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An analytical model of the band gap narrowing �BGN� in silicon was derived from a
non-self-consistent finite-temperature full random-phase approximation �RPA� formalism.
Exchange-correlation self-energy of the free carriers and correlation energy of the carrier-dopant
interaction were treated on an equal basis. The dispersive quasi-particle shift �QPS� in RPA quality
was numerically calculated for a broad range of densities and temperatures. The dispersion was
found to be smooth enough for the relevant energies to justify the rigid shift approximation in
accordance with the non-self-consistent scheme. A pronounced temperature effect of the BGN only
exists in the intermediate density range. The contribution of the ionic part of the QPS to the total
BGN decreases from 1/3 at low densities to about 1/4 at very high densities. Based on the numerical
results, Padé approximations in terms of carrier densities, doping, and temperature with an accuracy
of 1 meV were constructed using limiting cases. The analytical expression for the ionic part had to
be modified for device application to account for depletion zones. The model shows a reasonable
agreement with certain photoluminescence data and good agreement with recently revised electrical
measurements, in particular for p-type silicon. The change of BGN profiles in a bipolar transistor
under increasing carrier injection is demonstrated. © 1998 American Institute of Physics.
�S0021-8979�98�06519-0�

I. INTRODUCTION

Heavy doping of certain regions in semiconductor de-
vices and/or large carrier concentrations due to optical exci-
tation or high electrical injection both result in a shrinkage of
the band gap. For the first case, the term ‘‘doping-induced
band gap narrowing �BGN�’’ came into use, in the second
case people often refer to ‘‘plasma-induced BGN.’’ As a
consequence of BGN, the effective intrinsic density can in-
crease by orders of magnitude. BGN has a strong impact on
device operation, in particular on the current gain of bipolar
transistors as shown in Fig. 1. Since in a bipolar transistor
the plasma-induced BGN is very nonuniform both across the
emitter-base junction and throughout the base, it affects the
barrier for minority carriers in the junction and also the ef-
fective drift field in the base. In Fig. 1 we compared common
empirical BGN models either based on ‘‘apparent’’ BGN
data, i.e., on electrical measurements of the pn product in
bipolar transistors �‘‘Slotboom,’’ 1–3 ‘‘del Alamo’’ 4–6� or on
absorption data �‘‘Bennett/Wilson’’ 7� with room-
temperature photoluminescence �PL� measurements by
Wagner.8–10 The simulated current gains of an npn transistor
with a peak emitter concentration of about 1020 cm�3 differ
largely when using one of these models, despite the fact that
all models predict a quite similar �Eg for this particular
density. The overestimation of the gain increases with the
underestimation of the BGN in the emitter, since the former
is proportional to nbase /pem�exp(��Eg /kBT).11 High injec-

tion levels giving rise to plasma-induced BGN also occur in
photoconductive switches, concentrator solar cells, and
power devices operated in the on-state.

In case of a neutral plasma we may distinguish between
two situations: a symmetrical electron-hole �e-h� plasma
�e.g., by laser excitation of intrinsic material� and a asym-
metrical e-h plasma �e.g., by laser excitation of doped mate-
rial, or more importantly, the heavily doped, neutral regions
of electronic devices�. In the second case, charge balance
involves electrically active dopants. Neugroschel et al.12

found evidence for e-h plasma densities up to 4
�1018 cm�3 in low-doped collector regions of silicon bipo-
lar transistors subjected to strong electrical excitation. In in-
terpreting their data they assumed an additional BGN of up
to 80 meV caused by the plasma. Banghart and Gray13

pointed out that the effective recombination lifetime ex-
tracted from open-circuit voltage decay data can be largely
reduced due to plasma-induced BGN. They fitted theoretical
results of Lowney14 by the expression �Eg ,e-h��n	 where
��3.83�10�7 meV cm3	 and 	�0.438 for densities n be-
tween 5�1016 and 8�1017 cm�3, and ��2.90
�10�5 meV cm3	 and 	�0.333 for densities n between 8
�1017 and 1�1019 cm�3. Another fit to the results of
Lowney was given by Shaheed and Maziar:15 �Eg ,e-h

�3.81�10�6n0.38 meV with the plasma density n in cm�3.
To avoid confusion with the term ‘‘doping-induced

BGN’’ when the plasma originates from a doped region, we
should point out that doping serves, first of all, as the source
of free carriers, i.e., as the source of plasma-induced BGN,
and secondarily it causes an additional BGN contribution by
the carrier-dopant interaction. The latter is very sensitive toa�Electronic mail: schenk@iis.ee.ethz.ch
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the density of the present asymmetrical plasma, which
screens the carrier-dopant interaction. Obviously, it is more
transparent to distinguish between the following two BGN
contributions: the exchange-correlation energy of the
carrier–carrier interaction, and the correlation energy of the
carrier-dopant interaction. In this article both contributions
will be treated on the same theoretical basis.

