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Direct and Fowler-Nordheim tunneling through ultra-thin gate dielectrics is modeled based on an
approach for the transmission coefficient �TC� of a potential barrier that is modified by the image
force. Under the constraint of equal actions the true barrier is mapped to a trapezoidal pseudobarrier
resulting in a TC very close to the numerical solution of the Schrödinger equation for all insulator
thicknesses and for all energies of the tunneling electron. The barrier height of the pseudopotential
is used as a free parameter and becomes a function of energy in balancing the actions. This function
can be approximated by a parabolic relation which makes the TC of arbitrary barriers
fully analytical with little loss of accuracy. The model was implemented into a multidimensional
device simulator and applied to the self-consistent simulation of gate currents in
metal-oxide-semiconductor �MOS� capacitors with gate oxides in the thickness range 15 Å–42 Å.
Excellent agreement with experimental data was obtained using a thickness-independent tunnel
mass mox�0.42 m0. Thanks to the CPU-time efficiency of the method the simulation of a complete
MOS-field-effect-transistor with dominating gate current becomes possible and shows the potential
for further applications. © 1997 American Institute of Physics. �S0021-8979�97�05812-X�

I. INTRODUCTION

In modern microelectronics the transport of electrons
and holes across ultra-thin dielectric barriers is of consider-
able interest. Well-known examples are the injection of car-
riers into gate oxides of metal-oxide-semiconductor-field-
effect-transistors �MOSFETs�1,2 leading to a long-term shift
of their threshold voltage �so-called degradation�, the strong
tunnel currents during the erase mode of electrically erasable
programmable read only memories �EPROMs�,3 the current-
voltage characteristics of metal-insulator-semiconductor
�MIS� solar cells,4–7 or the tunneling leakage occurring in
memory cells.8,9 Modeling and numerical simulation of these
currents rely not only on realistic distribution functions for
the charge carriers, but also on a good knowledge of the
quantum-mechanical transmission probability for ultra-thin
barriers.

Since the pioneering work of Fowler and Nordheim10,11

there were several attempts to improve the calculation of
currents through thin insulating layers. Gundlach12 showed
by using the exact transmission probability of a trapezoidal
barrier that oscillations in the tunnel I-V curves occur. These
were observed experimentally by Maserjian13 from Fowler-
Nordheim �FN� currents through thermally grown SiO2 in
the thickness range of 2.2–4.0 nm. Contrary to the expecta-
tion that the simple one-dimensional band model breaks
down when applied to extremely thin amorphous oxides
�since the band structure seems to be not well defined in a
few molecular layers, the interface might be smeared out,
and/or thickness fluctuations14 or pinholes can dominate the
I-V characteristics�, Maserjian’s MOS structures showed an
extremely abrupt oxide-silicon interface. Quantum reflec-

tions at this interface were found to agree well with the ideal
one-dimensional �1D� model.

Today, oxide thicknesses in the range of 5–10 nm are
customary in manufacturing, and research has reached 1.5
nm.15 Below 3 nm, direct tunneling becomes a limiting leak-
age mechanism in MOS technology. Direct tunneling was
confirmed for ultra-thin dry16 and chemical SiO2 layers
formed in H2SO4, the latter being as thin as 0.68 nm.17

The subject of this article is the numerical simulation of
transport across ultra-thin dielectrics in the sense of either a
direct process, which means that the whole barrier is sur-
mounted, or of Fowler-Nordheim tunneling, where the final
state lies in the dielectric, but the succeeding part of transport
in the remainder of the barrier �e.g. drift� does not limit the
total transition rate. Roughly speaking, such a description is
justified as long as the mean free path in the dielectric is
comparable to the width of the remainder of the barrier �a
rough guess: 10 nm�. The bulk-limited currents,18,19 hopping
conduction and space charge-limited current, will not be con-
sidered here.

In Section II we recapitulate the transmission probability
of a trapezoidal barrier, discuss the effect of the image force
on ultra-thin dielectric layers, give an overview over mea-
sured values for two critical parameters—the barrier height
and the tunneling mass, and touch the issue of band structure
mismatch at the Si-SiO2 interface. A new approach, called
the pseudobarrier method, will be outlined in Section III and
applied to the calculation of MOS gate currents in Section
IV. We show that common approximations fail in the case of
ultra-thin dielectrics if the image-force effect is included.
The accuracy of the new analytical approach and its CPU-
time efficiency will be demonstrated. Section V presents
self-consistent simulation results for MOS capacitors anda�Electronic mail: schenk@iis.ee.ethz.ch
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MOSFETs with tunnel oxides, and a final discussion follows
in Section VI.

