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Abstract

We report on the implementation and �rst numerical results of a new analytical model of
the metal�semiconductor contact in a drift�di�usion device simulator� The model covers
the entire range from Schottky to Ohmic contacts and �ts well with experimental I�V��
characteristics of intermediately doped silicon�
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� Introduction

Usually� in device simulation the physical system �metal
semiconductor �MS� interface is treated in
form of idealized boundary conditions� Neutrality and equilibrium are assumed for Ohmic contacts
and thermionic emission for rectifying �Schottky� contacts� A model of the non
ideal contact is not
only of general interest� but also desirable for certain applications� e�g� the combined Schottky
pn

structure in power diodes �MPS diodes� or the Schottky Injection Field E�ect Transistor �SINFET��
Obviously� such a model cannot re�ect the entire complicated physics involving barrier tunneling�
inelastic scattering� recombination� trapping and trap
assisted tunneling� potential �uctuations�
lateral barrier height �uctuations� roughness� band
state mixing� carrier heating� image forces� and
some other e�ects� Since barrier tunneling is commonly accepted to produce Ohmic behavior� the
concept of thermionic �eld emission �TFE� is successful in explaining the transition from Schottky
to Ohmic contacts as the doping level is increased� Schroeder ��� used a simpli�ed version of the
WKB transmittance of a parabolic barrier �neglecting quantum re�ection� and derived an analytical
expression of the emission current je suitable for a boundary condition in device simulation� We
believe that because of the importance of barrier tunneling for the properties of MS contacts with
arbitrary doping the substitution of the WKB approximation by a better approach should be a
reasonable improvement� despite the mentioned variety of other physical e�ects� As is well known�
the WKB approximation breaks down in situations� where the de Broglie wavelength becomes
comparable to the barrier width �Ohmic contact or strong reverse bias� and where the main current
�ow is in the vicinity of the barrier maximum �Schottky contact�� Details of the new model including
the lengthy formulas are published elsewhere ���� Here we concentrate on the implementation of
the model in a general drift
di�usion simulator and report on �rst numerical results� The essentials
of the model are outlined in the following section�

� Theory

Idealizing assumptions are� parabolic potential barrier �constant doping in the barrier region�
Schottky approximation� no image e�ect� no interfacial layer� etc��� �D approximation for the
transmission probability� and unique e�ective mass in the semiconductor�

The WKB approximation is by
passed by interpolating analytically between the asymptotic
forms of the eigenfunctions �parabolic cylinder functions� by means of Airy functions� The maxi

mum error at the classical turning points� where the WKB solutions diverge� is shown to be less
than ����� To enable analytical integration the maximum peak of the Airy function is �tted to a
Gaussian with an universal attenuation parameter for all doping concentrations� In that way good
agreement is achieved with the true transmission probability up to an energy Emax well above the
maximum of the barrier� For still higher energies the simpler WKB approximation is su�cient to
account for quantum re�ection there� A fully analytical model is derived if the arguments of the
Gaussians are developed with respect to the energy at the maximum of the spectral current density�
This maximum is solution of a transcendental equation and may be approximated by an expres

sion similar to that given by Crowell and Rideout ���� To avoid expensive numerical integration
including Fermi integrals� we use Boltzmann statistics above and total degeneracy below the Fermi
energy� respectively� The �nal expression then contains error functions as the most complicated
ingredients�

Fig� � compares j�V �
characteristics of the MS contact calculated with the new analytical
model against the results of an �exact reference model� where the correct transmission probability
in terms of parabolic cylinder functions �Conley et al� ���� was used in a numerical integration �not
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changing the statistics model�� Curves labeled �Schroeder are the corresponding characteristics�
if his simpli�ed WKB transmittance ��� is used�
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Figure �� Calculated j�V �
characteristics of an Al on n
Si contact with barrier height � ��	 eV and
mc � �����m� for di�erent models�

� Implementation

The implementation of the above model in a drift
di�usion device simulator requires the de�nition
of boundary conditions for the electrostatic potential � and the quasi Fermi potentials �n and �p�
For feasibility we assume equilibrium� i�e� �n � �p �� �� This variable is determined by numerically
balancing the drift
di�usion current and the TFE current as determined by the analytical model�

The simplifying assumption of equilibrium is caused by the problem that the TFE current
depends on the variable Vapp� the potential drop over the barrier� which is a non
local variable and
hence not available in a device simulator� This is why we approximate it by Vapp � �m � �s �
Vcontact � � �see Fig� ���

To be able to derive the boundary condition for � we have to identify the position in the barrier
until which the current is determined by the TFE current and from which it can be treated as a
pure drift
di�usion current� In Fig� � this point is shown at the depth XT under the contact� It
can be determined from the TFE model by the condition that tunneling remains negligible at lower
energies� From the parabolic barrier assumption we can then derive a corresponding energy WT

and using this arrive at the following formula for � at the point XT � � � ���bi� �WT �WD��q�
�bi is the built
in potential� Unfortunately� WT � WD depends again on Vapp and is hence not
available� Using the same approximation as above we arrive at� � � � � �bi � �WT �WD�eq�q�
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Figure �� Schematic band diagram

WT�eq and WD�eq are the equilibrium values of the energies WT and WD shown in Fig� �� Note�
that the expression for � reduces to the common boundary conditions in the two extreme cases of
a pure Ohmic �WT�eq � WD�eq� and the Schottky case �WT�eq � ���

� Examples

Fig� � compares simulation results with the drift
di�usion simulator Simul ��� against experimental
data of a Kelvin structure �Ti on n
Si with h���i
orientation� barrier height � ���� eV � ND �
���� � ���� � ���
 cm�	�� Such a contact represents an intermediate case between Ohmic and
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Figure �� Comparison of simulations with a measured I�V �
characteristic of Ti�n
Si with ND �
���� � ���� � ���
 cm�	 and an area of ��� � ���� cm� �dots�� Simulated curves are based on the
parameter set� mc � ����m�� �B � ���� eV � mM � m�� and EF�M � ���	 eV �

Schottky� and the data are not in�uenced by an unknown bulk resistance� The reverse bias branch
can be well �tted with the transverse e�ective mass mt � ����m� �h���i
orientation�� for doping

�



concentrations in the range ND � ����� ���� � ���
 cm�	�
Note that no ideality factor was used to remove the deviations at low reverse and forward biases�

which are presumably caused by recombination inside the barrier region�
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Figure �� nin structures for varying surface doping� a� Doping versus spatial coordinate for the
varying well� b� j�V �
characteristics�

As another example we show the behavior of a nin structure �e�g� the Schottky part of a com

bined Schottky
pn
structure� with a variation of the surface doping concentration� The structure
under consideration is ���m long with a bulk value of ���� cm�	� The one contact is Ohmic with
a surface concentration of ND � ���� cm�	 and the other is varied in steps from ���
 cm�	 to
�� ���� cm�	 as shown in Fig� �a�

The simulated j�V �
characteristics in Fig� �b show the transition from a Schottky diode like
behavior to a resistive behavior�
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