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Universal Method for Extracting Transport
Parameters From Monte Carlo

Device Simulation
Simon C. Brugger and Andreas Schenk

Abstract—The extraction of transport parameters as mobilities
and diffusivities has been a subject of research for more than
20 years. However, the solutions proposed up to now are not
satisfactory particularly when applied to nanoscale devices. In this
brief, we review the two most popular methods to extract mobili-
ties and show how they fail in nanoscale devices, where transport
is strongly quasi-ballistic. We also show that these methods are
not appropriate to extract tensorial transport parameters. As an
alternative, we propose to use recently derived general definitions
of mobilities and diffusivities that naturally solve these problems
and, thus, constitute a universal method to extract transport
parameters.

Index Terms—Boltzmann equation, device simulation, general-
ized drift–diffusion equation, inverse scattering operator, trans-
port parameters.

I. INTRODUCTION

THE IDEA to extract transport parameters from a Monte
Carlo (MC) solution of the Boltzmann equation and to

insert them in a generalized drift–diffusion equation is not new
[1], [2]. It has been proposed by many authors as a promising
method to take into account hot-electron effects, as well as
generation–recombination, in a self-consistent way [1], [3], [4].
This method has, however, never found a wide domain of
application. In this brief, we argue that the proposed methods
for extracting transport parameters are afflicted with four major
problems. As we will show, these problems are all related to the
previously proposed extraction methods, which are based on the
usage of the mean particle velocity to define mobility. After
carefully describing these four issues in Section II, we will
show in Section III that, with proper definitions of the transport
parameters based on the exact theory of the inverse scatter-
ing operator [5], all these problems are naturally resolved.
Conclusions will be given in the last section.
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II. PROBLEMS OF PREVIOUS EXTRACTION METHODS

In [1], Park et al. defined the local electron mobility µii in
the transport direction i as

µii := −〈vi〉MC

∂iψn
(1)

where 〈vi〉MC is the mean electron velocity in the transport
direction i as computed with the MC method, and ∂iψn is
the derivative of the quasi-Fermi potential in the transport
direction i. Here, the mean value 〈g〉 of a function g is defined
using the bra and ket notation as in [5]

〈g〉 :=
〈g|f〉
〈1|f〉 =

〈g|f〉
n

(2)

where f is the solution of the Boltzmann equation, and
n := 〈1|f〉 is the density. Note that (1) is strictly valid as long
as the Einstein relation holds. The proof of this statement is
given in the Appendix. Definition (1) involves two of the four
problems that we would like to discuss. First, since the velocity
	v(	k) is an odd function of the quasi-momentum 	k, it is difficult
to compute efficiently using a MC method as already pointed
out in [1]. Second, the velocity, as well as the gradient of
the quasi-Fermi potential, is zero perpendicular to the current
flow direction, making it impossible to define a proper mobility
perpendicular to the transport direction.

To obtain a better definition of the mobility, which also
holds far from equilibrium, Bandyopadhyay et al. [3] derived
a generalized expression for µij as

µij :=
q〈vi〉MC〈(
dpj

dt

)
coll

〉
MC

(3)

where 〈(dpj/dt)coll〉MC is the mean value of the rate of loss of
electron momentum due to collisions in the jth direction. Un-
fortunately, this method generates even more problems than the
first one, even though it should be valid far from equilibrium.

A. Odd Moments

The first problem is the same as the previous discussion. For
a better understanding, the denominator of (3) is rewritten using
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Fig. 1. Mobility in the transport direction as a function of the position and of
the number of iterations.

the notation of [5]
〈(

dpi

dt

)
coll

〉
MC

:=
� 〈ki|S|fMC〉

〈1|fMC〉
. (4)

As the function [〈ki|S](	k) is an odd function like 	v(	k), its
computation is also laborious when using the MC method. To
illustrate this problem, a simple 2-µm-long resistor has been
simulated using the MC method. The doping concentration is
1017 cm−3, the electric field inside the device is 10 kV/cm, and
the crystallographic orientation is 〈110〉. Fig. 1 shows the value
of the local mobility as a function of the position after 1, 10,
and 100 iterations, each iteration corresponding to a simulation
time of 0.05 µs. The dashed lines are the results as obtained
using the method by Bandyopadhyay et al. As expected, the
results are very noisy since the mobility is a quotient of two
odd moments, and a total simulation time of 5 µs is not even
enough to achieve a precision better than 5%. This is a major
drawback of the method.