II. TRANSPORT MODEL

A. Transmission probability

The following derivation will be given for electrons only
�holes are treated accordingly�, and oxide will replace dielec-
tric. In order to calculate the elastic electron tunnel current
through a thin oxide layer as a barrier penetration problem
following Bardeen,20 Price and Radcliffe,21 Harrison,22 and
Stratton:23

jn�
qmc*kBT

2�2�3 �
0

�

dE T �E �

�ln� exp�EF ,S�d ��Ec�d ��E
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kBT ��1
� , �1�

with q the elementary charge, mc* the conductivity mass,
kB the Boltzmann constant, EF ,S(d) the substrate Fermi en-
ergy at the Si-SiO2 interface, EF ,M(0) the gate Fermi energy,
Ec(d) the conduction band energy at the Si-SiO2 interface,
and E the energy, T the temperature, one has to determine
the transmission coefficient �TC� T (E). Eq. �1� is based on
the independent particle approximation, i.e. all scattering
processes as well as the interaction with the environment are
implicitly absorbed by the one-particle quasi-equilibrium
distribution functions and by the potential model for
T (E).24 Approximating incoming and outgoing states by
plane waves, the shape of the oxide barrier by a trapezoid �no
fixed charges�, and assuming a parabolic E(k) relation in the
barrier region as well, the 1D solution for the TC can easily
be found by the common matching procedure:
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where �B denotes the barrier height for electrons, mM ,
mox , and mSi are the effective electron masses in the three
materials, respectively, kF and kSi are the momenta in

the electrodes, 	0���ox /qFox ,��ox�(q2�2Fox
2 /2mox)

1/3,
and Ai , Bi are the Airy functions. In deriving Eq. �1� the
explicit dependence of T (E) on the energy perpendicular to
the tunnel current was neglected replacing kM(E�) by the
Fermi momentum kF in the gate electrode.

B. Image force

Although there is still some controversy about the image
force �the same holds for the value of ox , the significance of
a band structure in the case of only a few molecular layers,
and the issue of k�-conservation�, it �or some proper modi-
fication of its ‘‘classical’’ form� should be most important
for the ultra-thin oxides with large TCs, such as gate oxides
of scaled MOSFETs �d�4 nm� or the native oxides of MIS
solar cells �d�0.5–2 nm�. In a series of papers Weinberg
and Hartstein25–28 had explained a discrepancy between re-
sults from photon-assisted tunneling and internal photoemis-
sion experiments by a ‘‘quantum-mechanical’’ image force,
obtained from the ‘‘classical’’ one by multiplication with the
TC. According to this modification, a tunneling electron can-
not induce an image charge, whereas electrons that are emit-
ted over the barrier ‘‘feel’’ almost the total image force.

The basic question in this context is whether the dwell
time of the tunneling electron29 within the barrier is long
enough for the completion of the spreading of the exchange-
correlation hole in the interfacial plane. Hence, the traversal
time must be long compared to the inverse of the plasma
frequency in the cathode, which is met under the conditions
of interest here. This was also shown by Puri and Schaich30

who compared a 1D model system �an electron weakly
coupled to one polarizable mode� with the adiabatic limit of
that model �the ‘‘classical’’ image force�. The calculated tun-
neling probabilities agreed perfectly, whereas the product of
TC and ‘‘classical’’ image force disagreed significantly. Bin-
nig et al.31 gave further confirmation by the interpretation of
their vacuum-tunneling experiments. They showed that the
adiabatic image potential is indispensable to correctly de-
scribe the barrier-width dependence and absolute value of the
vacuum tunnel current.

On the other hand, the ‘‘classical’’ image force can only
be used asymptotically, i.e. a few bohrs away from the image
plane. In the vicinity of that plane, the classical singularity is
to be removed as shown by Serena et al.,32 who convoluted
the local density approximation �LDA� of the exchange-
correlation hole density with the classical surface charge
density, which is induced by a point charge on a conductor
surface. As a result, image plane and potential shape were
obtained self-consistently. They found the ‘‘classical’’ image
potential for distances larger than about 5 bohrs away from
the image plane. Stern33 assumed that an always present tran-
sition layer of at least two atomic layers �about 3 Å in the
Si-SiO2 case� can be modeled by a smooth variation of the
dielectric constant, which leads to a smooth image potential
through the interface.

