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Abstract

This work presents a nonparabolicity (NP) model which is able to improve the effective mass approximation (EMA) for
computing transfer characteristics of square silicon quantum wire transistors (SQWT) working in the ballistic regime
and subjected to bandstructure effects. The model is found to be treatable within the same transport framework as
used in a present 3D EMA Poisson-Schrödinger solver thus keeping a comparable time efficiency. A full-band tight-
binding (TB) code provides the bandstructures as well as the transfer characteristics related to a series of SQWTs
needed for calibrating the NP model. In comparison with the EMA, the threshold voltage (VT) obtained via the NP
model is notably closer to the TB data for all wire widths considered in this work. In addition, the NP model is found
to satisfactorily predict the increase of the conduction masses belonging to the unprimed conduction valleys of the
TB bandstructure.
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1. Introduction

The effective mass approximation [1] (EMA) al-
ways provides a good starting point for the quan-
tum mechanical treatment of charge transport in
electronic devices [4]. The full Schrödinger problem
describing the device at an atomic level is consider-
ably simplified by circumventing the crystal poten-
tial term at the cost of a slightly modified kinetic op-
erator. However, the EMA is intended for problems
whose external perturbations are smooth compared
to the lattice constant of the considered material.
Thus, for devices involving confinements down to the
nanometer length scale the EMA becomes question-
able. A remedy is provided by more advanced meth-
ods [2,9–11] which consider the atomistic nature of
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the material thus being more precise than the single
band picture of the EMA. On the other hand, the
gain in precision of an atomistic simulation goes at
the expense of the simulation time which increases
significantly. The investigation of bandstructure ef-
fects and consequently the suitability of envelope
approximations is therefore a major task in the de-
velopment of nowadays nanoscale quantum trans-
port simulators. Several efforts have been made in
order to investigate such effects in silicon quantum
wire transistors (SQWT) using 1D semiclassical ap-
proaches [13,16] as well as 3D simulations within a
full quantum transport framework [12,15]. Beyond
the manipulation of masses and band edges within
the EMA also truncated nonparabolic dispersions
along the transport direction [17] have been studied
in order to account for bandstructure effects.

In this work the attention is restricted to the bal-
listic treatment of square SQWTs having a channel
grown in the 〈100〉 direction and known to reside in
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a regime where bandstructure effects become impor-
tant. A nonparabolicity (NP) model is introduced
and discussed which is capable to improve the EMA
for computing the currents in this regime. The non-
parabolic portion of the Hamiltonian is fully taken in
account by means of a suitable basis expansion. For
the calculation of both EMA and NP transfer char-
acteristics the 3D Poisson-Schrödinger solver SIM-
NAD [5] is used. Given a fixed device configuration,
i.e. wire width, the characteristics and bandstruc-
tures are first computed via a full-band tight-binding
(TB) code [2] which serve as a reference. The NP
model is parametrized according to the correspond-
ing TB bandstructure and the resulting threshold
voltage (VT) is finally compared to the TB data in
order to quantify the improvement compared to the
EMA. This procedure is repeated for a distinct set
of wire widths while the TB formalism is always
assumed to properly describe the bandstructure ef-
fects.

In Sec. 2 a detailed survey on the solution of
the EMA Schrödinger equation with open bound-
ary conditions as implemented in SIMNAD is given
for the case of quantum wires. Further details on
the current computation [4] as well as the iteration
scheme for the self-consistency [6] are not given in
this work. The framework is used in Sec. 3 in or-
der to explain the implementation of the NP model
whereas the comparison with the TB results and re-
lated discussions are given in Sec. 4.

2. Schrödinger Equation with Open

Boundary Conditions

2.1. The Transfer Matrix Approach

As the Hamiltonian of an open quantum system
possesses a continuous spectrum, the corresponding
Schrödinger Equation needs not to be treated as an
eigenvalue problem. Instead, it is possible to select
an energy which is known to reside in the spectrum
of the Hamiltonian and solve the Schrödinger equa-
tion as a boundary value problem. In this work, the
attention is restricted to a rectangular simulation
domain

~r = (x, y, z) ∈ [0, Lx] × [0, Ly] × [0, Lz] (1)

containing silicon grown in the 〈100〉 direction. The
corresponding EMA envelope equation has the form
(
−~2

2
∇ m̂−1 ∇ + V (~r) − E

)
Ψ(~r) = 0, (2)

where V (~r) denotes the sum of the electrostatic
potential and the geometric confinement and
{1/mx, 1/my, 1/mz} are the diagonal entries of

m̂−1. In the case of quantum wires having a channel
along the x-direction one might apply the boundary
conditions

