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In this paper a method to compute transport parameters
in semiconductor devices as a function of the driving
forces is presented. The method is based on an exact
expansion of the distribution function (solution of the
Boltzmann transport equation) in a series in the electric
field and the gradient of the quasi-Fermi potential.

Eventhough this series probably diverges for high fields,
it is still usable for low and moderate field intensi-
ties. Results for silicon clearly show that the usual
parametrization of the mobility in TCAD models is inac-
curate in pn junctions. Furthermore, it gives new insights
into the form of the correct parametrization.

1 Introduction Solving the Boltzmann transport equa-
tion (BTE) in realistic semiconductor devices, taking all
physically relevant effects into account, is still an open
challenge for TCAD (Technology Computer Aided Design).
Nowadays, two main methods exist to solve the BTE. The
first method consists in directly discretizing and solving
the BTE using standard numerical methods for differen-
tial equations [1,2]. The second, called the Monte Carlo
(MC) method, solves the BTE as being the stationary so-
lution of a stochastic differential equation. Advantages of
the first method are that the numerical error on the solu-
tion is mathematically assessable and that small signal and
RF-noise analysis can be performed directly. The disad-
vantage is that it requires a lot of memory and can only be
applied to small devices. The advantage of the MC method
is that it requires less memory and hence can be used to
solve the BTE in larger devices. Main disadvantages are
that the error on the solution is difficult to estimate and
that AC and RF-noise computations are laborious. Further-
more, the MC method is computationally very inefficient
in highly doped regions where low to medium field in-
tensities prevail, because of the very strong elastic scat-

tering rate. To try to compensate this handicap, a current-
based one-particle MC (CBOPMC) method has been pro-
posed [3,4]. The main idea of the CBOPMC method is
to use MC ”only” to extract transport parameters (TPs).
These TPs are then inserted in a generalized drift-diffusion
(GDD) equation where the solution variables are the elec-
trostatic potential and the quasi-Fermi potential. Therefore,
the CBOPMC method theoretically allows to use MC only
in regions where a semi-analytical solution of the BTE
does not exist, i.e. typically outside the highly doped re-
gions. Thus, if one could find a general way to localize re-
gions where MC is not needed and where a semi-analytic
solution exists, one could significantly improve the effi-
ciency and applicability of the CBOPMC method.

In a previous work [5], a method to solve the space-
homogeneous BTE in any order in the electric and mag-
netic field has been proposed. This method has been re-
cently extended to the space-inhomogeneous BTE [6]. It
allows to expand the distribution function to any order in
the gradient of the quasi-Fermi potential, the electric field,
and the magnetic field (i.e. to any order in the driving forces).
In the following it will be shown that using this method
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one can easily find a semi-analytical formula for the TPs
in second order in the driving forces (DFs). This formula
then enables to divide a device in regions where the MC
method is needed and in regions where a semi-analytical
expansion is sufficient.

Section 2 introduces the theory and the general formula
for the expansion of the solution of the space-inhomogeneous
BTE in a series in the DFs. In Section 3, the computation
of TPs will be explained and explicit formulas for the mo-
bility and the diffusivity will be given. Section 4 describes
how mobility and diffusivity, developed up to second or-
der, can be combined to produce a TCAD mobility model.
The results will be briefly discussed in Section 5.

2 Theory In Ref. [7] the existence and uniqueness of
an inverse of the scattering operator (ISO) of the BTE was
proven and the concept of moments of the ISO (MISO) was
introduced. Using the idea of MISO, the degenerate space-
homogeneous BTE can be solved iteratively in all orders
in the electric and magnetic field [5]. This idea has been
recently generalized to the space-inhomogeneous BTE [6].
For the seek of simplicity, only the non-degenerate case
without magnetic field will be considered here. In this case,
the following recursion relation is found [6]:

f(k, r) = n(r)
∞∑

l=0

∞∑
m=0

|hl,m〉

= n(r)heq(k)(1 +
∞∑

l,m=1

[
S−1

gl,m
(k, r) + αl,m(r)

]
), (1)

gl,m :=
q

heq
∇rφ

(
v(k)βhl−1,m (r, k) +

1
h̄
∇khl−1,m (r, k)

)

− q

heq
v(k)β∇rψhl,m−1 (r, k) , (2)

where β := 1/(kBT ), n(r) := exp(qβ(φ(r) − ψ(r))) is
the density, φ the electrostatic potential, ψ the quasi-Fermi
potential, heq := h0,0 is the equilibrium distribution func-
tion normalized by the density, and hl,m is the component
of the normalized distribution function h proportional to
(∇rφ)l(∇rψ)m. The αl,ms are normalization constants,
and the quantity S−1

gl,m
is the gl,m-MISO. The method is

recursive and the MISOs can be computed using a simple

iterative algorithm. Developing h up to second order gives

f(k, r) = n(r)heq(k)

(
1 + qβ

3∑
i=1

(∂ri
ψS−1

vi
(k))

)

+ n(r)heq(k)q2β

3∑
i,j=1

(∂ri
φ∂rj

ψΠi,j(k, r))