From the above findings we can conclude that the ex-
pression of the ‘‘classical’’ image potential can be well used
for our purposes with only some failure at the edges of the
barrier. For simplicity, we remove the singularity of the clas-
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sical image potential in the simple way illustrated in Fig. 1,
i.e. by a straight continuation of both, the band edge in the
semiconductor and the gate Fermi level. Including the effect
of all images in the two electrodes, the image potential is
given by34

Eim�x ��
q2

16�ox
�
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�

�k1k2�n

�� k1

nd�x
�

k2

d�n�1 ��x
�
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d�n�1 �� , �5�
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k1�
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��1, k2�

ox�Si

ox�Si
. �6�

Whereas ox�3.9 �low-frequency dielectric constant� is usu-
ally applied to thick oxides, the value for ultra-thin SiO2

layers remains vague. Deal et al.35 fitted the optical dielectric
constant by the voltage dependence of the measured barrier
height in their photoresponse measurements. A value of
ox�2.1 was found for electron transitions from aluminum
to SiO2. In Refs. 36 and 37 an optical dielectric constant of
2.15 was assumed.

Fig. 1 demonstrates the image force effect for a 1 nm
barrier at Fox�1 V/nm. It is a common approximation to use
the Wentzel-Kramers-Brillouin �WKB� probability which,
however, breaks down for all energies in the case of very
thin barriers. Alternatively, approximate expressions for the
barrier lowering due to the image force are used.38 Stratton23

has considered the parabolic barrier shape being a close ap-
proximation to a very thin image force barrier. Fig. 2 com-
pares the calculated transmission probabilities for the barrier
of Fig. 1 using the WKB approach, the numerical solution of
the envelope Schrödinger equation �transfer matrix method�,
and neglecting the image force altogether, respectively.

C. Barrier height and tunneling mass

Apart from the dielectric constant ox of the barrier ma-
terial, the tunneling mass mox and the barrier height �B are
the two remaining crucial parameters. Lenzlinger and
Snow39 used ox�3.9 for thermally grown oxides of 100 nm

thickness and fitted the tunneling mass mox from the mea-
sured FN characteristics. In the case of electron emission
from silicon they obtained mox�0.42 m0 fitting the field
dependence, but mox�0.96 m0 in fitting the temperature de-
pendence of the FN theory. For electron emission from an
aluminum gate the respective values were mox�0.39 m0

�field dependence� and mox�0.94 m0 �temperature depen-
dence�. The small difference between 0.42 m0 and 0.39
m0 indicated the minor importance of the true initial states in
the electrodes, whereas the discrepancy between the fitted
masses arising from the field and temperature dependencies
was explained by a temperature-dependent barrier height.
However, Av-Ron et al.40 confirmed the temperature insen-
sitivity of the barrier height by internal photoemission mea-
surements in the range 300–675 K. Krieger and Swanson41

compared results based on the effective potential method
�applying the Franz-type band model42� with and without in-
clusion of the image-force effect, respectively. Experimental
FN data were claimed to fit with equal accuracy using
mox�1.03 m0 �later corrected to 0.5 m0 Ref. 43� for the
former and mox�0.362 m0 for the latter case, respectively.
These results were questioned by Weinberg.43 Weinberg44

determined the critical field of the FN exponent to be
2.385�108 V/cm for a �100�, 2 � cm silicon substrate and
deduced mox�0.5 m0 using a barrier height of 3.1 eV. This
is to be compared with the self-consistent band structure cal-
culation for �-quartz by Chelikowsky and Schlüter,45 who
obtained mc ,ox�0.3 m0 at the � point, and with refined cal-
culations by Car et al. �cited as a private communication in
Ref. 43� who found mc ,ox�0.5 m0. Various authors13,40,41

used a Franz-type two-band model42 instead of a parabolic
relation in the SiO2 gap. However, the correction becomes
negligible if a two-mass Franz-type expression is used
�yielding the parabolic relation with the correct hole mass at
the valence band edge� due to the large hole mass of
�(5�10) m0.45 The impression arises that, depending on
the details of the potential and band models, mox finally rep-
resents the adjustable parameter of the ‘‘forgiving’’ model.
However, Weinberg43 compared the FN slope as a function

FIG. 1. Image-force effect on an idealized potential barrier due to an oxide
of 1 nm thickness. Dashed curve: ox�3.9, solid curve: ox�2.13. Other
parameters: Fox�10 MV/cm, �B�3.15 eV, mox�0.5 m0.