Earlier theoretical approaches to BGN were mostly re-
stricted to the T�0 limit. Mahan16 performed a Hartree-
Fock variational calculation of the ground state energy of the
electron-donor system in n-type silicon valid up to concen-
trations of 1020 cm�3 neglecting band tailing and assuming
that the donors are distributed on a regular fcc sublattice. The
hole and electron correlation energies were taken into ac-
count in the single plasmon pole �SPP� approximation.17

Berggren and Sernelius18 derived the self-energy of the
electron-donor interaction from second-order perturbation
theory for a random system of impurities. They included a
random-phase approximation �RPA� dielectric screening in
their T�0 calculation. The different treatment of the ar-
rangement of dopants resulted in a large difference of the
corresponding electron-ion self-energy contributions at high
densities. Berggren and Sernelius19 found that the model of
complete disorder produces a large shift even without the
inclusion of multivalley scattering in contrast to Selloni and
Pantelides,20,21 who obtained a negligible effect if multival-
ley scattering is omitted. Abram et al.22 calculated the
plasma-induced zero-temperature quasi-particle shift �QPS�
at the band extrema of n- and p-type silicon using the SPP
approximation including a q4 term in the plasmon dispersion
relation, which brings the accuracy close to that of the
Lindhard dielectric function.23 Logan and Egley24 obtained
the QPS for highly doped p-type silicon using band disper-
sions based on a 6�6 Hamiltonian and approximate self-
energies in a finite-temperature dielectric-response formal-
ism: a statically screened Hartree-Fock exchange potential
�which neglects dynamic screening and the ‘‘Coulomb hole
term,’’ i.e., the correlation part of the QPS� and the second-
order perturbation term of electron-impurity interaction (T
�0). Their results agreed quantitatively with the PL data by
Wagner for p-type silicon8,10 both at 20 and 300 K. An ac-
curate RPA expression for the QPS in a symmetrical e-h
plasma valid at all temperatures, was derived by
Zimmermann.25 The asymmetrical case �extrinsic semicon-
ductor with plasma excitation� had been worked out by Rös-
ler et al.26 They considered the ions as dynamic quantities

with infinite mass assuming complete disorder. Their nu-
merical results based on RPA were given for T�0 K only.

In this article we will follow the theoretical framework
of Zimmermann and co-workers.25–29 The very goal is to
derive a BGN model for silicon device simulation based on
the most sound theory which is capable to meet this goal.
Therefore, the non-self-consistent full RPA at finite tempera-
tures is applied to both the exchange-correlation self-energy
of the free carriers and the correlation energy of the carrier-
dopant interaction. Numerical results for the rigid band shifts
are then used to fit analytical expressions of the BGN as
function of carrier densities, doping, and temperature. The
dispersive QPS is also calculated for a variety of densities
and temperatures, but is not translated into a BGN model
because of the consistency between rigid shift approximation
and non-self-consistent RPA.

The article is organized as follows: Section II gives a
brief outline of the theory and presents numerical RPA re-
sults. Analytical fits for the rigid QPS in homogeneous sys-
tems are derived in Sec. III. In Sec. IV the BGN formulas are
modified for device simulation and compared against experi-
mental data there. We demonstrate the variation of the BGN
profile in a bipolar transistor under different injection condi-
tions. Finally, conclusions are given in Sec. V.

II. BASIC THEORY AND NUMERICAL RESULTS

In the electron-hole picture, with the reference state be-
ing the Hartree-Fock bands of the intrinsic, nonexcited crys-
tal at zero temperature, we restrict ourselves to the model of
parabolic bands Ea

0(k)�
2k2/2ma (a�e for electrons, a
�h for holes�. The multivalley conduction band, heavy and
light hole bands, and spin summation are condensed in de-
generacy factors ga (ge�12 for electrons, gh�4 for holes�.
The effective masses ma are understood as density of states
�DOS� effective masses (me�(mt

2ml)
1/3 for electrons, mh

��(m lh
3/2�mhh

3/2)/2�2/3 for holes�. Silicon parameters used in
the calculation are listed in Table I, where �* is the reduced
effective mass, �s the static dielectric constant, Ryex the ex-
citonic Rydberg, aex the excitonic Bohr radius, and �a

��*/ma . On the same level of approximation, Bloch states
in the intraband Coulomb matrix elements can be approxi-
mately treated as plane waves. The crude band model is jus-
tified by the experience that the sum of exchange and corre-
lation energy depends rather weakly on band-structure
details as valley degeneracy, mass anisotropy, and valence

FIG. 1. Empirical BGN models �left� in comparison with room-temperature photoluminescence data �stars� and the corresponding current gain simulations of
a bipolar transistor �right�.
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band coupling, mainly due to a compensation effect. This
was proven by RPA25 and fully self-consistent calculations.30

The quasi-particle shift �QPS� �a(k) is introduced as
difference between free and interacting dispersion25 �to sim-
plify the notation the vector character of momenta and coor-
dinates is not written explicitly, and the normalization vol-
ume V0 is set to unity�:

Ea�k ��
2k2/2ma��a�k �, �1�

where �a(k) is given by the real part of the self-energy at
‘‘frequency’’ Ea(k)�i0�,

�a�k ��Re a�k ,Ea�k ��i0�� . �2�

Obviously, Eq. �1� defines a self-consistent problem because
the quasi-particle energy Ea(k) enters the QPS. A self-
consistent RPA calculation at finite temperatures is outside
the range of practicability. A test calculation for one particu-
lar density, zero temperature, using the SPP approximation,
and including QP broadening by a complex QP energy was
presented by Zimmermann.25 The main findings were a
slight flattening of the QPS dispersion from zero wave vector
up to plasmon threshold with an almost unchanged value at
the Fermi momentum kFa and the disappearance of the sharp
spike defining the threshold for plasmon emission at T
�0 K. Therefore, dispersion effects are of minor importance
for energies below plasmon threshold, and the dispersive
QPS may be replaced by a rigid shift �a . This essentially
facilitates BGN modeling. However, instead of using �a(0),
the rigid shift is better fixed by the requirement that the QPS
density should not change in first order with respect to
�a(k)��a . The result is25

