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Abstract—In this paper, the influence of intravalley acoustic
phonon scattering on transport through silicon nanowires is
studied. The focus lies on a comparison of the full problem with
approximate methods regarding the self-consistent electrostatics
and current computation. In addition, the scaling behavior with
increasing device lengths is shown.

I. INTRODUCTION

In order to capture the physical effects relevant at the
nanoscale, into which the size of metal-oxide-semiconductor
field effect transistors (MOSFET) have entered, electronic
transport through these devices should be described at the level
of quantum mechanics (QM). The nonequilibrium Green’s
function (NEGF) formalism provides a framework, which
allows to include different scattering mechanisms, such as
electron-phonon scattering or impurity scattering on a per-
turbative approach. Since both electrons and phonons are
described by wave functions, scattering in QM is a spatially
correlated phenomenon. However, in order to decrease the
computational burden, approximations can be made, such that
scattering becomes local in space, see Section II-C.
In this work, we analyze the influence of intravalley acous-
tic phonon scattering on transport through silicon nanowires
using deformation potential theory and the self-consistent
Born approximation. A brief overview about the simulation
procedure in the simulator SIMNAD is given in Section III.
The results are compared with results from simulations that
neglect renormalization effects of scattering [7] [8] and with
ballistic simulations.

II. QUANTUM TRANSPORT EQUATION

A. Steady-state transport equations

In the NEGF formalism, the steady-state transport equations
for the retarded (GR) and the lesser (G<) Green’s function
[1][2] are∫

dr1[(E−H(r))δ(r−r1)−ΣR(r, r1)]G
R(r1, r

′) = δ(r−r′)

(1)

G<(r, r′) =

∫
dr1

∫
dr2G

R(r, r1)Σ
<(r1, r2)G

A(r1, r
′),

(2)
where H(r) is the Hamiltonian of the system and Σ(r, r′) the
self-energy, containing all the interactions Σint(r, r

′) (except

the Hartree potential) as well as the boundary conditions
Σbc(r, r

′):

Σ(r, r′) = Σint(r, r
′) + Σbc(r, r

′). (3)

B. Coupled mode expansion

The starting point for solving the quantum transport equa-
tions is the choice of a basis function set, in which all operators
are expanded. In this work, we consider a parabolic bandstruc-
ture for silicon and express the effective mass Hamiltonian in
the so-called coupled mode expansion. It has been shown that
for devices with a simple geometry, i.e. devices with a well-
defined transport direction, the coupled mode approach yields
the same results as a real-space approach, yet decreasing the
computational burden significantly [6].
In the coupled mode approach, the solution of the 3D
Schrödinger equation is written as the product

φn(r) = ϕ(x − xi)φ̃n(xi, y, z), (4)

where ϕ(x−xi) is a function localized around a layer x = xi

and the mode φ̃n(xi, y, z) is the solution of the transverse
Schrödinger equation on the same layer:

H⊥(xi, y, z)φ̃n(xi, y, z) = En(xi)φ̃n(xi, y, z) (5)

with the transverse Hamiltonian defined as

H⊥(xi, y, z) = −
h̄2

2

∂

∂y
(

1

my

∂

∂y
)−

h̄2

2

∂

∂z
(

1

mz

∂

∂z
)+V (xi, y, z).

(6)
The Green’s functions can now be expressed in the basis
functions φn(r), i.e. for GR(r, r′):

GR(r, r′) =
∑
n,m

GR
nmφ∗

n(r)φm(r′), (7)

where GR
nm is the solution of∑

n′

(
Eδnn′ −

∫
drφ∗

n(r)H(r)φn′ (r)− (8)

∫
dr

∫
dr′φ∗

n(r)ΣR(r, r′)φn′ (r′)

)
GR

n′m =

∑
n′

(Eδnn′ − Hnn′ − ΣR
nn′)GR

n′m = δnm.

Equation (8) is obtained by inserting (7) into (1), multiplying
with φ∗

n(r) from the left and φn′(r′) from the right and finally
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integrate over r and r′.
The boundary self-energies are not transformed but directly
computed in mode-space [4].
The advantage of the coupled mode approach lies in the
reduction of the matrix size for the transport problem, since the
square of the number of modes N 2

M needed in the simulations
is much smaller than the number of grid points (Ny, Nz) in
the transverse direction: N 2

M � Ny · Nz .
On the other hand, one of the major shortcomings of this
approach is that only transport along crystall direction (100)
is possible for nanowires, as described in this section.