Ψ(0, y, z) = f(y, z) (3)

∂

∂x
Ψ(~r)|~r=(0,y,z) = g(y, z) (4)

Ψ|y=0 = Ψ|y=Ly
= Ψ|z=0 = Ψ|z=Lz

= 0 (5)

for two given functions f, g : [0, Ly] × [0, Lz] → C.
The problem stated in Eqs. (2), (3), (6), and (5) can
be solved via the transfer matrix method. For this
purpose the transport direction x is subdivided in
N + 1 intervals

I(x, n,N) ≡



[x0, (x0 + x1)/2] , n = 0

[(xN−1 + xN )/2, xN ] , n = N

[(xn−1 + xn)/2, (xn + xn+1)/2] , otherwise

(6)

for a given set of points {xn | 0 = x0 < x1 < . . . <
xN−1 < xN = Lx}. The external potential V (~r)
from Eq. (2) is assumed to be piecewise constant
along the transport direction, i.e. approximated by
Un(y, z) ≡ V (xn, y, z) on the interval I(x, n,N). By
means of the ansatz

Ψ(~r)|x∈I(x,n,N) = exp(±ikn
i x)Φn

i (y, z) (7)

on I(x, n,N), the Schrödinger problem given in
Eq. (2) reduces to a transverse equation of the form

ĤnΦn
i (y, z) =

(
E − (~kn

i )2

2mx

)

︸ ︷︷ ︸
Φn

i (y, z) (8)

εn
i

with

Ĥn ≡
[
−~2

2

(
∂

∂y

1

my

∂

∂y
+

∂

∂z

1

mz

∂

∂z

)
+ Un(y, z)

]
.

The discrete eigenvalues εn
i rising from the trans-

verse problem given in Eq. (8) are referred to as the
subband energies and enter the wavenumber kn

i from
Eq. (7) together with the total energy E yielding

kn
i =





√
2mx(E − εn

i )

~
, E − εn

i ≥ 0

i

√
2mx(εn

i − E)

~
, otherwise.
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Finally, the total wave function Ψ(~r) to a given en-
ergy E has the form

Ψ(~r) =

N∑

n=0

χn(x)
∑

i∈Λ

{an
i exp[ikn

i (x − xn)]

+bn
i exp[−ikn

i (x − xn)]}Φn
i (y, z), (9)

where χn(x) is the characteristic function on
I(x, n,N) and Λ is the set of transverse quantum
numbers i. The degrees of freedom {an

i , bn
i | i ∈

Λ; n = 0, . . . , N} from Eq. (9) are reduced by
requiring the continuity of Ψ and (1/mx)(∂/∂x)Ψ
at the transitions between two adjacent intervals
I(x, n,N) and I(x, n + 1, N). The remaining coeffi-
cients {a0

i }i∈Λ and {b0
i }i∈Λ are finally fixed by the

functions f and g from Eqs. (3) and (6). Further
details concerning the numerics can be found in
Ref. [4].

2.2. Solution of the Transverse Problem

A possible scheme for solving the two-dimensional
Schrödinger problem stated in Eq. (8) on a rectan-
gular domain subjected to Dirichlet boundary con-
ditions is provided by a standard finite difference
(FD) scheme. For this purpose the domain can be
meshed according to a tensorial grid parametrized
by means of two sets of points {yj | j = 0, . . . , J}
and {zk | k = 0, . . . ,K} as illustrated in Fig. 1 with
corresponding intervals I(y, j, J) and I(z, k,K) ac-
cording to Eq. (6). A further scheme is provided by
an expansion of the solution Φn in terms of a suit-
able basis set in analogy to Ref. [3]. For this pur-
pose the transverse potential Un(y, z) from Eq. (8)
is sampled at the positions (yj , zk) yielding Ujk ≡
U(yj , zk). A representation of Un(y, z) defined all
over the simulation domain is given by a stepwise
constant function

Un(y, z) =

J∑

j=0

K∑

k=0

Ujkχjk(y, z), (10)

where χjk(y, z) is the characteristic function on the
interval I(y, j, J) × I(z, k,K). A possible position
dependency of the transverse effective masses my →
my(xn, y, z) and mz → mz(xn, y, z) from Eq. (8)
can be treated in the same way as for Un(y, z) in
Eq. (10). In a next step the solution Φn(y, z) from
Eq. (8) is expanded in terms of sine waves

Φn(y, z) =

R∑

r=1

S∑

s=1

cn
rs〈y, z|r, s〉

≡ 2√
LyLz

R∑

r=1

S∑

s=1

cn
rs sin

(
y

rπ

Ly

)
sin

(
z
sπ

Lz

)
, (11)

where R,S ∈ N denote cutoffs. Note that the sine
waves from Eq. 11 are orthonormal with respect to
the simulation domain Ly × Lz, i.e.