�a�
�k� f a�k �/��a Re a�k ,Ea�k ��i0��

�k� f a�k �/��a
�3�

with rigidly shifted bands Ea(k)�
2k2/2ma��a and Fermi
functions f a(k) depending on shifted chemical potentials
�a :

f a�k �� f �
2k2/2ma��a�, �a��a��a . �4�

The QP density in the rigid shift approximation is given by

na��
k

ga f a�k ��ga�a
�3F1/2�	�a� �5�

with the Fermi integral F1/2 , the thermal wavelength �a

�(2�
2	/ma)1/2, and 	�1/kBT .
The RPA self-energy at Matsubara frequencies za is a

convolution of screened potential and one-particle Green’s
function �‘‘w•G-approximation’’�

a�k ,za���
1

	 �
q�

w�q ,���Ga�k�q ,za����, �6�

where


za�
i�

	
�2n�1 ���a , n integer, �7�


���
i�

	
2� , � integer. �8�

For the one-particle Green’s function Ga , the QP form is
used:

Ga�k ,za��Ga
QP�k ,za��

1


za�Ea�k �
. �9�

w(q ,��) is the totally screened potential

w�q ,������1�q ,���v�q � �10�

with the bare potential v(q)�e2/(�0�sq
2). The inverse di-

electric function can be shown to factorize into an electronic
part �eh

�1 and an ionic part � i
�1 :

��1�q ,�����eh
�1�q ,���� i

�1�q ,���. �11�

Screening by the electron-hole system is described with the
RPA dielectric function

�eh�q ,����1�v�q ��
a ,k

ga

f a�k�q �� f a�k �

Ea�k�q ��Ea�k ��
��
,

�12�

which gives the electronically screened potential Vs :

Vs�q ,�����eh
�1�q ,���v�q �. �13�

The ionic part of the inverse dielectric function is related to
the position correlation function of the ionic distribution
gi(r1 ,r2). We assume a random arrangement on regular lat-
tice sites R j , which is considered the most realistic case for
a device model:

gi�r1 ,r2��� Ni

N � 2

�
j�l

��r1�R j���r2�Rl�

�
Ni

N � 1�
Ni

N ��
l

��r1�Rl���r1�r2�.

�14�

Here, Ni denotes the number of dopants and N the number of
lattice sites in the normalization volume. Using Eq. �14�, the
ionic part of the inverse dielectric function takes the form

� i
�1�q ,����1�	Vs�q ,0��� ,0Ni� 1�

2Ni

N �
�1�	Vs�q ,0��� ,0Ni , �15�

since Ni�N holds up to the highest doping densities. Insert-
ing w(q ,��) into a , the RPA self-energy decays into an
electronic part and an ionic part:

TABLE I. Silicon parameters used in the calculation.

me /m0 mh /m0 ge gh �*/m0 �e �h Ryex aex �s

0.321 0.346 12 4 0.1665 0.5187 0.4813 16.55 meV 37.19�10�8 cm 11.7

3686 J. Appl. Phys., Vol. 84, No. 7, 1 October 1998 Andreas Schenk



a�k ,za��a
xc�k ,za��a

i �k ,za� �16�

with

a
xc�k ,za���

1

	 �
q ,�

Vs�q ,���Ga
QP�k�q ,za����,

�17�

a
i �k ,za��Ni�

q
Vs

2�q ,0�Ga
QP�k�q ,za�. �18�

The total �dispersive� QPS then is obtained by

�a�k ��Re a
xc�k ,Ea�k ��i0���Re a

i �k ,Ea�k ��i0�� .
�19�

However, Matsubara sums or integrations over energy vari-
ables in the self-energy have to be performed prior to any
symbolic substitution za�i�/	(2n�1)��a→z�C. The
numerical evaluation of the formulas is based on the follow-
ing representation �Ref. 25, p. 53�, where an unscreened ex-
change term is extracted from a

xc :

�a�k ���a
x�k ���a

c�k ���a
i �k �, �20�

with

�a
x�k ���� d3q

�2��3 v�q � f a�k�q �, �21�

�a
c�k ���Re � d3q

�2��3 �Vs�q ,Ea�k�q ��Ea�k ��i0���v�q ��

�� f a�k�q �� f B�Ea�k�q ��Ea�k ��i0����
1

	
Re � d3q

�2��3 �
�

�Vs�q ,����v�q ��


���Ea�k ��Ea�k�q ��i0� , �22�

�a
i �k ���niRe � d3q

�2��3

Vs
2�q ,0�

Ea�k�q ��Ea�k ��i0� . �23�

Here, ni�Ni /V0 denotes the impurity concentration �dop-
ing� and f B(E)�1/�exp(	E)�1� the Bose distribution.
These equations have to be understood as first iteration of the
self-consistent problem, i.e., the QP energy in the r.h.s. must
be replaced by the dispersion of the noninteracting carriers.

Inspection of �a
c(k), �a

i (k), and the RPA dielectric
function �eh shows that in the rigid shift approximation the
QPS cancels in all energy differences Ea(k�q)�Ea(k) and
that only the Fermi functions depend on it via the Fermi
energy �a��a��a , which, however, is directly related to
the density na . Hence, there is no self-consistency problem
in the rigid shift approximation as already mentioned above.

Inserting �a(k) into the definition of the average rigid
shift �3� one obtains25,26

�a
x��

e2

4��0�s�a
F�1/2�	�a�, �24�

�a
c�

1

2	 � d3q

�2��3 �
�

��eh
�1�q ,����1�

��eh�q ,���

�na
,

�25�

�a
i ��

ni

2 � �na

��a
� �1� d3q

�2��3

v�q �

�eh
2 �q ,0�

��eh�q ,0�

��a
. �26�

These formulas were evaluated numerically in the density
range 1015– 1021 cm�3 and for temperatures between 0 and
1000 K. Some results are plotted in Figs. 2 and 3.