FIG. 2. Calculated transmission probabilities for a MOS structure with 1 nm
oxide thickness. Parameters: Fox�10 MV/cm, ox�3.9, �B�3.15 eV,
mox�0.5 m0.
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of �B
3/2 as was reported and published by different authors

�for different MOS systems� and found a surprising consis-
tency of these data when mox�0.5 m0 was used for the FN
slope.

Dressendorfer and Barker46 showed by means of internal
photoemission experiments that tunnel oxides as thin as 4 nm
have the same Si-SiO2 and Al-SiO2 barrier heights as that
found for thick oxides. Hiroshima et al.47 confirmed the Al-
SiO2 barrier height of 3.17 eV for oxides as thin as 3.5 nm
using mox�(0.46�0.05) m0 in fitting the electron FN cur-
rent from Al to SiO2. Heike et al.48 applied beam-assisted
scanning tunneling microscopy and found the SiO2 band gap
for layers with thicknesses between 1.8 nm and 4.5 nm to be
independent. Recent X-ray photoelectron spectroscopy mea-
surements by Alay et al.49 revealed a constant barrier height
also for holes, even for SiO2 layers as thin as 1.6 nm.

D. Band structure mismatch

One of the unresolved problems in connection with tun-
neling across SiO2 layers is the apparent absence of a band
structure mismatch at the Si-SiO2 interface. Assuming a di-
rect, parabolic E(k) relation in the SiO2, the conditions of
energy and k� conservation would yield, for the longitudinal
Si valleys �parallel to the tunnel current�, i.e. those with
k�0�0,

	k 
 ,ox	��2mox

�2

����B�qFoxx�E 
 ,Si�E� ,Si� 1�
mt

mox
� �.

�7�

For Si-SiO2 we have mt�mox (mt –transverse effective
mass�, hence the k� conservation acts as an effective reduc-
tion of the barrier height. In the transverse valleys �perpen-
dicular to the tunnel current� k�0 � 0, and the momentum of
electrons with k��k�0 becomes

	k 
 ,ox	��2mox

�2 ���B�qFoxx�E 
 ,Si�
�2k�0

2

2mox
� �8�

in the oxide. In this case an effective increase of the barrier
height by �E��2k�0

2 /2mox occurs, which is of the order of
�E�3�4 eV. The situation is sketched in Fig. 3. However,
from photoemission,35 capacitance-voltage35 and FN
experiments44 no essential difference was found between
�100� and �111� substrate orientations. A small difference

in FN currents between the two orientations �corresponding
to an increase of the barrier height by about 0.5 eV� is re-
moved after a postmetallization 400 °C standard forming gas
anneal.50 The following possible causes for relaxation of
k� conservation were discussed: phonon-assisted tunneling,
no band structure mismatch due to the amorphous nature of
thermally grown SiO2 films, impurities at the interface, and
interface roughness.50 A favored phonon-assistance of tun-
neling for �111� silicon is rather unlikely, because the mea-
sured current density is not essentially smaller as compared
to �100�-oriented material �as it then would for a phonon-
assisted process�. It remains only a speculation that for some
reason the transitions are phonon-assisted for all substrate
orientations. The assumption that amorphous SiO2 has a
band structure similar to �-quartz, possibly as a result of
atomic short-range order seen by the short-wavelength
electrons,51 is supported by the sharp optical absorption edge
of SiO2 at a value close to the gap of �-quartz, and the sharp
phonon lines observed in ballistic electron spectroscopy �see
references in Ref. 51�. There is no final conclusion about the
apparent relaxation of k� conservation.

III. PSEUDOBARRIER METHOD

For the purpose of device simulation both the numerical
solution of the Schrödinger equation and the WKB approxi-
mation, which includes a numerical integration, are too time-
consuming, if the image potential is regarded as indispens-
able. An analytical function T (E) that takes into account the
image force in a better way than by the lowering of a trap-
ezoidal barrier is desirable. This can be done by the follow-
ing ‘‘pseudobarrier method.’’ The actual shape of the barrier
potential is mapped to a trapezoid �the ‘‘pseudobarrier’’� un-
der the constraint of equal actions S:

Stra�E ��Sim�E �. �9�

The action of the trapezoidal pseudobarrier Stra(E) has the
simple form

Stra�E ��
2

3� ��B�E ��E

��ox
�3/2

���B�E ��qFoxd�E

��ox
�3/2

����B�E ��qFoxd�E�� , �10�

whereas Sim(E) is found by numerical integration:

Sim�E ���2mox

�2 �
xl�E �

xr�E �

d���B�qFox��Eim����E

�11�

(�B�const�3.15 eV for Al-SiO2). Here xl ,r(E) denote the
classical turning points for a given carrier energy which fol-
low from

�B�qFoxxl ,r�Eim�xl ,r��E . �12�

In Eq. �10� the height �B(E) of the trapezoidal barrier is
used as a free parameter to balance the actions. This is done
for each energy of the tunneling electrons, hence the barrier
height in T becomes a function of energy. �B(E) results
from the numerical iteration of Eq. �9�. For the thickness d of
the pseudobarrier in Eq. �10� we use d�xr(E�0)

FIG. 3. Illustration of the hypothetical band structure mismatch at the Si-
SiO2 interface.
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� xl(E�0), i.e. the distance of the two turning points at the
energy of the semiconductor conduction band edge at the
interface �note all energies are relative to that value�.

In order to further reduce CPU time consumption,
�B(E) is approximated by an analytical function. Thus, Eq.
�9� is applied to only three energy values E j( j�0,1,2) which
gives us the barrier heights for these energies. The function
�B(E) is then found by parabolic interpolation:

�B�E ���B�E0��
�B�E2���B�E0�

�E2�E0��E1�E2�
�E�E0��E1�E �

�
�B�E1���B�E0�

�E1�E0��E1�E2�
�E�E0��E2�E �. �13�

The best fit with the numerical solutions is obtained if the
three energy levels are chosen in the lower half of the barrier.
The accuracy of the analytical approach depends slightly on
the choice of E0,1,2 . However, Fig. 4 and Fig. 5 show an
excellent overall agreement for oxides with different thick-
nesses. One should note that this is achieved by varying only
one parameter of the pseudobarrier—its height, but leaving
thickness d and oxide field Fox unchanged. Fig. 6 demon-
strates that one and the same set E0,1,2 also yields a compa-
rable accuracy for different oxide fields which makes the
method applicable to the simulation of I-V curves. Besides

the good fit over the entire energy range there is still another
advantage as compared to the WKB approximation: Only for
the three energies E0,1,2 does the action integral has to be
solved numerically. After another three numerical iterations
to obtain �B(E0,1,2) the transmission probability T (E) of
the pseudobarrier is fully analytical, and the current can be
calculated by the integral �1� even in a device simulator. In
contrast, the WKB approximation requires a numerical inte-
gration for each �!� energy of the outer integral.

IV. I-V -CHARACTERISTICS OF DIRECT AND FN
TUNNELING

The calculated TC in Eq. �1� neglects electron confine-
ment in the inversion layer and the two-dimensional �2D�
character of states, which changes the pre-exponential factor
of the tunneling probability. Weinberg44 compared the pre-
exponential factors of FN theory when three-dimensional
�3D� or 2D states are used. He found a ratio of not more than
2.5, despite an entirely different dependence on parameters.

FIG. 4. Calculated transmission probabilities for oxides of 0.5 nm thickness
�a� and 1 nm thickness �b�. Parameters: Fox�10 MV/cm, ox�3.9, �B

�3.15 eV, mox�0.5 m0.

FIG. 5. Calculated transmission probabilities for a MOS structure with 5 nm
oxide thickness. Quantum oscillations due to interference in the FN regime
are observed. Parameters: Fox�10 MV/cm, ox�3.9, �B�3.15 eV
mox�0.5 m0.

FIG. 6. Numerical �circles� and analytical �solid lines� transmission prob-
abilities for a MOS structure with 1 nm oxide thickness at different oxide
fields.
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On the other hand, using simple plane waves for the calcu-
lation of the TC neglects the real structure of the semicon-
ductor conduction bands at higher energies. The latter draw-
back seems to be less severe for tunneling at low energies,
i.e. for ultra-thin barriers and not too high temperatures. The
case of thermionic emission of hot carriers �e.g. Ning’s
experiment;37 see also the Monte Carlo simulations in Ref.
36� requires special care of both the distribution function and
the TC around 3.1 eV. In the following we will neglect the
above described effects. Fig. 7 was obtained assuming a sub-
strate doping such that Ec(d)�EF ,S(d)�0.2 eV�const and
that the voltage drops only over the barrier. In Fig. 8 the
voltage range was extended to the FN regime. Again, the
pseudobarrier method gives results very close to the numeri-
cal solution of the Schrödinger equation. The deviations in
period and magnitude of the quantum oscillations are easily
understood: Since the trapezoidal pseudobarrier has a re-

duced height, it gives a slightly shorter period due to the
slightly larger distance between the reflection points as com-
pared to the original image potential barrier. Furthermore,
the linear potential of the pseudobarrier produces stronger
oscillations than the rounded-off potential of the original
barrier.

