. Thus, in exceeding a
certain field strength, the increase of the density prevails and
reverses the trend of a decreasing lifetime.14

IV. ANALYTICAL APPROXIMATION FOR STRONG
QUANTUM CONFINEMENT

The contribution of a certain subband i at a specified
position z is the stronger the closer it is to the trap energy
level and the larger �� i(z)�2 is. All but the lowest subband
can be neglected if the confinement is sufficiently strong to
provide a high subband separation (	kT) and if one stays
inside or close to the classically allowed region �in Figs. 2
and 3, this corresponds to z
2 nm). In this case, the prob-
ability densities in Eq. �14� cancel. Assuming Boltzmann sta-
tistics and defining ��2S�f B( f B�1), one obtains

�n
�1�

cn
0Nte

�S�2 f B�1 �

kT exp� EF
n�E0

kT � � l	�E0�Ec�z ��Et�/��0
I l���

�exp� EF
n�Ec�z ��Et�l��0

kT
�

l��0

2kT � . �16�

Following Ref. 7, the summation over l is approximated by
an integral assuming Et	��0 :

�n
�1�

Ae��z �/kT

��0
�

��z �
dE e�E/2kTIE/��0

���, �17�

where A�cn
0 Nte

�S(2 f B�1)/kT and �(z)�E0�Ec(z)�Et

denotes the energetic distance between the local trap level
and the lowest subband energy. In this approximation, l
�E/��0 can be regarded as large; hence, the modified
Bessel function is replaced by its asymptotic form for large-
order l:

I l�z �→
exp��l2�z2�l ln� l/z��1�l2/z2��

�2�l2�z2
, �18�

yielding

FIG. 2. Lifetime profiles for different field strengths and ��0�2 meV
�symbols�. The FK lifetime for nondegenerate statistics is given by dashed
lines. The arrow indicates the direction of increasing field strength. Solid
lines show an analytical approximation for the contribution of the lowest
subband, 1/gQM(z), as defined by formula �33�.

FIG. 3. Contributions of individual subbands to the inverse lifetime profile
�circles� as they appear as summands in the numerator of Eq. �14�. Only the
respective first three of each set are shown. Primed subband indices corre-
spond to the smaller transverse mass mt �dashed lines�, unprimed ones to the
larger longitudinal mass ml �solid lines�. Parameters are F�106 V/cm and
��0�2 meV. The arrows labeled z0 and z0� indicate the classical turning
points of the lowest subband in each set.
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�n
�1�

Ae��z �/kT

��0�2
�

��z �
dE W�E �, �19�

with the thermal weight function7

W�E ��� E2

���0�2
��2� �1/4

exp�� E2

���0�2
��2

�
E

��0
ln� E

��0�
��1�

E2

���0��2� �
E

2kT� .

�20�

Assuming high temperature kT	��0 , one may use �
	E/��0 to obtain

W�E ��
��0

�2akT
exp� ��

a

4kT
�

�E�a �2

4akT � , �21�

where a�(��0)2�/(2kT)�(�R��0 /kT)�f B( f B�1). The
integral over the Gaussian expression in W(E) produces the
complementary error function in the result

�n
�1�z ��

cn
0Nt

2kT
C exp� ��z �

kT � erfc� ��z ��a

�4akT
� , �22�

where

C�exp� �
�R�2 f B�1 �

��0
���

a

4kT � . �23�

Now, a is replaced by its high-temperature value a��R ,
except in the factor C, because compensating terms can pro-
duce large errors. Applying the asymptotic behavior of the
complementary error function for large argument �erfc(x)
→ exp(�x2)/(�x)� leads to

�n
�1�z ��

cn
0NtC��R

�kT����R�
exp� �

Eact
QM���z ��

kT 	 . �24�

Hence, �n is thermally activated with the activation energy

Eact
QM����

�Et����R�2

4�R
, �25�

where �(z)��(z)�Et�E0�Ec(z) is the additional offset
between the conduction band edge and the lowest eigenen-
ergy. The barrier for electron capture is enlarged by the sub-
band offset �(z) with respect to the corresponding classical
expression, which is Eact

0 �Eact
QM(0).

The same form of the thermal activation energy Eact
QM

was used by Michler et al. in order to deduce the trap energy
Et from time-resolved photoluminescence experiments on
oxygen-doped GaAs-based quantum wells of varying
widths.15 They found good agreement with independent bulk
measurements of a presumably damage-induced deep level.