As shown in Fig. 2 the temperature dependence of the
average rigid shift �xc is only pronounced in the intermedi-
ate doping range. This is due to the fact that an almost com-

FIG. 2. Correlation part of the average QPS �e
c��h

c �left� and total average QPS �e
xc��h

xc �right� for a symmetrical e-h plasma as function of plasma density
and temperature.
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plete compensation of the temperature effects in �x and �c

takes place.28 In the high density range all curves merge with
the zero-temperature result. At room temperature, the T�0
limit becomes exact above 1019 cm�3. This may justify the
frequent restriction to the T�0 limit in the literature, which
suffices as long as only the heavy doping range matters.
However, around the Mott density the temperature depen-
dence cannot be neglected. If the carriers are not thermalized
with the lattice, the question arises, what temperature should
be assigned to electrons and holes, respectively. For a sym-
metrical e-h plasma, this question is difficult to answer, since
the e-h interaction has a share in establishing
quasi-equilibrium.25 Fortunately, in electronic devices the
presence of an e-h plasma caused by high injection goes
along with relatively weak internal fields. Thus, carrier heat-
ing is mainly a consequence of Joule heating, and the devia-
tion of the carrier temperature from lattice temperature is
small. Hence, identification of T with the respective carrier
temperature (Te or Th) seems to be a practicable way for
energy balance and hydrodynamic simulators.

Figure 3 shows the ionic part of the average QPS �e
i

�left� and �h
i �right� for neutral n- and p-type silicon, respec-

tively, as function of the activated doping concentration and
temperature. It is worth noting that strong screening makes
�a

i negligibly small under conditions of high injection.
The first iteration of the electronic part of the dispersive

QPS �e
xc(k) in RPA quality �Eqs. �21� and �22�� as function

of the normalized wave number kaex is presented in Fig. 4. A
similar picture is obtained for the hole part �h

xc(k). These
curves required computation times of the order of CPU
weeks on most advanced work stations, indicating that self-
consistent RPA calculations are still beyond the computa-
tional means. The striking feature at zero temperature is the
sharp downward spike located approximately at a wave num-
ber defined by the threshold for plasmon emission:25 Ee(k)
�Ee(kFe)�
�p (
�p is the plasmon energy�. This spike is
rapidly washed out as the temperature rises. Above this
threshold, the self-energy becomes complex and using a real
QP energy resulted in regular substructures at temperatures
below 10 K. For Fig. 4, these substructures were smoothed
out as it happens when QP broadening is included in a more
realistic calculation.25 Figure 4 proves the above stated weak
dispersion of �xc(k) for the entire n�T plane in the relevant
energy range �E(kFa)�
�p holds for all densities�. Again,
this is caused by a considerable compensation of the rather

strong individual dispersions of exchange part �x(k) and
correlation part �c(k), respectively.31

III. FIT FORMULAS FOR HOMOGENEOUS SYSTEMS

In order to derive an analytical BGN model for device
simulation we construct Padé approximations in a similar
way as in Refs. 28, 32, and 33. Compared to earlier papers
we are faced with two additional problems here: The most
frequent case in electronic devices is a strongly asymmetrical
plasma �heavily doped neutral regions�, which inhibits
simple fits of the form �a

xc��(ne�nh)1/4 proposed in Ref.
31 for the symmetrical plasma. �The exchange energy of the
minority carriers is zero in heavily doped regions, which
prevents a fit in terms of the sum ne�nh .) The second com-
plication for a device model arises from space charge re-
gions, where charge neutrality and screening by free carriers
are lost. Below, this problem will be discussed in more de-
tail.

For a fit of �a
xc , we use the symmetrical e-h plasma.

Approximations have to be based on the knowledge of ana-
lytical expressions in limiting cases �high density/low tem-
perature and low density/high temperature�. In the case of the
low-temperature correlation energy analytical results of the
SPP approximation can be quoted. In detail, we have in the
low density/high temperature limit:

FIG. 3. Ionic part �e
i �left� and �h

i �right� of the average QPS for neutral n- and p-type silicon as function of activated doping concentration and temperature.

FIG. 4. Dispersive QPS �e
xc(k) as function of normalized wave number

kaex and temperature for various densities of a symmetrical e-h plasma. The
arrows indicate the values of the respective Fermi momentum.
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�a
x�T→����� 8��a

ga
� na

T
, �27�

�a
c�T→�����8�n

T
� 1�ba

�n

T
�

��
�8�n /T

1�ba�n/T
, �28�

with T �kBT/Ry ex and n�ne�nh . In Eq. �28� the first
term is the classical Debye shift. Here and in the following
equations all densities are normalized by aex

�3 , and all ener-
gies by Ryex . The parameter ba will be used to fit the Padé
formula for the sum of exchange and correlation.

In the high density/low temperature limit the exchange
energy is given by

�a
x�T�0 ���� 48

�ga
� 1/3

na
1/3 . �29�

For the correlation part �a
c(T�0), we assume that it de-

pends on the densities via the plasmon energy 
�p

��16�np with np��ene��hnh . The SPP result �a
c(T

�0)���
�p was found to be unacceptable in this range.
Instead, we follow Refs. 28, 32, and 33 and use the logarith-
mic form

�a
c�T�0 ���ca ln�1�danp

pa� �30�

with fit parameters ca , da , and pa .
Combination of both limiting cases yields

�a
xc�ne ,nh ,T �

�
Uxc�ne ,nh ,T ��a

xc�0 ���a
x�����8�n /T

Uxc�ne ,nh ,T ��1�ba�n/T
, �31�

where the function Uxc(ne ,nh ,T) switches from the nonde-
generate region to strong degeneracy. The relevant expan-
sion parameter would be n̄a�na�a