C. Intravalley acoustic phonon scattering

In this section, it is assumed that the phonon system remains
in equilibrium and that the phonon wave functions can be
approximated by their bulk counterparts.
Then, within the self-consistent Born approximation, the self-
energy for the electron-phonon interaction is

Σ< = D<G<, (9)

with the free phonon lesser Green’s function D< [3]. For the
steady-state case, (9) can be written as

Σ<(r, r′, E) =

∫
dq

(2π)3
eiq(r−r′)|Mq|

2 · (10)

(
(Nq + 1)G<(r, r′, E + h̄ωq) + NqG

<(r, r′, E − h̄ωq)
)
.

Assuming that h̄ωq � kBT ⇒ E ± h̄ωq ≈ E, the phonon
distribution function can be approximated by

Nq + 1 ≈ Nq ≈
kBT

h̄ωq

, (11)

and considering only intravalley acoustic phonons (h̄ωq =
csq), where the electron-phonon matrix element can be ap-
proximated by

|Mq|
2 ≈

h̄Ξ2q

2ρcs

, (12)

the term |Mq|
2 ·Nq in (10) becomes independent of the phonon

wave vector q, and therefore the self-energy becomes local in
space:

Σ<(r, r′, E) =
Ξ2kBT

ρc2
s

G<(r, r′, E)δ(r − r′). (13)

The mass density of silicon is ρ = 2.329g/cm3, the speed of
sound in silicon is cs = 9.04·105cm/s and for the deformation
potential we take Ξ = 14.6eV [8].
Once the lesser self-energy is given, the retarded self-energy
can be calculated via

ΣR(r, r′, E) =
1

2
(Σ>(r, r′, E) − Σ<(r, r′, E)) + (14)

iP

∫
dE′

2π

Σ>(r, r′, E′) − Σ<(r, r′, E′)

E − E′
,

where P
∫

dE′ is the principal part of the integration. Since
intravalley acoustic phonon scattering is treated as an elastic
interaction here, (14) reduces to [5]

ΣR(r, r′, E) =
Ξ2kBT

ρc2
s

GR(r, r′, E)δ(r − r′). (15)

Note that in the first line of (14) stands the anti-Hermitian
part of ΣR(r, r′, E), which is accountable for the dephasing.
However, the quantum mechanical treatment of scattering also
leads to a renormalization of the energies, which is represented
by the Hermitian term in the second line of (14). It was
claimed [7][8] that the Hermitian term can be neglected, since
it leads to oscillations in the energy levels and therefore slows
down the convergence, without introducing a significant error.
In this work, we will analyze the influence of both terms on
the electrostatic solution and the current.

D. Density and current calculation

For both the carrier density and the current, we basically
have three contributions: coherent terms from the source/drain
contacts (boundary terms) and an incoherent term from the
acoustic phonon interaction.

G< = GR(Σ<
S + Σ<

D + Σ<
int)G

A (16)

n(x) = −i
∑
v,σ

∑
nm

∫
dE

2π
G<,v

nmφv
n(x)φv

m(x) (17)

Jn(E) = −
e

h̄

∑
v,σ

∑
l≥n+1

∑
m≤n

∫
dE

2π

(
2Re(Hv

lmG<,v
ml )

)
(18)

In (17) and (18) v and σ are the valley and spin indices.
As a consequence of density and current conservation in the
device, the following important relation can be derived:

∑
l

∫
dE

2π

(
2Re(HnlG

<
ln)

)
= 0, (19)

except at the boundaries to the source/drain contacts.
Equation (19) can be used as a physically motivated conver-
gence criterion for the inner iteration loop of the self-energy
and the Green’s function, but only if we take the full retarded
self-energy as in (15). Using only the first line of (14), current
conservation is violated and (19) can not be used.

III. SIMULATION PROCEDURE

A. General

The set of equations in Section II is completed with the
inclusion of the Poisson equation. The basic simulation pro-
cedure is the following:

1) Solve the transverse Schrödinger equation (6).
2) Green’s function - self-energy iteration: solve equations
(8), (2), (13) and (15) until the convergence criteria are
fulfilled (see Section III-B).

3) Calculate the density.
4) Compute new potential by solving the Poisson equation.
5) Iterate step 1) to 4) until convergence on the density and
the potential is reached.
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B. Convergence Criteria

Global convergence is achieved, when the self-consistent
electrostatic solution fulfills a given error criterion. We apply
the L1 norm on the density and the L∞ norm on the potential.
Of special interest are the convergence criteria used for the
inner iteration loop of the self-energy and the Green’s function.
In our simulations, we used the following criteria:

max(|
∑

l

∫
dE

2π

(
2Re(HnlG

<
ln)

)
|) < ε1 · min(Jn) (20)

max(|ΔJn|) < ε2 · min(Jn) (21)

∑
i

∫
dE

2π
|Δn(xi)| < ε3 ·

∑
i

∫
dE

2π
n(xi). (22)

Note again that (20) is only used if we consider (15).