+ n(r)heq(k)q2β2
3∑

i,j=1

(∂riψ∂rj siΩi,j(k, r)), (3)

where Πi,j(k, r) and Ωi,j(k, r) are unequivocally defined
by (1) and (2). Their explicit forms are given in Ref. [6].
Equation (3) has three important properties. First, the ex-
pansion of f does not contain mere powers of the electric
field (i.e. terms proportional to only (∇rφ)i). Secondly,
terms of the order O((∇rφ)l(∇rψ)m) are proportional to
the inverse of the total scattering rate to the power l + m.
Therefore, the small parameters in the series are the gra-
dients of the potentials divided by the total scattering rate.
The higher the total scattering the faster the series (1) will
converge. Thirdly, there is a mixed term containing prod-
ucts of electric field times gradient of quasi-Fermi poten-
tial. This will be of importance in Section 4.

3 Transport parameters The theory exposed in the
previous section can now be used to compute TPs as func-
tion of the DFs. In [7] the diffusivity tensor D and the mo-
bility tensor µ are defined as:

Dij(r) = − 1
n(r)

∫
Bz

S−1
vi

(k, r)vj(k)f(k, r)d3k

= −
∫

Bz

S−1
vi

(k, r)vj(k)h(k, r)d3k, (4)

µij(r) = − q

n(r)h̄

∫
Bz

∂kj S
−1
vi

(k, r)f(k, r)d3k

= − q

h̄

∫
Bz

∂kj
S−1

vi
(k, r)h(k, r)d3k, (5)

where the integration domain Bz involves the first Bril-
louin zone and all bands. Inserting Eq. (3) into (5) and (4)
gives

Dij(r) = Deq
ij +

3∑
m,l=1

(∂rm
φ∂rl

ψM1
m,l,i,j(r))

+
3∑

m,l=1

(∂rmψ∂rl
ψM2

m,l,i,j(r)), (6)
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µij(r) = µeq
ij (r) +
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m,l=1
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φ∂rl

ψM3
m,l,i,j(r))

+
3∑

m,l=1

(∂rmψ∂rl
ψM4

m,l,i,j(r)) (7)

with the definitions

M1
m,l,i,j(r) :=

− q2β

∫
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− q3β
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The term of Eq. (3) linear in the quasi-Fermi poten-
tial always disappears for symmetry reasons. Equations (6)
and (7) are analytical expressions for the mobility and the
diffusivity as function of the gradients of the quasi-Fermi
potential and the electric field. The Ms

m,l,i,j only depend
on the scattering operator, the band structure, and the equi-
librium distribution function heq . They can, therefore, be
numerically computed using (3) together with the iterative
method to obtain the MISOs presented in [7] and can then
be stored in a table. Expressions (6) and (7) are good ap-
proximations for a given pair of driving forces as long as
the terms of second order are larger than the terms of fourth
order (the third order as well as all higher odd orders van-
ish because of symmetry reasons). For a given bias it is,
therefore, possible to divide a device in regions, where (6)
and (7) are valid, and regions where they fail, allowing to
restrict the CBOPMC method to the latter ones.

4 TCAD mobility and drift-diffusion model The
drift-diffusion transport model is a widely used tool in the
TCAD and compact modelling community. In this model,
the diffusivity is related to the mobility using the Einstein
relation leading to the current equation: J = −qn(r)µ∗∇rψ.
Inserting (6) and (7) into the drift-diffusion equation, using
the Einstein relation between Deq and µeq (which is exact
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Figure 1 Magnitude of the three coefficients contributing to µ∗
11.

in this case), and rearranging terms gives

µ∗
ij = µeq

ij −
3∑

a,b=1

∂ra
φ∂rb

phi(qβM1
ajib − M3

ajib)

+
3∑

a,b=1

∂ra
ψ∂rb

φ(M4
ajib + qβM1

ajib − qβM2
ajib)

+
3∑

a,b=1

∂ra
ψ∂rb

ψqβM2
abij . (8)

Eq. (8) is fundamental for at least three reasons. First, it
proves that as long as (6) and (7) are valid, the drift-diffusion
model is valid too, provided that µ∗

ij is modelled based on
Eq. (8). Secondly, it shows that in pn-junctions, µ∗ cannot
be parametrised using only one of the two DFs or using
only the mixed term as was recommended in [8]. Thirdly,
in pn-junctions the diagonal components of µ∗ cannot be
equal, in contrast to what is implicitly assumed when us-
ing a scalar mobility. To substantiate these claims, Fig. 1
gives the numerical values of the prefactors of the DFs for
the three last terms on the rhs of (8) for silicon using the
scattering model described in [5] (p.158–159). As one can
see, all have the same order of magnitude.

5 Conclusion A method using the concept of MISO
to solve the space-inhomogeneous BTE has been sketched.
This method can be advantageously used in device regions
of not too high DF intensities, which allows to replace the
MC method there. Furthermore, the validity of the pop-
ular TCAD mobility model must be questioned for pn-
junctions.
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