〈r′, s′|r, s〉 ≡ 4

LyLz

Ly∫

0

Lz∫

0

sin

(
y
r′π

Ly

)
sin

(
z
s′π

Lz

)

× sin

(
y

rπ

Ly

)
sin

(
z
sπ

Lz

)
dydz

= δr,r′δs,s′ (12)

and naturally include Dirichlet conditions at the
boundaries. Using the ansatz from Eq. (11) for the
problem stated in Eq. (8) yields an algebraic eigen-
value problem of the form

Hncn = εncn, (13)

where the vector cn and the matrix Hn are given by

Hn(r′s′, rs) ≡ 〈r′, s′|Ĥn|r, s〉

=
4

LyLz

Ly∫

0

Lz∫

0

sin

(
y
r′π

Ly

)
sin

(
z
s′π

Lz

)

×Ĥn sin

(
y

rπ

Ly

)
sin

(
z
sπ

Lz

)
dydz (14)

and cn(rs) = crs, respectively. The solution of the
algebraic problem given in Eq. (13) yields the de-
sired eigenvectors Φn

i (y, z) as well as the correspond-
ing eigenenergies εn

i which are both labeled by the
transverse quantum number i. As the attention is
restricted to square quantum wires the cutoffs from
Eq. (11) are both set to a common value C, i.e. R =
S = C.

2.3. Comparison of the Solution Schemes

In order to compare the sine wave expansion (SE)
method described in Eqs. (11) and (13) to a standard
FD scheme the two-dimensional test framework de-
scribed in Fig. 2 is considered. The model mimics
a D × D silicon core region grown along the 〈100〉
direction surrounded by a 1nm thick SiO2 layer,
i.e. the dark area. The discontinuity at the Si/SiO2
interface is set to 3eV and the total potential en-
ters the Schrödinger problem given in Eq. (8) via
Un(y, z). The effective masses are set to {my,mz} =
{0.19me, 0.91me} in the silicon and {my,mz} =
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Y

Z

X

Fig. 1. Schematic representation of a tensorial grid discretiza-

tion in three dimensions as used in Sec. 2.2.

z

y

D

D

Fig. 2. A test framework used for the comparison between the

SE method described in Eqs. (11) and (13) and a standard

FD scheme.

{0.3me, 0.3me} in the oxide where me is the elec-
tron mass. For D ∈ {2nm, 4.7nm} the lowest five
eigenvalues calculated via the SE method for C =
30 are compared to the ones obtained via the FD
scheme and listed in Table 1, where a uniform grid
of 101×101 points is used. The ground state ener-
gies differ by up to 3meV. In addition, the case of
an infinitely high oxide barrier (∞) for D=2nm is
presented showing the relevancy of the density pen-
etration in the oxide. In the following a fixed cutoff
of C = 30 is used and the penetration in the oxide
is neglected in order to be as consistent as possible
with the TB model [14,2].

3. Nonparabolicity Model

3.1. Motivation

The EMA mainly relies on the assumption [1] that
the confining potential which is superposed to the

Table 1

The Schrödinger problem given in Eq. 8 is applied to the test

framework described in Fig. 2, where the Si/SiO2 barrier
is set to 3eV. Shown are the lowest five eigenvalues in eV

for D ∈ {2nm, 4.7nm} calculated via the SE method as well

as the FD scheme. Furthermore, the case of an infinitely

high oxide barrier (∞) for D=2nm is presented showing the

relevancy of the density penetration in the oxide.

SE(2nm) FD(2nm) ∞(2nm) SE(4.7nm) FD(4.7nm)

0.3760 0.3730 0.5981 0.0866 0.0860

0.6533 0.6461 0.9080 0.1398 0.1386

1.1069 1.0924 1.4245 0.2283 0.2259

1.2326 1.2265 2.0824 0.2936 0.2920

1.5286 1.5181 2.1477 0.3474 0.3452

crystal structure varies slowly with respect to cor-
responding lattice constant. Furthermore, the wave-
function of the original problem is assumed to be well
described within a single energy band of the crystal
bandstructure, i.e. the silicon conduction band in
this case. By reducing the width of a quantum wire
the EMA is therefore expected to increasingly fail in
reproducing results obtained via a more advanced
scheme such as the TB [2] formalism. Sticking to the
single band picture, a modification of the EMA is
provided by nonparabolic [7,8] dispersions such as

