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Abstract

Double
gated SOI devices are widely recognized as candidates for fur

ther down
scaling of MOSFETs� It has been suggested to reduce their
low sensitivity to short channel e�ects even further by using di�erently
doped front and back poly gates �	
� Here� we numerically investigate the
in�uence of charge carrier quantization on the threshold voltage in these
narrow channel devices comparing equally against di�erently doped poly
gates�
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� Introduction

Quantum
mechanically� carriers are not point particles but waves of some nonzero extension� If
device dimensions are scaled down to lengths comparable to this extension� the wave nature of
the carriers cannot be neglected anymore as is done in classical device simulations by using a
local relationship between density� quasi Fermi potential� and electrostatic potential� In silicon
the wavelength of an electron of room temperature kinetic energy is about � nm �assuming
motion along the longitudinal axis of the cigar
shaped isoenergy surface�� Thus� for ultra
thin
SOI MOSFETs like the double
gated device sketched in Fig� 	� quantization has to be taken
into account�
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Figure 	� Model of the double gated SOI MOSFET used in our calculations�

Due to the wave nature of the carriers� the density at the oxides does not jump from some
�nite value to zero at once� but changes more slowly� This leads to a modi�ed charge distri

bution that is shifted away form the oxides� and depends on the potential in a nonlocal way�
Additionally� and most importantly� because of the extension of the wave� a carrier cannot reside
precisely in the minimum of the potential� but also �feels� the higher potential in the neighbor

hood� Therefore� the energy will be larger than expected classically� and thus the charge density
will be lower� The modi�ed charge density will act back on the potential� At the same gate
voltage the classical theory overestimates the density �see Figs� � and ��� To reproduce this
density� the gate voltage must be signi�cantly higher than expected classically� In the simula

tions of the IV characteristics this shows up as an increase in the threshold voltage �see Figs� �
and ���

	



� Physical model

��� �D Schr�dinger equation in e�ective mass approximation

In direction perpendicular to the Si
SiO� interfaces� the carriers are described by a one dimen

sional Hamiltonian in e�ective mass approximation�

H� � � �

�z

�h�

�m�
z �z�

�

�z
� V �z�� �	�

� labels the various conduction or hole band valleys� The potential V is the sum of the elec

trostatic potential and the band edge energies of the material� The former has to be calculated
self
consistently from the charge density�

m�
z�z� is the e�ective mass component for motion in z
direction� For electrons in Si it is

given by
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where the m�
i are e�ective masses on main axes and zi are components of the unit vector �ez

pointing in z
direction� The numerical values taken for m�
i are the ones proposed by Green ��
�

For holes� we consider a heavy and a light hole band and use the formula for the warped energy
surfaces of holes�
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where we use the parameters given by Lawaetz ��
�

The 	D treatment is adequate as long as the changes in the other directions occur on length
scales larger than the phase coherence length of the carriers� which is about �� nm for electrons
in Si at ���K ��
�

In our 	D treatment� the system is assumed to be homogeneous in the xy
plane� Still� mx

and my are functions of z� Handling this dependence correctly requires an additional potential
term in Eq� �	� that depends on z and the momentum pxy in the xy
plane� We neglect the
z
dependence of this term� As the value of the wave function in the oxides is small� this
approximation will not a�ect the eigenenergies and the wave functions in the silicon region too
much�

��� Computing the charge density

Having obtained all imax eigensolutions H���
i � E��

i up to an energy Emax for all valleys� the
quantum
mechanical contribution to the charge density �using Maxwell statistics� is computed
as
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�For Fermi statistics� expx is replaced by log 	� � expx
�� where Ef is the quasi Fermi potential
and m�

xy �
p
m�

xm
�
y is the e�ective mass for the motion in the xy
plane� For electrons� the

latter can be computed analogous to m�
z in Eq� ���� For holes� we apply
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Z
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with the functions ml�h ��ez� given by Eq� ���� The parameters used in Eq� ��� are intended for
T � �� Due to the very strong non
parabolicity of the hole bands� the density of state mass
computed from these parameters is much smaller than the value for T � 
��K� Therefore� we
set
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where mDOS is the temperature dependent density of states mass for holes ��
� In the classical
limit ��at bands�� this ensures similarity of the quantum
mechanical solution and the solution
provided by a classical simulation�

Eq� ��� does not take into account any density contributions of states above Emax� For these
states� we add a classical density correction
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for Emax 
 Ebe� where Ebe is the energy of the band edge� For Emax � Ebe� the formula reduces
to the classical formula for the density� which can also be used for Emax � Ebe�

To feed the Schr�dinger results back to the classical device simulator� we introduce a �quan

tum intrinsic density�� separately for electrons and holes�

ne�hi �z� � nin
e�h
qm�n

e�h
cl �

where ni is the classical e�ective intrinsic density� and nqm and ncl are the carrier densities
computed quantum
mechanically and classically� respectively� for the same quasi Fermi potential
and electrostatic potential� The quantum intrinsic densities replace the intrinsic density in
various places� This method is conceptually the same as the one used by van Dort et al� ��
�
who modi�ed ni directly� Changing ni directly keeps changes to the existing code to a minimum�
On the other hand� introducing distinct quantum intrinsic densities for electrons and holes is
more �exible and allows to treat both electrons and holes quantum
mechanically at the same
time�

� Numerical procedure

We solve the eigenvalue problem H� � E� by guessing some value for E and inserting it in
the Schr�dinger equation� thereby reducing it to a second order ordinary di�erential equation

�



�ODE�� We impose boundary conditions for the wave function and its derivative at both ends of
the 	D Schr�dinger region and try to solve the ODE� If we can ful�ll the boundary conditions�
E really was an eigenenergy� Otherwise� we have to make a new guess�

We solve the ODE by approximating the solution by the analytic solution for piecewise
constant potential� i�e� in the interval i with potential Vi� the wave function is approximated by

��z� � Ai
sin �kiz�

ki
�Bi cos �kiz� �

where

ki �
q
�mi �E � Vi���h

��

The coe�cients Ai and Bi are chosen to match the boundary conditions and the continuity
conditions

��zi � �� � ��zi � ��� ���

���zi � ���mi � ���zi � ���mi�� ���

for all points zi at the boundary between two intervals�
We solve the ODE separately on two halves of our Schr�dinger region and try to join these

solutions using Eq� ��� and Eq� ���� The wave function can always be matched by rescaling
one of the partial solutions� By perturbation theory it can be seen that the mismatch in the
derivatives gives us a correction to our estimated value for the eigenenergy� which can be used
to make a better guess in the next iteration ��
�

� Simulation results for double gated SOI MOSFETs

The above described model was integrated in the device simulator Dessis�ISE ��
� We performed
calculations for NMOS and PMOS SOI MOSFETs and compared the classical and quantum

mechanical threshold voltages� The model device sketched in Fig� 	 and a similar PMOS device
were used assuming a gate length of �� nm and an oxide thickness tox �� nm�

To investigate the impact of the poly gate doping on the magnitude of the quantization
e�ect� we performed calculations both for equally doped gates and for di�erently doped gates�
The results are shown in Figs� � �for electrons� and � �for holes�� It is seen that the di�erence
of the threshold voltage determined classically and quantum
mechanically is larger for the case
with di�erently doped gates than for the case with equally doped gates� This is caused by the
additional con�nement due to the built
in potential resulting from the work function di�erence
between the di�erently doped gates �Figs� �� ��� The large shift between the two groups of
curves is caused by the di�erent mean work function and is not considered here�

Comparing Fig� � with Fig� �� we also see that quantization a�ects holes more strongly than
electrons for the f���g substrate orientation we used� This comes from the large e�ective mass
of the two conduction band valleys perpendicular to the Si
SiO� interface� This large e�ective
mass leads to a low kinetic energy ��rst term on the right hand side of Eq� �	�� and therefore
to a dominant contribution to the density�

Finally� due to a stronger con�nement� quantization is also the more important the thinner
the Si layer gets �Fig� ���
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Figure �� Hole density and electrostatic potential for a device with two p�
poly gates �tox �

nm� tSi � �nm� NA � ���� cm��� T����K� substrate orientation f���g�
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Figure �� As Fig� �� but for device with one n� and one p�
gate�
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Figure �� IV characteristics of an NMOS device computed quantum
mechanically and classically
for equally and di�erently doped poly gates� Gate width is 	�m� all other parameters as in Fig�
�
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Figure �� Similar to Fig� �� but for PMOS device�
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Figure �� IV characteristics for NMOS devices with di�erent tSi� Other parameters as in Fig ��
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� Summary

We have studied the charge carrier quantization e�ects in double gated SOI MOSFETs� Quan

tization leads to a considerable shift in the threshold voltages� The magnitude of the shift is
not only a function of the silicon layer thickness� but also of carrier type and the doping of the
poly gates� Speci�cally� the quantization e�ects are larger for holes than for electrons and also
more pronounced for di�erently doped gates than for equally doped gates� Thus� an accurate
model describing the e�ects of quantization must include all these e�ects�
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