3/ga for a one-component
plasma. Following Ref. 28 a quadratic dependence of Uxc on
n̄ is required. For simplicity of the final formula and based
on the best fit with our numerical results, we choose

Uxc�ne ,nh ,T ��Uxc�n ,T ��� 4�

T
� 3

n
2 . �32�

The final Padé approximation of �a
xc then reads

�a
xc�ne ,nh ,T ���

�4��3n
2 � � 48na

�ga
� 1/3

�ca ln�1�danp
pa���� 8��a

ga
� naT 2 ��8�nT 5/2

�4��3n
2 �T 3 �ba�nT 2 �40n

3/2
T

. �33�

The last term in the denominator was introduced in order to
improve the fit of the ‘‘swing-over’’ in the transition region,
where the behavior changes from a n1/2 dependence �Debye
limit� to an approximate n1/4 dependence. This term was
found superior to the logarithmic weakening proposed in
Ref. 28. Parameters are listed in Table II. In Fig. 5 we com-

pare the Padé approximation for �a
xc with the numerical RPA

results.
We now proceed with the ionic part �a

i assuming homo-
geneously doped and uncompensated material. The Debye
limit is easily obtained by inserting the Thomas-Fermi ap-
proximation of the static dielectric function into Eq. �26�:

�a
i �T→����ni

�2�

�T n

. �34�

Note that this is just one half of �a
c(T→�), if ni is replaced

FIG. 5. Average QPS �e
xc �left� and �h

xc �right� for a symmetrical e-h plasma as function of plasma density and temperature. Comparison between RPA results
�symbols� and Padé approximation Eq. �33� �lines�.

TABLE II. Parameters for Padé approximation Eq. �33�.

be bh ce ch de dh pe ph

8 1 1.3346 1.2365 0.893 1.153 7/30 7/30
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by n . As in the exchange-correlation case �compare Eq.
�28�� we add a correction term to extend the validity to
higher densities. The form

�a
i �T→����ni

�2�

�T n�1�ha�n/T �
�35�

with a fit parameter ha serves as starting point for the Padé
approximant of �a

i . In the high density/low temperature
limit we use the special SPP approximation by Thuselt,31

which gives the analytical result

�a
i �T�0 ���ni

0.799�a

np
3/4 . �36�

Again, the typical n1/4 dependence of the correlation energy
appears, if ni is replaced by the carrier density in a doped
region. Since the SPP approximation looses accuracy with
increasing density, we multiply np

3/4 by a correction term (1
�kanp

qa) with fit parameters ka and qa . Combining both
limiting cases yields

�a
i �ni ,ne ,nh ,T ���

ni�1�Ui�n ,T ��

�T n/2��1�ha ln�1��n/T ��� jaUi�n ,T �np
3/4�1�kanp

qa�
, �37�

where the function Ui(n ,T ) switches from the nondegen-
erate region to strong degeneracy. Based on the best fit with
our numerical results we use

Ui�n ,T ��
n

2

T 3 �38�

here. A logarithmic weakening was introduced in the correc-
tion term of the Debye limit. The four parameters ha , ja ,
ka , and qa are listed in Table III. In Fig. 6 the Padé approxi-
mation for �a

i is compared with the numerical RPA results.
The absolute accuracy of the Padé formulas is about 1 meV
for both �a

xc and �a
i , which is reasonable considering the

approximations discussed so far and in the following. In Fig.
7 we demonstrated the relative contribution of the ionic part
�e

i ��h
i to the total BGN for neutral, uncompensated silicon.

This contribution decreases from 1/3 at low densities to
about 1/4 at extremely high densities. In the Debye limit the
ratio is exactly 1/3 as described above.

FIG. 6. Ionic QPS part �e
i in neutral n-type silicon �left� and �h

i in neutral p-type silicon �right� as function of density and temperature. Comparison between
RPA results �symbols� and Padé approximation Eq. �37� �lines�.

FIG. 7. Relative contribution of the ionic QPS to the total BGN in neutral
n-type �circles� and neutral p-type silicon �squares� as function of density
and temperature �Padé approximations used�.

TABLE III. Parameters for Padé approximation Eq. �37�.

he hh je jh ke kh qe qh

3.91 4.20 2.8585 2.9307 0.012 0.19 3/4 1/4
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IV. APPLICATION TO DEVICE SIMULATION

A. Simplifications

In modern devices the doping and carrier concentration
profiles may be very steep. The pn-junction of silicon tunnel
diodes or the emitter-base junction of modern bipolar tran-
sistors have a typical width of 50 nm only �compare Fig. 12�.
The question arises to which extent the RPA theory of a 3D
homogeneous system can be applied to such situations. Zim-
mermann et al.34 showed that the RPA can be well extended
to the calculation of band shifts in quantum wells with a
width down to 10 nm. Here, BGN occurs as nondiagonal
matrix problem in the confinement functions and strongly
depends on the occupation of sublevels. As a general result,
the spatial variation of BGN turned out to be less pro-
nounced from a RPA than from a LDA calculation.

Since the correlation radius is approximately given by
the screening length, spatial variations in the device should
be smooth when compared against the latter. In practice, this
condition is often violated. In a metal–oxide–semiconductor
field effect transistor �MOSFET� channel the screening
length has about the extension of the inversion layer, if the
surface concentration is used for the most favorable estimate
in a classical calculation. Taking this value to determine the
local BGN at the interface would certainly grossly overesti-
mate the effect there. The problem of the locality of the BGN
is comparable to all other situations where local quantities
are used in device simulation, although a finite volume is
necessary for their definition �carrier temperature, effective
mass, etc.�.