C. Devices

We performed our simulations on two series of triple-gate
silicon nanowires: The first has a quadratic cross-section of
3 nm× 3 nm and the second of 5 nm× 5 nm (Si only). Gate
lengths from 5 nm to 30 nm were considered, taking 5 nm
steps, i.e. 6 different gate lengths in total.
Common to all our devices is that the source/drain extensions
are 10 nm long, thus the following holds for the device length
Ld and the gate length Lg: Ld = Lg + 20 nm.
The source/drain extensions are doped with an uniform arsenic
concentration of 2e20 cm−3, while the channel region has a
very low boron concentration of 1e14 cm−3.
An oxide layer of SiO2 with a width of 0.6 nm is wrapped
around the silicon wire.
For the gate we used a workfunction of 4.1 eV .

D. Simulation modes

In order to investigate the effect of intravalley acoustic
phonon scattering on the electrostatic solution and the current,
we will compare the results of the following simulation modes
in Section IV:

1) Ballistic simulation: ΣR
int(r, r

′, E) = Σ<
int(r, r

′, E) = 0
2) Full self-consistent acoustic phonon simulation:

ΣR
int(r, r

′, E) is given by (15).
3) Semi self-consistent acoustic phonon simulation:

ΣR
int(r, r

′, E) is given by the first line of (14),
neglecting the Hermitian part.

4) Ballistic electrostatic solution, current calculation with
acoustic phonons (15) as a post-processing step.

5) Ballistic electrostatic solution, current calculation with
acoustic phonons (but only first line in (14)) as a post-
processing step.

IV. SIMULATION RESULTS

A. Drain-current vs gate-voltage

In Fig. 1 and Fig. 2 the ID-Vg characteristics are shown for
two different bias regimes VSD = 0.05V and VSD = 0.5V for
the same device. For a better visualization of the difference
between the various simulation modes, we show the ratios

0 0.1 0.2 0.3 0.4 0.5
Gate Voltage [V]

1e-09

1e-08

1e-07

1e-06

1e-05

D
ra

in
 c

ur
re

nt
 [A

]

Ballistic = sim. mode 1
sim. mode 2
sim. mode 3

Fig. 1. Comparison of the I
D
-Vg curves of the first three simulation modes

with V
SD

= 50 mV , for a nanowire with a cross-section of 3 nm × 3 nm

and a gate length of 10 nm.
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Fig. 2. Comparison of the I
D
-Vg curves of the first three simulation modes

with V
SD

= 500 mV , for a nanowire with a cross-section of 3 nm× 3 nm

and a gate length of 10 nm.

of the results in Fig. 3. The line with diamonds in Fig. 3
results only from the difference in the current calculation as a
post-processing step to the same electrostatic solution, whereas
the line with squares results from a different electrostatic
solution and a difference in the current calculation. From Fig. 3
we learn that the error in the drain current, caused by the
approximation in the third simulation mode compared to the
second one, is up to 15 %.

B. Subband profile

In Fig. 4 the shape of the lowest subband under the gate is
shown. For all subbands in all other simulations, the situation
is alike: simulation mode 2 has always the highest barrier,
simulation mode 3 has the lowest barrier, i.e. lower than the
ballistic case.

C. Scaling behavior

In ballistic simulations of nanodevices, the subtreshold
current shows a strong dependence on the gate length due
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Fig. 3. For the same settings as in Fig. 1, the ratio between simulation mode
2 and 3 (squares) and between simulation mode 4 and 5 (diamonds) is shown.
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Fig. 4. For the same settings as in Fig. 1, the lowest subbands are shown
for the first three simulation modes for Vg = 0.25 V and V

SD
= 50 mV .

to tunneling currents. On the other hand, the on-current of
the devices are almost independent of the gate length (and
also of the device length), since once the barrier is gone, the
transmission from source to drain is almost unity [9].
In simulations with acoustic phonons, the situation is com-
pletely different for the on-currents. As the device length
increases, the coherent contribution (first two terms in (16)) to
the density and the current decreases, whereas the incoherent
term start to dominate. Then the on-current begins to scale
linearly as a function of the device length, as shown in Fig. 5
and Fig. 6.

V. CONCLUSION

We have shown the scaling behavior of silicon nanowires
in the presence of intravalley acoustic phonon scattering and
presented a quantitative analysis of the error in the drain
current caused by the negelection of the Hermitian term in
the retarded self-energy, which is up to 15 % of the current.
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Fig. 5. Scaling of the nanowires with a cross-section of 3 nm × 3 nm for
Vg = 0.5 V and V

SD
= 50 mV (simulation mode 2).
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Fig. 6. Scaling of the nanowires with a cross-section of 5 nm × 5 nm for
Vg = 0.5 V and V

SD
= 50 mV (simulation mode 2).
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