As pointed out in [3], (4) can be rewritten as
〈(

dpi

dt

)
coll

〉
MC

=
−1
nMC

∑
l

∂l(2nMCuil) + qEi (5)

where Ei is the electric field in i-direction, nMC is the MC
density, and the definition of uil is given in [3]. Expression (5)
is not easier to compute than (4) due to the difficulty to compute
the gradient of nMC [4].

B. Diagonal Terms Perpendicular to the Transport Direction

In this section, we consider the transport parameters per-
pendicular to the transport direction. The determination of
these parameters is important, among others, for small-signal
analysis. For example, if one cannot determine the transport
parameters perpendicular to the transport direction under the
gate of a bulk MOSFET, the small-signal response to a small
potential variation on the gate cannot be described properly.

By definition, the velocity perpendicular to the transport di-
rection is zero; thus, the numerator of (3) becomes zero. What is

Fig. 2. Simple NIN structure where the Bandyopadhyay et al. definition of
the mobility fails.

the consequence for the denominator of (3)? Considering, e.g.,
the line of the transport direction in the middle of a rectangular
resistor, the denominator will also become zero because of
mirror symmetry of the device. This leads to an undefined
mobility perpendicular to the transport direction. One may
argue that this only happens in cases of high symmetry, but,
as the distribution function continuously depends on the geo-
metry, the line will be transformed into a curve if one slightly
deforms the device. Therefore, this kind of problem is expected
in a large class of devices. In the case of a bulk MOSFET,
the value of (4) perpendicular to the transport direction (i.e.,
perpendicular to the gate) will, in general, not be zero, leading
to zero transverse mobilities almost everywhere. This is un-
physical because it would lead to a vanishing gate conductance
for nonvanishing frequencies, and the source–gate transcon-
ductance will also be affected because it partly depends on
the transverse transport parameters. This is the second main
drawback of the method proposed by Bandyopadhyay et al.

C. Nondiagonal Terms

Considering i as the transport direction and j(j �= i) as a
perpendicular direction, the nondiagonal term µij of the mobil-
ity tensor will always diverge in a point with mirror symmetry
in the j-direction because, in that case, the denominator is
zero. The elements µji will almost always vanish because
the numerator is zero by definition, and sometimes, it will be
undefined as we will see in the next section.

D. Divergence in Transport Direction

Sections II-B and C show that, using (3), the only component
of the mobility tensor that seems to be always well defined is the
component in transport direction. In this section, an example
is described where the numerator of (3) is positive and the
denominator is zero. Fig. 2 shows the schematic of a simple
NIN structure, where (3) fails even in the transport direction.

If the device shown in Fig. 2 is biased with 2 V, the profile of
the mean velocity [the numerator of (3)] turns out as shown
in Fig. 3. The velocity is positive everywhere as expected.
However, inspecting the denominator of (3) gives a somewhat
different picture as one can see in Fig. 4. The mean rate of loss
of momentum for the electrons is first positive, then crosses
the x-axis to become negative, crosses the x-axis again, and is
then positive. Using (3) leads to a mobility that diverges in two
points in the transport direction. In addition, the nondiagonal
terms with the transport direction as the second index are
undefined (0/0). The occurrence of a negative mobility between
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Fig. 3. Velocity profile at a bias of 2 V.

Fig. 4. Profile of the mean rate of loss of momentum for the electrons at a bias
of 2 V.

the two crossing points has already been investigated in [6].
With the method proposed by Bandyopadhyay et al., this case
is not a singular one, but nanoscale MOSFETs, in general, are
afflicted with this problem.

III. UNIVERSAL METHOD

The preceding section showed that the mobility extraction
methods presented in [1] and [3] involve serious problems
and are, therefore, inappropriate to extract transport parameters
from the solution of the Boltzmann equation. This applies even
more if they are used together with the MC method. In [7],
Gan and Tang tried to solve the problem of the extraction
of odd moments with MC (see Section II-A). Unfortunately,
the method by Gan and Tang based on a spherical harmonics
expansion of the distribution function is only valid in the
effective mass approximation and as long as the distribution
functions are not too asymmetrical.

In this section, we show that the method proposed in [5]
to extract transport parameters solves all four problems at the
same time without any restrictions to the subjacent Boltzmann
equation (no more approximations than already contained in the
Boltzmann equation itself).

Fig. 5. Profile of the diagonal components of the mobility tensor for electrons
in a simple resistor.

A. Proper Definition of a Mobility Tensor

In [5], the definition of the mobility tensor is based on the
velocity moment of the inverse scattering operator (MISO) S−1

vi

µij := − q

n�

∫
K

∂kj
S−1

vi
fd3k (6)

where S is the scattering operator, and vi is the component of
the velocity in i-direction. In [5], a mathematical proof was
given that these moments always exist and that they are always
computable.