An even more serious problem is caused by the loss of
local charge neutrality. Bennett and Lowney35 noticed that
the lack of screening produces a large carrier-impurity con-
tribution to the BGN in depletion regions. Although their
theoretical framework36 is somewhat different from our RPA
result Eq. �26�, the effect occurs in both approaches and has
the same origin: the small value of the free carrier densities
in the dielectric screening function. The question arises
whether a huge BGN effect can be expected in SCRs. Many-
body calculations of the QPS are based on overall charge
neutrality. First-order Coulomb terms cancel each other, oth-
erwise, they represent the band bending. Another conse-
quence is the cancellation of the different Hartree terms in
the denominator of the QP Green’s function Eq. �9�. Within
a SCR the sum of these terms would become very large
making �a

i negligibly small. Hence, the divergent behavior
of �a

i given in Eq. �26� appears as simply being due to its
inadequate usage in depletion zones. Furthermore, it is clear
that the RPA fails for low concentrations even in neutral
regions of a device. Only if strong screening causes the im-
purity levels to merge with the band states, i.e., to turn into
scattering states, it can yield usable results. In neutral re-
gions, this is the case for densities larger than a few times
1018 cm�3 �Refs. 37, 38�, whereas lower densities, in prin-
ciple, require a numerical solution of Dyson’s equation
�Klauder,39 Serre and Ghazali40�.

A BGN model for device simulation has to work every-
where in a device, including the SCRs. To overcome the
divergency problem we decided for a crude but workable

solution. We replace the carrier densities by the respective
doping densities in Eq. �37�, i.e.,

n→ND�NA , np→�eND��hNA , �39�

and ni→ND�NA . In neutral and uncompensated regions of
a device, the result is the same as from the application of Eq.
�37�. In SCRs a certain finite rigid shift contribution is arti-
ficially produced. Its size is comparable to the band tails that
have been studied by many authors ignoring exchange-
correlation effects. Approximations leading to Gaussian sta-
tistics for the potential fluctuations generally require high
doping levels �high-density limit�.41 Van Mieghem et al.42

modeled the effect of band tailing for a noninteracting sys-
tem as an equivalent downward shift of the Fermi level. In
the high-density limit and calculating screening with the un-
perturbed DOS, an analytical expression was derived, which
can be rewritten as �EF��0.62ni

7/24 �in units of Ryex). For
silicon, this shift amounts about 15–35 meV in the density
range 3�1019– 1�1021 cm�3.

B. Comparison with experimental data

Both optical and electrical experiments require a sophis-
ticated evaluation procedure of the measured data. In the
case of absorption measurements, the measured quantity is
the total absorption coefficient �. Absorption by free carri-
ers, either measured or calculated using values for the free
carrier density, the effective mass, and the mobility, has to be
subtracted from the latter. Here, interconduction band transi-
tions peaked at around 0.54 eV give rise to additional prob-
lems in extracting the absorption edge of the valence-to-
conduction band transitions. � is then interpreted as
consisting of a phonon contribution to indirect transitions
and a part due to impurity or electron–electron scattering.
The model for each contribution contains one unknown pa-
rameter. For the first contribution, this parameter is found by
the measurements of the absorption in pure silicon and in-
serting a certain value for the phonon energy into the model
�typically 50 meV�. The second parameter together with the
value of the indirect gap are adjusted for the best fit to the
experimental data. Both models contain the Fermi level,
which is commonly calculated with the ideal DOS. The cru-
cial points in finding the gap in absorption experiments are
the appropriate admixture of phonon-assisted transitions, the
value of the phonon energy, and the extracted Fermi level. In
PL experiments the knowledge of the true initial states
�bound, exciton or band� is needed. The spectrum is blurred
and weak in intensity. However, in PL measurements there is
no overlap with intraband transitions. Furthermore, they al-
low a fairly unambiguous extraction of the Fermi level as
compared to absorption measurements.

In Fig. 8 we compared our model with optical BGN
measurements in n-type silicon �left part� and p-type silicon
�right part�, respectively. Data points are from Aw et al.43

�transmission�, Balkanski et al.44 �transmission�, Daub and
Würfel45 �PL�, del Alamo et al.46 �IR photoresponse of solar
cells�, Lanyon et al.47 �IR photoresponse of transistor�,
Schmid48 �transmission�, Volf’son and Subashiev49 �photo-
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conductivity�, and Wagner9 �PL�. Our model shows a fairly
good agreement with the PL data by Wagner, in particular
for p-type silicon.

The electrical method is based on a measurement of the
quantity �Bni

2 in a bipolar transistor and on the relation
�Bni

2�ICcB /(AEkBT), where IC is the collector saturation
current, AE the emitter area, cB the total number of majority
carriers per cm2, respectively, and ni

2 is replaced by the pn
product in the base. The measured quantities are the collector
current as function of the emitter-base voltage �from which
IC is derived�, the sheet resistance underneath the emitter
�from which cB is found�, and the minority carrier mobility
�B in the base. The above formula only holds, if the device
is 1D-like, homogeneously doped, if the depletion approxi-
mation can be applied, and if recombination in the base can
be neglected. Since electrical data contain anything not con-
sidered in an analytical or numerical transistor model �in-
cluding degeneracy effects�, the term ‘‘apparent’’ BGN came
into use.