(E − εc)[1 + α(E − εc)] ≡
~2

2
~k m̂−1 ~k (15)

and consequently

E(~k) =
1

2α

[√
1 + 4α

~2

2
~k m̂−1 ~k − 1

]
+ εc, (16)

where α is referred to as the nonparabolicity coef-
ficient having the dimension of an inverse energy
and εc=1.12eV. The corresponding kinetic opera-
tor is obtained by replacing ~k with −i~∇ yielding a
Schrödinger equation of the form

[
1

2α

(√
1 − 4α

~2

2
∇ m̂−1 ∇− 1

)
+ εc

+U(~r)] Ψ(~r) = εΨ(~r). (17)

Note that Eq. (17) can not be straightforwardly
solved within the transfer matrix framework pre-
sented in Sec. 2 as the derivatives {∂/∂x, ∂/∂y, ∂/∂z}
couple to each other either via a general effective
mass tensor or through the square root.
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3.2. Recovery of the transfer matrix formalism

The impact of Eq. (17) on an one-dimensional
electron gas (1DEG) [8] is investigated by means of
the simple model potential

U(~r) = U(y, z) =





0, (y, z) ∈ [0,D]2

∞, otherwise
. (18)

The energy spectrum belonging to the Schrödinger
problem described in Eqs. (17) and (18) in the case

of a diagonal effective mass tensor m̂−1 such as in
Sec. (2.1) is given by

ε(n,m, kx, α)≡ 1

2α

[√
1 + 4α

(
ε‖ + ε⊥

)
− 1

]
+ εc

(19)

with n,m = 1, 2, . . ., ε‖(kx) ≡ ~2k2
x/(2mx), and

ε⊥(n,m) ≡ ~2π2(n2/my + m2/mz)/(2D2). In the
case of a 1DEG one can intuitively make the as-
sumption that ε‖ � ε⊥ and consequently

ε(n,m, kx, α) =
1

2α

[√
1 + 4αε⊥ − 1

]
+ εc

+
ε‖√

1 + 4αε⊥
+ O

[(
ε‖

ε⊥

)2
]

. (20)

With the abbreviations β(α, ε⊥) ≡
√

1 + 4αε⊥ and
εNP(n,m,α) ≡

[√
1 + 4αε⊥ − 1

]
/(2α)+εc the spec-

trum given in Eq. (20) can be approximated by

ε(n,m, kx, α) ' εNP(n,m,α) +
ε‖

β(α, ε⊥)
. (21)

In the following βc ≡ β[α, ε⊥(1, 1)] and εNP
c ≡

εNP(1, 1, α) will be used, where the α is omitted
for simplicity. An interesting result is given by the
second term on the right hand side of Eq. (21). The
mass mx is effectively renormalized (increased) due
to the lateral confinement according to

mx → mxβ(α, ε⊥). (22)

In particular, βc is related to the increase of mx

at the conduction band edge εNP
c . Similar results

have already been obtained [12,13] in SQWTs.
Based on Eq. (21) a simplified kinetic operator
which describes the conduction band and fits in the
scattering matrix formalism is given by

~2

2m̃x

∂2

∂x2
+ εc

+
1

2α

[√
1 − 4α

~2

2

(
1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)
− 1

]
,(23)

where α and the conduction mass m̃x are given for
a fixed width D. Dispersions including nonparabol-
icity only in the transverse direction have already
been used [3] in order to selfconsistently compute
charge densities. Note that the change of the op-
erator ordering in Eq. (23) compared to Eq. (8) is
justified by the requirement that {mx,my,mz} are
position independent as it assumed for the rest of
the work. Furthermore, the conduction mass m̃x can
be set to values other than βcmx. The Hamiltonian
from Eq. (8) finally becomes

ĤNP
n ≡

1

2α

[√
1 − 4α

~2

2

(
1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)
− 1

]

+Un(y, z), (24)

where εc is absorbed in Un.