In Fig. 9 Fowler-Nordheim plots are presented for dif-
ferent oxide thicknesses. When the slope is interpreted in
terms of the critical field in the FN exponent Fc�4/(3q)
�(2mox /�2)1/2�B

3/2�6.83�107(mox /m0)1/2�B
3/2 V/cm, we

obtain �B�2.66 eV if mox�0.5 m0 is used or, alternatively,
mox�0.30 m0, if �B�3.15 eV is inserted.

V. SIMULATION RESULTS

We have implemented the model in the multidimen-
sional device simulator DESSIS-ISE,52 which numerically
solves the drift-diffusion equations in a semiconductor
device.

Assuming that the voltage of the contact, as well as the
properties of the insulating barrier, are known, implementa-
tion of Eqs. �1�–�6� requires the knowledge of �i� the insu-
lator electric field, Fox , and �ii� the semiconductor Fermi
level, EF ,S(d). The latter is only defined in thermal equilib-
rium, while under other operating conditions it splits into the
electron and hole quasi-Fermi levels, �n , �p , respectively.
We use EF ,S(d)��n for electron, and EF ,S(d)��p for hole
tunneling. Fox is obtained by solving the Laplace equation in
the insulator. The tunnel current obtained from Eq. �1� is
balanced with the drift-diffusion current in the semiconduc-
tor when solving the continuity equations, resulting in a self-
consistent solution.

Fig. 10 shows simulations of the tunnel currents of MOS
capacitors with SiO2 thicknesses of 15 Å, 30 Å, and 42 Å,
respectively. Symbols correspond to experimental data of
Fig. 4 in Ref. 15 �substrate doping and area given there� with
upper limits set by the oxide breakdown. The minority car-
rier lifetime �an integral and process-dependent parameter
for the silicon layer underneath the oxide with an extension
of the order of one Debye length� was fitted to match the
reverse current of the 15 Å capacitor. The value obtained is

FIG. 7. I-V -characteristics of an Al-SiO2-Si�n� diode for different oxide
thicknesses. Solid curves: numerical solution of the Schrödinger equation,
dashed curves: pseudobarrier method. Parameters: �B�3.15 eV,
mox�0.5 m0, ox�2.13, mSi�0.19 m0, mM�0.32 m0, mc*�0.32 m0,
EF ,M�11.7 eV, Ec(d)�EF ,S(d)�0.2 eV, E0�0.1 eV, E1�0.3 eV,
E2�0.7 eV.

FIG. 8. I-V -characteristics of an Al-SiO2-Si�n� diode with 2.5 nm oxide
thickness for different temperatures. Solid curves: numerical solution of the
Schrödinger equation, dashed curves: pseudobarrier method. Parameters:
mM�m0, E0�0.1 eV, E1�0.6 eV, E2�1.2 eV; for other parameters see
Fig. 7.

FIG. 9. Fowler-Nordheim plot for different oxide thicknesses.
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�n�1.7 �s. Generation via interface states was found to be
negligible. For the work function difference between silicon
and poly gate we used �0.51 eV.

The supply of carriers at reverse bias �positive voltages�
is driven by thermal generation of electrons in the silicon
substrate. The resistances due to the 15 Å and 30 Å barriers
are of minor importance in this branch as can be seen by the
small difference between the two theoretical curves �solid
lines�. However, the data points of the 30 Å capacitor reveal
a soft-breakdown behavior, that can be attributed to and
modeled by defect-assisted tunneling in the substrate53

�dashed line�. In contrast, the reverse characteristic of the
42 Å capacitor is determined by the tunnel resistance of the
barrier.