Figure 9 shows the comparison with electrical �‘‘appar-
ent’’� BGN data in n-type silicon as originally published �left
part� and as revised by del Alamo and Swanson6 with respect
to mobility models and intrinsic density parameters �right
part�. Data points are from Abdurakhmanov et al.50 �differ-
ential conductance of Si-Sn tunnel diodes�, Mertens et al.51

�dc measurements of n�p diodes�, Neugroschel et al.52 �dc
measurements of n�p diodes and n�pn transistors�, Tang,53

Wieder,54 Wulms55 �all from IC in bipolar transistors�, del
Alamo and Swanson6 �diffusion length, lifetime, and equilib-
rium density measurements in various npn transistor struc-

tures�, and Possin et al.56 (pn product in epitaxially grown
bipolar transistors as a function of temperature�. There is a
remarkable agreement between the revised data points and
our model in the density range 6�1018 to 1�1020 cm�3. A
distinct misfit exists around n�1018 cm�3, where the mea-
sured BGN almost vanishes.

Figure 10 shows the comparison with electrical �‘‘appar-
ent’’� BGN data in p-type silicon as originally published
�left part� and as revised by Klaassen et al.1 in their ‘‘unified
apparent bandgap narrowing for n- and p-type silicon’’
�right part�. The original data points are from King and
Swanson57 �effective lifetimes in diffused emitters�, Slot-
boom and de Graaff2 �mobility and current gain in various
npn transistors at various temperatures�, Swirhun et al.58

�diffusion length, minority carrier lifetime, and collector
saturation current�, and Tang53 �collector current of bipolar
transistor�. Revised data for n- and p-type silicon include
results from Klaassen et al.,1 Ghannam,59 Mertens et al.,51

Neugroschel et al.,52 Possin et al.,56 Slotboom and de Graff,2

Swirhun et al.,58 and Wieder.54 A good agreement between
the revised experimental data and our model is observed for
all densities.

Finally, we depict the carrier-impurity contribution to
the band shifts in depletion regions in Fig. 11 as it turns out
from the above discussed crude approximation. Also shown
are the effective band shift due to the tail model of Van
Mieghem et al.,42 and the �Eg extracted from CV measure-
ments on heavily doped diodes by Bennett and
Lowney.35,60,61 This �Eg was obtained by the difference be-

FIG. 8. Comparison with optical BGN measurements in n-type �left� and p-type �right� silicon, respectively.

FIG. 9. Comparison with electrical �‘‘apparent’’� BGN data on n-type silicon. As originally published �left� and revised by del Alamo et al. �Ref. 6� �right�,
respectively.
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tween theoretical and observed intercept voltage in a plot of
the inverse capacitance cubed vs voltage.

C. BGN profiles in a bipolar transistor

Figure 12 demonstrates the application of the BGN
model to a n�pn transistor under increasing emitter-base
voltage VBE . All density profiles were obtained by a 1D cut
through a 2D device simulated with the drift-diffusion mode
of the device simulator DESSIS�ISE .62 In the depletion zone
of the emitter-base junction there is a residual BGN of about
10 meV at zero bias, which forms a dip because of the rela-
tively high base doping level. As the depletion region is
flooded by carriers with rising VBE , the BGN dip is washed
out as a consequence of the increasing contribution of
exchange-correlation to BGN. In contrast, heuristic models
which only depend on the doping concentration, are indepen-
dent of the injection conditions. For comparison, we in-
cluded the profiles of the del Alamo model (n type4� and the
Klaassen model �unified63�. Two systematic failures are evi-
dent when applying heuristic models as function of only the
doping: First, BGN is overestimated in depletion zones,
since these models were derived from neutral regions. Sec-
ondly, using models for n- and p-type material simulta-
neously in compensated regions of a device will overesti-

mate BGN, too. In the above example this would be the case
in the emitter due to its relatively high acceptor level.

V. CONCLUSIONS

We derived an analytical BGN model for silicon device
simulation from a non-self-consistent finite-temperature full
RPA calculation. The correlation energy of the carrier-
dopant interaction was treated in the same manner as the
exchange-correlation self-energy of the free carriers, assum-
ing a random distribution of dopants on regular lattice sites.
In order to prove whether the rigid shift approximation has a
sound basis the dispersive exchange-correlation part of the
QPS was numerically calculated in RPA quality in the den-
sity range 1017– 1020 cm�3 and for temperatures between 0
and 1000 K. The dispersion is flat for the relevant energies at
all temperatures, and the sharp downward spike representa-
tive for the threshold of plasmon emission is quickly washed
out as the temperature increases. The rigid shift approxima-
tion is consistent with the non-self-consistent RPA scheme.
Conversely, if the dispersion is considered important, then
also the QPS should be calculated self-consistently, which
however is beyond todays computational means. Self-
consistent results for T�0 have revealed a similar deviation
between rigid and dispersive shift as between non-self-
consistent and self-consistent approach, respectively. The flat
dispersion is the result of a compensation of the strong indi-
vidual dispersions of exchange part �x(k) and correlation
part �c(k). A similar compensation effect leads to a pro-
nounced temperature dependence of the BGN only in the
intermediate concentration range around the Mott density. At
room temperature, the T�0 limit becomes valid above den-
sities of 1019 cm�3. The contribution of the ionic part � i of
the QPS to the total BGN decreases from 1/3 at low densities
to about 1/4 at very high densities. Strong screening makes
� i negligibly small under conditions of high injection.

Based on the numerical results for �xc and � i, Padé
approximations in terms of carrier densities, doping, and
temperature with an accuracy of 1 meV were constructed.
For this, we used the limiting cases of high density/low tem-
perature and low density/high temperature and the special
cases of a symmetrical e-h plasma without doping and of
doped, uncompensated silicon without excitation, respec-
tively. In device application two major problems occur: spa-

FIG. 10. Comparison with electrical �‘‘apparent’’� BGN data on p-type silicon. As originally published �left� and revised by Klaassen et al. �Ref. 1� �right�,
respectively.