The classical lifetime �15� can be treated in a similar
manner. For Boltzmann statistics and small phonon energy,
one obtains

�n ,cl
�1 �z ��

BeEt /kT

��0
�

Et

dE e�E/2kTIE/��0
����E�Et

kT

�
BeEt /kT

��0�2
�

Et

dE W�E ��E�Et

kT
, �26�

with B�2cn
0Nte

�S(2 f B�1)/(�kT). Applying the high-
temperature approximation as before leads to

�n ,cl
�1 �z ��

cn
0NtC

�a�kT �3/2 �Et

dE exp� f �E �� , �27�

where

f �E ���
�E�a �2

4akT
�

1

2
ln� E�Et

kT � .

As in Ref. 7, the integral is approximated by expanding f
around its maximum at the dominant transition energy E*,
yielding the formula:

�
Et

�

dE exp� f �E ���exp� f �E*��� 

2� f ��E*��

�erfc��� f ��E*��
2

�Et�E*� � .

�28�

From f �(E*)�0, one finds

E*�Et�
akT

Et�a
, �29�

f �E*���
�Et�a �2

4akT
�

Et

kT
�

1

2
ln� a

Et�a � , �30�

f ��E*���
�Et�a �2

2�akT �2
, �31�

which give the following result for the lifetime �replacing a
by �R):

�n ,cl
�1 �z ��

erfc��1/2 �cn
0 NtC�R

�kT�Et��R�3/2
exp� �

Eact
0

kT � . �32�

With the results �23� and �32�, a ‘‘quantum correction’’ factor
with respect to the zero-field ‘‘classical’’ SRH lifetime can be
defined:

gQM�z �ª�n ,cl

�n
���R�Et

�R

exp� Eact
0 �Eact

QM�z �

kT �
erfc��1/2 � , �33�

where the z-dependence outside the exponents has been ne-
glected (��Et). The remaining exponential contains the
difference of the activation energies �compare Ref. 7�.

As long as the lowest subband alone dominates the life-
time, this approximation works very well, in case of the tri-
angular potential for sufficiently high fields and z
2 nm
�Fig. 2�. The case ��0 marks the classical turning point
where gQM is of the order of unity, with the parameters used
here.
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The calculation of gQM still requires the knowledge of
the eigenenergy E0 of the lowest subband, in order to calcu-
late the local value of �. However, E0 may not be explicitly
available, for example, if the density gradient model is used
to account for quantization. In these cases E0 can at least be
obtained in the lowest subband approximation from formula
�13� by expressing the dominating probability density as
��0(z)�2�n(z)/� n(z)dz:

E0�EF
n�kTF0

�1� kTmxy

�2 � n�z �dz � . �34�

For a device simulator, the problem would consist in choos-
ing an appropriate interval for integrating the density. In ad-
dition, the device regions must be determined where expres-
sion �33� is a sufficient approximation.16

V. LIFETIME PROFILES FOR SIMULATED DEVICES

Up to this point, a very simple potential shape has been
assumed. In order to study more realistic situations, the input
for calculating the lifetime profile �band edges, quasi-Fermi
energies, eigenenergies, and wave functions� was taken from
device simulations,17 that solved the coupled system of the
Poisson equation and the continuity equations. In all ex-
amples, the relaxation energy �R�0.238 eV was retained re-
gardless of the material, and Et was chosen such that the trap
level is located in the middle of the bandgap.

A. Metal-oxide-semiconductor diode

A metal-oxide-semiconductor �MOS� diode with a
p-doped silicon substrate (1018 cm�3), a strongly n-doped
silicon gate (1020 cm�3), and an oxide width of 2 nm was
simulated using a self-consistent Schrödinger–Poisson
solver.1 Quantization was incorporated for electrons only. Di-
rect tunneling through the oxide and SRH recombination
were enabled.18 For this simulation, constant SRH lifetimes
were used (�n

0�9.9�10�8 s and �p
0�2.97�10�8 s). The

simulated charge profiles are shown in Fig. 4. From the re-
sults of this simulation, a new electron lifetime profile was
calculated using a phonon energy of ��0�2 meV �Fig. 4,
right axis�. The lifetime decreases by almost four orders of
magnitude from the wall to the minimum located at 8 nm
away. This corresponds to the behavior already analyzed for
the triangular potential. It is well reproduced by the lowest
subband approximation within the first 3 nm. Beyond the
minimum, the lifetime increases arriving at a constant value
around z�50 nm. This can be explained by the ceasing field
enhancement effect as the field strength decreases towards
the end of the space charge region.