The forward characteristic �negative voltages� of the
15 Å capacitor shows the well-known shoulder caused by the
transition from the branch of the half-sided pn junction �n
side missing� to the branch of the tunnel oxide �V ��1 V�.
The height of this shoulder depends on various parameters,
e.g. the work function difference between silicon and gate.
The forward current in the range V ��1 V is completely
determined by the tunnel model and its parameters. The
close fit was obtained with the parameter set �B�3.15 eV,
ox�2.13, and mox�0.42 m0 using the Fermi energy of an
aluminum gate. Note that the value of mox is close to
0.39 m0 found by Lenzlinger and Snow39 for FN emission
from an aluminum gate. The inclusion of the image force
effect in our simulation leads to a somewhat larger tunneling
mass �see the discussion in Section VI�. All parameters re-
mained unchanged in the simulation of the 30 Å and 42 Å
capacitors. It is interesting to observe that capacitors with
oxides thicker than 30 Å start to reveal another tunnel
mechanism in the regime of direct tunneling, most likely
resonant tunneling via oxide defect states.9 For the 42 Å
sample a large leakage current is found experimentally in the
bias range �5 V to 5 V which cannot be explained by direct
tunneling. Only in the FN range �at reduced tunnel length�
simulated and measured currents coincide again. We con-
clude from the good fit in Fig. 10 that there is no need for a

thickness-dependent tunneling mass if the image-force effect
is correctly included. Such a thickness-dependent mass pa-
rameter was extracted from FN plots in Ref. 54, and ranged
from 0.29 m0 for d�2.8 nm to 0.36 m0 for d�6.2 nm.

In Fig. 11 we show simulated drain, source and gate
currents as function of drain voltage (Vg�2 V� for the
n-channel MOSFET with 10 �m channel length and 1.5 nm
gate oxide described in Ref. 15. Without direct tunneling, the
gate current is always zero �straight dashed line�. Switching
on the direct tunnel model, the gate current is the strong-
est component at Vd�0 V balancing the sum of drain and
source currents. The drain current has a negative sign be-
cause electrons are pulled out of the drain and injected into
the channel. With increasing drain voltage the gate tunnel
current decreases in favor of the drain current which changes
its sign at about 0.4 V �left rectangle in Fig. 11�. At about 1.1
V, drain and gate currents become equal �right rectangle in
Fig. 11�. In the saturation region the gate current is still more
than one-half of the drain current.

The lateral distribution of the direct tunnel current is
illustrated in Fig. 12 for a number of drain voltages

FIG. 10. Simulated �lines� vs measured �symbols� currents of MOS capaci-
tors with 15 Å, 30 Å, and 42 Å oxide thickness, respectively. Data points
correspond to those in Fig. 4 of Ref. 15.

FIG. 11. Simulated drain, gate, and source currents as function of drain
voltage for the n-channel MOSFET with 10 �m channel length and 1.5 nm
gate oxide described in Ref. 15. The gate voltage was 2 V.

FIG. 12. Lateral distribution of the gate tunnel current along the interface of
the n-channel MOSFET with 10 �m channel length and 1.5 nm gate oxide
described in Ref. 15. The gate voltage was 2 V in all cases.
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(Vg�2 V�. Source and drain portions are emphasized by a
stronger current due to the higher electron density in these
heavily doped n� regions. The symmetrical distribution at
Vd�0 V with a monotonously decreasing current density
towards the center of the channel reflects the out tunneling of
electrons from the channel into the gate electrode after hav-
ing been injected from source and drain. With increasing
drain voltage the lateral distribution becomes more and more
asymmetrical. For Vd�2 V�Vg the tunnel current vanishes
in the vicinity of the drain edge �balance of the Fermi levels�.
Higher drain voltages leave the distribution unchanged, with
tunnel injection from the gate into the substrate around the
edge of the drain.

VI. DISCUSSION

Our primary achievements reported in this article are �i�
the pseudobarrier method which allows accurate and fast
computation of the transmission probability of an image po-
tential barrier, and �ii� its self-consistent implementation in
an advanced TCAD software package for the simulation of
tunnel currents through ultra-thin gate oxides. The success of
the pseudobarrier method is most visible for the 5 Å barrier
where no other method is able to reproduce the correct TC
even qualitatively �Fig. 4�. We used this example for dem-
onstration purposes only, since the actual potential induced
by an SiOx layer with an extension comparable to the tran-
sition region is not clear. However, there are other applica-
tions as in vacuum tunneling, where the barrier potential is
much better defined. The success of the self-consistent
implementation in a drift-diffusion simulator was shown by
simulations of MOS capacitors and MOSFETs with tunnel
oxides, and by the good fit to experimental data �Fig. 10�.