B. Advantages

Contrary to (3), where the mobility was defined as a quotient
of the mean values of odd functions, (6) defines the mobility
as the mean value of an even function. This is crucial for the
extraction using an MC method because mean values of even
functions can be computed very efficiently. To illustrate this
point, the mobility in the simple resistor of Section II-A was
computed using (6). The plain lines in Fig. 1 show that our
method produces more precise results after one iteration than
the method by Bandyopadhyay et al. after 100 iterations. The
derivative of the velocity MISO in front of the distribution
function in (6) is computed once for all in a given scattering
operator and a band structure (see [8]) and must therefore be
considered as a known easily computable function.

The undefined or zero mobilities perpendicular to the trans-
port direction as they occur with (3) are wiped off when using
(6). Fig. 5 shows the diagonal components of the mobility
tensor when the x-direction is the transport direction. All
components are well defined and can be computed with the
same accuracy. The difference between the y-direction (parallel
to the device plane) and the z-direction (perpendicular to the
device plane) results from the 〈110〉 orientation of the silicon.
The nondiagonal elements are all zero because of the symmetry
of the system.

Fig. 6 shows that, using (6), the mobility in the NIN
structure does not diverge. The negative mobility has been
investigated in [6].
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Fig. 6. Profile of the mobility component in the transport direction for
electrons at a bias of 2 V.

Everything outlined for the mobility tensor is likewise true
for the diffusivity tensor.

IV. CONCLUSION

The computation of the transport parameters based on the
velocity moments of the inverse scattering operator [5] has
the following advantages compared to other methods. First, the
tensorial transport parameters are always well defined in the
transport direction and, more importantly, perpendicular to it.
The off-diagonal elements are also well defined. Second, as
the mobility tensor and the diffusivity tensor are defined as the
mean values of even functions, they are efficiently computable
using the MC method.

In previous papers [9], [10], we have shown that those
transport parameters can then really be inserted in a generalized
drift–diffusion equation to accurately compute densities and
current densities, and this independently of the working point.
Although the idea of this method is not new, its realization only
became possible because a proper (always valid and robust)
definition of transport parameters has been derived.

APPENDIX

In this Appendix, we give a proof that the general definition
of a mobility given in [5] coincides with (1) in the case of
Boltzmann statistics for small gradients of the quasi-Fermi
potential. The solution f(r,k) of the Boltzmann equation can
always be written as

f(r,k) =: n(r)g(r,k) (7)

where n(r) is the density, and g(r,k) has, by definition, the
property

∫
K

g(r,k)d3k = 1. (8)

The density can be rewritten as a function of the electrostatic
potential φ and of the quasi-Fermi potential ψn as

n(r) = ni exp
(

q

kBT
(φ(r) − ψn(r))

)
(9)

where ni is the intrinsic density, q is the absolute value of the
electron charge, kB is the Boltzmann constant, and T is the
lattice temperature. Under the approximation

g∇rn� n∇rg (10)

which is always fulfilled near thermodynamic equilibrium, the
expression for the solution of the Boltzmann equation in the
first order in the electric field and in the gradient of the quasi-
Fermi potential can be written as (the derivation is identical to
that given in [8, pp. 49–50])

f(r,k) = feq(r,k)
[

1 − q

kBT
∇rψn(r) · S−1

�v (r,k)
]

+ O
(
	E · ∇rψn(r),∇rψn(r)T∇rψn(r)

)
. (11)

This is the same expression as in [5, eq. (4.7)] except that
the gradient of the electrostatic potential is replaced by the
gradient of the quasi-Fermi potential. By inserting (11) into the
generalized drift–diffusion equation [9, eq. (4)], one finds

qnµeq
xxEx + qDeq

xx∂xn = −qn〈vx〉 = −qnµeq
xx∂xψn (12)

where x is the transport direction, Ex is the electric field in
the transport direction, µeq

xx is the component of the mobility in
the transport direction from (6) evaluated in f = feq, and Deq

xx

is the diffusivity in the transport direction from definition in
[5, eq. (4.9)] evaluated in f = feq. Note that, as shown in
[5, eq. (4.10)], the following relation holds between equilibrium
mobility and equilibrium diffusivity

kBT

q
µeq

xx = Deq
xx (13)

which is the so-called Einstein relation. When dividing (12) by
−qn, one finds

µeq
xx∂xψn = 〈vx〉 (14)

which is exactly (1). Thus, the claim is proved. If further terms
of the series (11) are taken into account, (12) and (13) are not
fulfilled anymore.
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