Eidgendssische Ecole polytechnigue fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo

Ztirich Swiss Federal Institute of Technology Zurich

Institut fur Integrierte Systeme Integrated Systems Laboratory

Charge Carrier Quantization Effects in
Double-Gated SOI MOSFETs

Andreas Wettstein, Andreas Schenk, Andreas Scholze,
Gilda Garreton, and Wolfgang Fichtner

Technical Report No. 97/6
October 1997

Abstract

Double-gated SOI devices are widely recognized as candidates for fur-
ther down-scaling of MOSFETs. It has been suggested to reduce their
low sensitivity to short channel effects even further by using differently
doped front and back poly gates [1]. Here, we numerically investigate the
influence of charge carrier quantization on the threshold voltage in these
narrow channel devices comparing equally against differently doped poly
gates.
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1 Introduction

Quantum-mechanically, carriers are not point particles but waves of some nonzero extension. If
device dimensions are scaled down to lengths comparable to this extension, the wave nature of
the carriers cannot be neglected anymore as is done in classical device simulations by using a
local relationship between density, quasi Fermi potential, and electrostatic potential. In silicon
the wavelength of an electron of room temperature kinetic energy is about 8nm (assuming
motion along the longitudinal axis of the cigar-shaped isoenergy surface). Thus, for ultra-thin
SOI MOSFETs like the double-gated device sketched in Fig. 1, quantization has to be taken
into account.
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Figure 1: Model of the double gated SOI MOSFET used in our calculations.

Due to the wave nature of the carriers, the density at the oxides does not jump from some
finite value to zero at once, but changes more slowly. This leads to a modified charge distri-
bution that is shifted away form the oxides, and depends on the potential in a nonlocal way.
Additionally, and most importantly, because of the extension of the wave, a carrier cannot reside
precisely in the minimum of the potential, but also “feels” the higher potential in the neighbor-
hood. Therefore, the energy will be larger than expected classically, and thus the charge density
will be lower. The modified charge density will act back on the potential. At the same gate
voltage the classical theory overestimates the density (see Figs. 2 and 3). To reproduce this
density, the gate voltage must be significantly higher than expected classically. In the simula-
tions of the IV characteristics this shows up as an increase in the threshold voltage (see Figs. 4
and 5).



2 Physical model

2.1 1D Schroédinger equation in effective mass approximation

In direction perpendicular to the Si-SiOs interfaces, the carriers are described by a one dimen-
sional Hamiltonian in effective mass approximation,
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v labels the various conduction or hole band valleys. The potential V' is the sum of the elec-
trostatic potential and the band edge energies of the material. The former has to be calculated
self-consistently from the charge density.

Y(z) is the effective mass component for motion in z-direction. For electrons in Si it is

given by

m
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where the m} are effective masses on main axes and z; are components of the unit vector €,
pointing in z-direction. The numerical values taken for m} are the ones proposed by Green [2].
For holes, we consider a heavy and a light hole band and use the formula for the warped energy
surfaces of holes,

1/mb" = 1/mb (2,) = A+ /B2 + C2(232} + 2323 + 2320), (3)

where we use the parameters given by Lawaetz [3].

The 1D treatment is adequate as long as the changes in the other directions occur on length
scales larger than the phase coherence length of the carriers, which is about 20 nm for electrons
in Si at 300K [4].

In our 1D treatment, the system is assumed to be homogeneous in the zy-plane. Still, m,
and m, are functions of z. Handling this dependence correctly requires an additional potential
term in Eq. (1) that depends on z and the momentum py, in the zy-plane. We neglect the
z-dependence of this term. As the value of the wave function in the oxides is small, this
approximation will not affect the eigenenergies and the wave functions in the silicon region too
much.

2.2 Computing the charge density

Having obtained all 4,4, eigensolutions HYWY = EW} up to an energy E,,q, for all valleys, the
quantum-mechanical contribution to the charge density (using Maxwell statistics) is computed
as
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For Fermi statistics, exp x is replaced by log [l + exp z]), where E; is the quasi Fermi potential
g f

and mz, = \/mZmy is the effective mass for the motion in the zy-plane. For electrons, the

latter can be computed analogous to m” in Eq. (2). For holes, we apply
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with the functions m"" (¢,) given by Eq. (3). The parameters used in Eq. (3) are intended for

T = 0. Due to the very strong non-parabolicity of the hole bands, the density of state mass
computed from these parameters is much smaller than the value for T = 300 K. Therefore, we
set
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where mpog is the temperature dependent density of states mass for holes [5]. In the classical
limit (flat bands), this ensures similarity of the quantum-mechanical solution and the solution
provided by a classical simulation.