In the MOS diode, the SRH recombination rate is only
influenced by the field enhancement in the space-charge re-
gion. The strong increase near the oxide has no effect be-
cause the hole density is very small there.

B. Quantum-well diode

The simulated structure corresponds to an intrinsic
GaAs quantum well between two layers of Al0.4Ga0.6As that
form a pin diode. The p- and n-doping of the AlGaAs
regions is 1017 cm�3. Spherical parabolic bands are used

for electrons and holes, with an electron effective mass
of me*�0.0672 m0 and two hole effective masses:
mlh�0.0485 m0 and mhh�0.407 m0 .

Two well widths were considered: 30 and 5 nm. The
Schrödinger equation was solved for both carrier types in a
region containing the GaAs well and a few nanometers of the
adjacent material. In the simulations, constant SRH lifetimes
were used: �n

0�10�8 s and �p
0�10�9 s, for electrons and

holes, respectively. Results are presented for 1 V forward
bias. Band edges and carrier densities are shown in Fig. 5�a�,
the resulting lifetime profiles in Fig. 5�b� for ��0�2 meV.
One can observe differences with respect to the confinement
length and carrier type. For the 30 nm well, the electron
lifetime shows a distinct field reduction in the left part of the
well, corresponding to higher subbands, and an increasing
slope towards the right wall. Both features are far less pro-
nounced in the hole lifetime profile. This can be explained by
the dominance of the heavy-hole band. The light-hole band
does not contribute much because its in-plane DOS is
smaller.

In the narrow well �5 nm�, the electron lifetime is con-
siderably higher than in the wide well. For the hole lifetime,
this is not the case. The crucial parameter is the shift of the
lowest subband with shrinking well width. The heavy hole
subband is not lifted much with respect to the minimum
potential �regarding hole energies�, but the electron subband
is.

The numerical lifetime profiles are compared with the
lowest subband approximation �33�. They agree very well for
the electrons in the narrow structure and least for the holes in
the wide structure �Fig. 5�b��. This illustrates the limitations
due to the influence of quantization mass and confinement on
the subband separation.

The change of the SRH rate upon replacing the constant
SRH lifetimes with the calculated profiles is shown in Fig.
5�c�. For all rates, the QM densities are used. The ratio of the
trap level degeneracy factors in Eq. �4� is set to g�1. The 30
nm structure shows an overall increased rate. The enhance-
ment reaches a factor of 2 and more towards the left end of
the well. The maximum increases by approximately 70%.

FIG. 4. Profiles of the electron and hole density �dashed lines, right axis�,
the electron lifetime �n �symbols�, and lowest subband approximation for �n

using E0 from expression �34� �solid line�. The horizontal dotted line indi-
cates the zero-field lifetime.
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The rate in the 5 nm structure is reduced, mainly in the left
half of the well. The maximum decreases by about 70%. Of
course, the impact of the spatially varying lifetimes on the
rate is controlled by the densities and �n ,p

0 .
Reduced nonradiative capture rates due to confinement

were also found by Delerue et al. in a theoretical study of

recombination in small silicon crystallites.19 Juršėnas et al.
examined the recombination of photoexcited hot carriers in
CdS nanocrystals.20 The multiphonon contribution was di-
vided into an interface and a volume channel with different
activation energies. The authors state that the particle size
was too large to see confinement effects; the observed size
dependence was attributed to the changing surface-to-
volume ratio.

VI. CONCLUSIONS

The SRH lifetime has been modified to consistently ac-
count for quantization effects. The model combines a local
DOS composed of the eigenstates of the system with mul-
tiphonon recombination processes. Strongly localized traps
and a single phonon energy are assumed. The model has
been investigated for small phonon energies (Et	��0). The
results exhibit two effects:

�1� On one hand, the electric field may enable tunneling of
the wave function, which enhances the capture and emis-
sion processes and thus reduces the lifetime.

�2� On the other hand, the additional separation of the low-
est subband from the band edge can cause a considerable
increase of the lifetime. For this effect, an analytical ap-
proximation has been derived. The form of the activation
energy is supported by an earlier experiment.15

Note that we did not consider recombination in the bar-
riers of a quantum well or any other nonradiative channels
for carrier loss such as thermionic escape. The latter causes
an increasing nonradiative contribution with decreasing well
width,21 in contrast to recombination within the confined
structure, as was considered here.