There seems to be a contradiction between the many
simplifications and assumptions on one hand, and the excel-
lent fits presented in Figs. 4 and 10 on the other hand, that
needs further explanation. Let us summarize the approxima-
tions and discuss their impact on the final results. The TC
was calculated using an oversimplified band structure model
for Si, which increasingly fails with rising electron energy.
In the regime of direct tunneling from Si into the gate, hot

electrons are of minor importance, at least at moderate bi-
ases. In the regime of FN tunneling from the gate into Si,
electrons with the largest tunnel probability tunnel into
highly excited states at the Si-SiO2 interface. Here, the ef-
fective mass mSi is meaningless, however, as it only enters
the pre-exponential factor of the TC. In Fig. 13 we changed
mSi from 0.19 m0 to m0 and show the effect on the forward
I-V-curve of a MOS capacitor with 15 Å oxide thickness.
The effect is rather small, particularly in the FN regime,
where the deviation of mSi from its band edge value should
be most pronounced.

For the ultra-thin amorphous SiO2 layer we assumed a
parabolic, direct band model and we have neglected any pos-
sible band structure mismatch. These assumptions are fully
absorbed in the fit parameter ‘‘tunneling mass’’ mox . More
surprising, mox does not depend on voltage, although for
large negative bias it becomes an average over a broad range
of the SiO2 energy spectrum, ranging from less than
Ec ,ox��B up to a certain high level Ec ,ox��E in the
SiO2 conduction band.

For the gate current given by a single integral, the mo-
mentum in the gate electrode had to be replaced by some
k� independent quantity. We used the Fermi momentum here
which also produces some error. In the case of metal elec-
trodes the approximation is justified by the large Fermi mo-
mentum, whereas in the case of highly doped poly gates
kM(E�) could be replaced by the thermal momentum. A
variation of kF has a similar effect on the final result as the
variation of mSi which is obvious from Eq. �3�.

Plane waves were assumed for the states in Si in the
calculation of the TC even for the case of deep inversion.
The 2D density of confined states in the inversion channel55

will change the pre-exponential factor of the TC, and the
lower limit of the energy integration will shift from the con-
duction band edge to the lowest subband energy. However,
these non-negligible effects are not visible in the reverse
I-V-characteristics as long as thermal generation in the Si
depletion region is the bottleneck, since in that case they

FIG. 13. Effect of the parameter mSi on the forward current of the MOS
capacitor with 15 Å oxide thickness.

FIG. 14. Simulated forward currents of MOS capacitors with 15 Å, 30 Å,
and 42 Å oxide thickness, respectively. Solid curves: numerical solution of
the Schrödinger equation, open circles: without image force (mox

�0.42 m0), dashed curves: without image force but with mox adjusted for
best fit in the range of direct tunneling.
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become fully absorbed in the adjusted minority carrier life-
time.

We used an idealized potential barrier with �i� the clas-
sical image potential, �ii� its divergencies removed in a
simple way, and �iii� the optical dielectric constant of SiO2.
We believe that such a model is certainly better than neglect-
ing the image force entirely. The question arises as to what
extent the effect of the image force can be compensated by a
change of the tunneling mass mox . We found mox�0.42
m0 for the best fit and thickness independence in the regime
of direct tunneling. In Fig. 14 the measured MOS capacitors
were again simulated, now neglecting the image potential
and adjusting mox to yield the best fit in the range of direct
tunneling. The latter turned out using mox�0.36 m0 for the
15 Å oxide, mox�0.37 m0 for the 30 Å oxide, and mox

�0.38 m0 for the 42 Å oxide. This is in complete agree-
ment with the value of mox�0.36 m0 found by Nagano
et al.16 who used the transfer matrix method but neglected
the image force.

In conclusion, we arrived at a consistent picture of direct
tunneling through ultra-thin gate oxides which is not essen-
tially disturbed even by the sum of the above listed assump-
tions and simplifications. The inclusion of the image force
effect by the pseudobarrier approach proved to be an accu-
rate and CPU-time efficient method, superior to the WKB
approximation and suitable for self-consistent numerical
simulations. The latter were demonstrated to yield good re-
sults for MOS capacitors over 10 orders of magnitude in the
current. The simulation of a complete MOSFET with domi-
nating gate current has shown the potential for further appli-
cations as advanced MOSFETs, EPROMs, and MIS solar
cells.
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measurements of MOS capacitors, Dr. H. Iwai �Toshiba
ULSI Research Center� for his cooperation and for valuable
discussions, and Dr. U. Krumbein �ETH Zürich� for support
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