FIG. 11. Carrier-impurity contribution to the band shifts in depletion re-
gions from the presented BGN model �solid and dashed lines�, from the tail
model of Van Mieghem et al. �Ref. 42� �dot-dashed line�, and the �Eg

extracted from CV measurements on heavily doped diodes by Bennett and
Lowney �Refs. 35, 60, 61� �symbols�.
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tial variations that are not slow compared with the correla-
tion length, and SCRs. The former hampers the application
to, e.g., a quasi-2D carrier gas in a MOSFET channel even
when the confinement of states is disregarded. Depletion
zones highlight the band bending in � i and make its formal
contribution to BGN divergent as a consequence of the huge
screening radius in the dielectric function. An artificial cut of
the screening radius, e.g., by the adjustment of an ‘‘ion tem-
perature’’ �Stern64� was rejected, because the derivation of
� i was based on local charge neutrality and because the RPA
fails for localized states in an unscreened dopant-carrier po-
tential. Instead, a crude solution for device modeling was
preferred, where the carrier densities in � i were replaced by
the respective concentrations of dopants. This leaves the re-
sult in neutral, uncompensated regions unchanged and gives
an artificial rigid shift in SCRs which is comparable in size
with the band tails caused by local potential fluctuations.
Compared to experimental data, the device model shows a
reasonable agreement with certain PL data and a good agree-
ment with recently revised electrical measurements, in par-
ticular for p-type silicon. To demonstrate the dependence on
carrier densities, BGN profiles in a bipolar transistor were
simulated for increasing injection into the base. Significant
differences to heuristic models which only depend on the
doping are observed.

ACKNOWLEDGMENTS

The author is indebted to Dr. G. Heiser �UNSW Sydney�
who implemented the model into the device simulator
DESSIS�ISE and to Dr. P. Altermatt �UNSW Sydney� who
allowed the author to use his complete BGN data collection.
The author appreciates extremely valuable discussions with
Professor R. Zimmermann �HU Berlin� and Dr. P. E. Selb-
mann �EPFL Lausanne�.

1 D. B. M. Klaassen and J. W. Slotboom and H. C. de Graaff, Solid-State
Electron. 35, 125 �1992�.

2 J. W. Slotboom and H. C. de Graaff, Solid-State Electron. 19, 857 �1976�.
3 J. W. Slotboom and H. C. de Graaff, IEEE Trans. Electron Devices 24,
1123 �1977�.

4 J. A. del Alamo, S. E. Swirhun, and R. M. Swanson, Solid-State Electron.
28, 47 �1985�.

5 J. A. del Alamo and R. M. Swanson, IEEE Trans. Electron Devices 34,
1580 �1987�.

6 J. A. del Alamo and R. M. Swanson, Solid-State Electron. 30, 1127
�1987�.

7 H. S. Bennett and C. L. Wilson, J. Appl. Phys. 55, 3582 �1984�.
8 J. Wagner, Phys. Rev. B 32, 1323 �1985�.
9 J. Wagner, Solid-State Electron. 30, 1117 �1987�.

10 J. Wagner and J. A. del Alamo, J. Appl. Phys. 63, 425 �1988�.
11 S. M. Sze, Physics of Semiconductor Devices, 2nd ed. �Wiley, New York,

1981�.
12 A. Neugroschel, J. S. Wang, and F. A. Lindholm, IEEE Electron Device

Lett. 6, 253 �1985�.
13 E. K. Banghart and J. L. Gray, IEEE Trans. Electron Devices 39, 1108

�1992�.
14 J. R. Lowney, J. Appl. Phys. 66, 4279 �1989�.
15 M. Reaz Shaheed and C. M. Maziar, Solid-State Electron. 37, 1589

�1994�.
16 G. D. Mahan, J. Appl. Phys. 51, 2634 �1980�.
17 B. I. Lundqvist, Phys. Kondens. Mater. 6, 193, 206 �1967�.
18 K.-F. Berggren and B. E. Sernelius, Phys. Rev. B 24, 1971 �1981�.
19 K.-F. Berggren and B. E. Sernelius, Phys. Rev. B 29, 5575 �1984�.
20 A. Selloni and S. T. Pantelides, Phys. Rev. Lett. 49, 586 �1982�.
21 S. T. Pantelides, A. Selloni, and R. Car, Solid-State Electron. 28, 17

�1985�.
22 R. A. Abram, G. N. Childs, and P. A. Saunderson, J. Phys. C 17, 6105

�1984�.
23 L. Hedin and S. Lundqvist, Solid State Phys. 23, 1 �1969�.
24 L. R. Logan and J. L. Egley, Phys. Rev. B 47, 12532 �1993�.
25 R. Zimmermann, Many Particle Theory of Highly Excited Semiconductors

�BSB Teubner Verlagsgesellschaft, Leipzig, 1988�.
26 M. Rösler, F. Thuselt, and R. Zimmermann, Phys. Status Solidi B 118,

303 �1983�.
27 H. Stolz and R. Zimmermann, Phys. Status Solidi B 94, 135 �1979�.
28 M. Rösler, R. Zimmermann, and W. Richert, Phys. Status Solidi B 121,

609 �1984�.
29 R. Zimmermann and H. Stolz, Phys. Status Solidi B 131, 151 �1985�.
30 P. Vashishta and R. K. Kalia, Phys. Rev. B 25, 6492 �1982�.
31 F. Thuselt, Phys. Lett. A 94, 93 �1993�.
32 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 �1957�.
33 W. Ebeling, W. Richert, W. D. Kraeft, and W. Stolzmann, Phys. Status

Solidi B 104, 193 �1981�.
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