Modified lifetimes have been computed for quantized
carriers in one-dimensional devices:

�1� In a MOS diode, the quantization leads to enhanced re-
combination in the depletion layer due to the electric
field, but the subband offset near the oxide barrier is of
no importance.

�2� The 30 nm quantum well pin diode shows both features
for the lifetime profiles, but the SRH rate is governed by
field-enhanced recombination. In the 5 nm device, the
SRH rate is reduced due to the dominating subband
separation.

Including these effects may be of importance for the
modeling of small confining structures, e.g., quantum-well
devices. To this end, a compact model for both quantum-
confinement and field-enhancement effects would be desir-
able. A drawback in this respect may be the nonlocal form of
the analytical ‘‘quantum correction’’ factor gQM , requiring
the lowest eigenenergy E0 .

APPENDIX: LOCAL DENSITY OF STATES

In this section, the concept of a local density of states is
illustrated by a few examples. Firstly, the local DOS is de-
fined as

FIG. 5. Carrier density �a�, lifetime �b�, and SRH rate profiles �c� at 1 V
forward bias inside two quantum wells of different widths �30 and 5 nm, to
be discerned by the different plot ranges along z�. �a� Simulation results for
the conduction and valence band edges �left axis� and the carrier densities as
calculated from the eigenstates �right axis�. �b� Ratio of the QC and bulk
lifetime, � and �cl , respectively, for both electrons �filled symbols� and holes
�open symbols�. Lines indicate the lowest subband approximation 1/gQM(z)
with E0 obtained from formula �34�. �c� SRH rate obtained with constant
lifetimes (�n

0�10�8 s and �p
0�10�9 s, dash-dotted lines� and with the QC

lifetime profile from �b� after multiplying by �n ,p
0 �solid lines�.
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N�E ,r��2�
n

��n�r��2
�E�En�, �A1�

with the wave function �n corresponding to the eigenenergy
En . A factor of 2 for the spin is included. For plane waves,
�k(r)�1/�V exp(ik"r), with V�LxLyLz being the normal-
ization volume, the summation transforms into �V/(2)3��k
and the usual DOS expression is obtained: N(E)
�2/(2)3�k
(E�Ek).

Now, the potential is considered to be nonconstant in the
z direction with one classical turning point. The motion in
the z direction is then described by the eigenenergy E 
 and
the wave function �(E 
 ,z), leading to the following ansatz
for the total wave function:

��,E 

�r���LxLy��1/2 exp� i� "����E 
 ,z �, �A2�

and the total energy

E��,E 
��E 
�
�2�2

2mxy
, �A3�

where parabolic bands have been assumed. The wave and
position vectors perpendicular to the z direction are � and �,
respectively. After integrating over E 
 , the local DOS retains
a z dependence:

Nc�E ,z ��
1

22 � d2� ��� E�
�2�2

2mxy
,z � �2

. �A4�

In the case of a homogeneous field F, the one-dimensional
Schrödinger equation has the solution

��E ,z ���2mz

�2qz

Ai�qz�z�zE�� ,22 �A5�

where zE�E/(eF) denotes the classical turning point, qz

�(2mzeF/�2)1/3, and Ai(x)ª(1/)�0
� cos(t3/3�tx)dt is

the Airy function.23 With this expression, the integration in
Eq. �A4� produces the FKDOS in Eq. �11�.

In the case of bound states, the integral over E 
 is re-
placed by a sum � i over discrete eigenstates � i and eigenen-
ergies Ei :

Nc�E ,z ���
i

2

�2�2 � d2� �� i�z ��2
� E�Ei�
�2�2

mxy
�

�
mxy

�2 �i
�� i�z ��2��E�Ei�. �A6�

A reasonable approximation for an NMOS inversion
layer is the triangular potential: The electron is only allowed
to reside in the region z�0 where the potential is Fz . Solu-
tions are those Airy functions that vanish at z�0. With
proper normalization, these are

� i�z ��� qz

F��qzzi�
Ai�qz�z�zi�� , �A7�

where qz is the same as above and zi�Ei /(eF) is the right
classical turning point for the ith eigenstate �see Refs. 24 and
25 for Ei). With these solutions the local DOS �12� ap-
proaches expression �11� for large distances z �see Fig. 6�.
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FIG. 6. Local DOS of bound states �QCDOS� in a triangular well at differ-
ent distances from the wall for a field of F�106 V/cm. For comparison, the
bulk DOS and FKDOS are also shown. Only one silicon valley with mz

�ml and mxy�mt was considered.
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