Eq. (4) does not take into account any density contributions of states above Ej,q,. For these
states, we add a classical density correction

kTmY, /2mY
nadd (Emam) — Z Ty z

K372

VETT Erox — Epe <Ef — Ebe)
exp +

5 erfe kT kT

v

Er—F,
V Emam - Ebe €xp <w>

kT

for Epaz > Fpe, where Ey, is the energy of the band edge. For E,,4; = Fje, the formula reduces
to the classical formula for the density, which can also be used for E, .. < Epe-

To feed the Schrodinger results back to the classical device simulator, we introduce a “quan-
tum intrinsic density”, separately for electrons and holes,
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where n; is the classical effective intrinsic density, and ng, and n. are the carrier densities
computed quantum-mechanically and classically, respectively, for the same quasi Fermi potential
and electrostatic potential. The quantum intrinsic densities replace the intrinsic density in
various places. This method is conceptually the same as the one used by van Dort et al. [6],
who modified n; directly. Changing n; directly keeps changes to the existing code to a minimum.
On the other hand, introducing distinct quantum intrinsic densities for electrons and holes is
more flexible and allows to treat both electrons and holes quantum-mechanically at the same
time.

3 Numerical procedure

We solve the eigenvalue problem HV¥ = EW by guessing some value for £ and inserting it in
the Schrodinger equation, thereby reducing it to a second order ordinary differential equation



(ODE). We impose boundary conditions for the wave function and its derivative at both ends of
the 1D Schrodinger region and try to solve the ODE. If we can fulfill the boundary conditions,
E really was an eigenenergy. Otherwise, we have to make a new guess.

We solve the ODE by approximating the solution by the analytic solution for piecewise
constant potential, i.e. in the interval ¢ with potential V;, the wave function is approximated by

sin (k;z)

U(z) = A . + Bjcos (k;z) ,

where

ki = +\/2m; (E —V;)/h?.

The coefficients A; and B; are chosen to match the boundary conditions and the continuity
conditions

\I/(ZZ + 0) = \I/(Zl — 0), (5)
\I/,(ZZ' + 0)/mz = \I/,(ZZ' — 0)/mi_1 (6)

for all points z; at the boundary between two intervals.

We solve the ODE separately on two halves of our Schrodinger region and try to join these
solutions using Eq. (5) and Eq. (6). The wave function can always be matched by rescaling
one of the partial solutions. By perturbation theory it can be seen that the mismatch in the
derivatives gives us a correction to our estimated value for the eigenenergy, which can be used
to make a better guess in the next iteration [7].

4 Simulation results for double gated SOI MOSFETs

The above described model was integrated in the device simulator DESSIS js5 [8]. We performed
calculations for NMOS and PMOS SOI MOSFETs and compared the classical and quantum-
mechanical threshold voltages. The model device sketched in Fig. 1 and a similar PMOS device
were used assuming a gate length of 50 nm and an oxide thickness t,; =3 nm.

To investigate the impact of the poly gate doping on the magnitude of the quantization
effect, we performed calculations both for equally doped gates and for differently doped gates.
The results are shown in Figs. 4 (for electrons) and 5 (for holes). It is seen that the difference
of the threshold voltage determined classically and quantum-mechanically is larger for the case
with differently doped gates than for the case with equally doped gates. This is caused by the
additional confinement due to the built-in potential resulting from the work function difference
between the differently doped gates (Figs. 2, 3). The large shift between the two groups of
curves is caused by the different mean work function and is not considered here.

Comparing Fig. 4 with Fig. 5, we also see that quantization affects holes more strongly than
electrons for the {100} substrate orientation we used. This comes from the large effective mass
of the two conduction band valleys perpendicular to the Si-SiOs interface. This large effective
mass leads to a low kinetic energy (first term on the right hand side of Eq. (1)) and therefore
to a dominant contribution to the density.

Finally, due to a stronger confinement, quantization is also the more important the thinner
the Si layer gets (Fig. 6).
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Figure 2: Hole density and electrostatic potential for a device with two p™-poly gates (foz
3nm, tg; = 5nm, N4 = 10" em 3, T=300 K, substrate orientation {100})
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Figure 3: As Fig. 2, but for device with one n™ and one p*-gate.
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Figure 4: TV characteristics of an NMOS device computed quantum-mechanically and classically
for equally and differently doped poly gates. Gate width is 1um, all other parameters as in Fig.
2
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Figure 5: Similar to Fig. 4, but for PMOS device.
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Figure 6: IV characteristics for NMOS devices with different ¢g;. Other parameters as in Fig 2.



5 Summary

We have studied the charge carrier quantization effects in double gated SOI MOSFETs. Quan-
tization leads to a considerable shift in the threshold voltages. The magnitude of the shift is
not only a function of the silicon layer thickness, but also of carrier type and the doping of the
poly gates. Specifically, the quantization effects are larger for holes than for electrons and also
more pronounced for differently doped gates than for equally doped gates. Thus, an accurate
model describing the effects of quantization must include all these effects.
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