3.3. Extraction of α and m̃x

In order to determine a suitable NP coeffi-
cient α and a renormalized conduction mass
m̃x related to the square silicon quantum wires
(SSQW) considered in this work a direct com-
parison with the TB formalism is necessary.
For this purpose, the bandstructures belong-
ing to SSQWs having a channel grown along
the 〈100〉 direction are computed via the TB [2]
code for a distinct set of wire widths D[nm] ∈
{2.04, 2.44, 2.85, 3.26, 3.53, 3.94, 4.34, 4.75}. Fur-
ther details concerning the TB termination model
at the Si surface can be found in Ref. [14]. Fig-
ure 3 shows the TB bandstructure for the widths
D[nm] ∈ {2.04, 4.75} together with the disper-
sions εNP

c + ε‖/βc from Eq. (21) for one of the
four unprimed valleys ∆4, i.e. (mx,my,mz)/me =
(0.19, 0.91, 0.19). Note the difference to the case
βc ≡ 1 which corresponds to the EMA up to a
shift along the energy axis. The corresponding NP
coefficient α which enters βc as well as εNP

c is de-
termined via εNP

c − εTB
c = 0, where εTB

c is the TB
conduction band ETB(kx) evaluated at the Γ point,
i.e. kx = 0. A plot of α and the corresponding βc

as a function of the wire width is given in Fig. 4.
Accordingly, Fig. 5 shows the band edge εTB

c and
εEMA
c ≡ εNP

c (α → 0eV−1) as well as a comparison
between the renormalized conduction masses mxβc
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Fig. 4. The NP coefficient α determined by means

of εNP
c

− εTB
c

= 0 together with the corresponding

βc ≡ β[α, ε⊥(1, 1)] for each wire width D.

and extracted values mTB
x ≡ ~2/(∂2ETB/∂2kx) at

the Γ point. The mxβc are found to be satisfactorily
close to the mTB

x . Note that the same α and mxβc

are obtained when the original ε(1, 1, kx, α) from
Eq. (19) is fitted to εTB

c .
According to the ∆4 valleys, effective masses

and energy minima can be extracted for one of the
two primed valleys ∆2 located at kx = ±0.336π/a
of the TB bandstructure given in Fig. 3. As the
masses belonging to the ∆4 and ∆2 valleys are re-
lated [12] to the bulk values (mbulk

t ,mbulk
l )/me =

(0.91, 0.19), respectively one obtains a correspond-
ing set {mTB

l ,mTB
t } for each diameter D. Both mTB

t

as given in Fig. 5.a and mTB
l (not reported in this

work) are larger than the corresponding bulk values.
The impact of larger masses on εEMA

c is expected
to be a reduction of |εEMA

c − εTB
c | and therefore de-

sirable. However, the set {mTB
l ,mTB

t } belonging to
the present TB bandstructure leads to an unfavor-
able overstimation of εTB

c by εEMA
c and prevents an

extraction of α via εNP
c − εTB

c = 0 as explained in
this section. The use of {my,mz}/me ∈ {0.91, 0.19}
is therefore mandatory for the Hamiltonian given in
Eq. (24) and a deviation from bulk effective masses
within the EMA case is not considered in this work.
Note that the splitting of the TB ∆4 valleys due
to the transverse confinement as shown in the inset
of Fig. 3.a is not taken in to account in this work.
Finally, the NP model is solely applied to the ∆4

valleys and m̃x = mxβc will be used for the rest of
the work.

3.4. Solution of the NP Problem

In order to diagonalize the Hamiltonian given in
Eq. (24) a special kind of kinetic operators

T (Ô) ≡ T

[
−~2

2

(
1

my

∂2

∂y2
+

1

mz

∂2

∂z2

)]
(25)

is considered, possessing a Taylor expansion

T (Ô) =

∞∑

i=0

T (i)(0)

i!
Ôn, (26)

where T (i) is the i-th derivative of T . The matrix
elements of T (Ô) in the sine wave basis from Eq. (11)
can be computed analytically yielding

〈r′, s′|T (Ô)|r, s〉 =

T

[
~2π2

2

(
1

my

r2

L2
y

+
1

mz

s2

L2
z

)]
δr,r′δs,s′ . (27)

Therefore, the SE method from Sec. 2 can be used
in order to diagonalize the ĤNP

n from Eq. (24). It
has to be noted that the flat potential in Eq. (18) is
chosen in order to allow a comparison with the TB
bandstructure and consequently the extraction of
the NP coefficient as shown in Fig. 4. However, the
justification of the simplified kinetic operator given
in Eq. (23) is not restricted to the presence of a flat
potential. This can be easily seen by considering a
general transverse potential U(y, z) including hard
walls at the boundary and expanding the Hamilto-
nian given in Eq. (17) in terms of the set

〈~r|kx, n,m〉 = A exp(ikxx) sin
(nπy

D

)
sin
(mπz

D

)
,

(28)

where A is a normalization constant. The kinetic
part is diagonal and proportional to
{

1

2α

[√
1 + 4α

(
ε‖ + ε⊥

)
− 1

]
+ εc

}

δn,n′δm,m′δ(kx − k′
x), (29)

where ε‖(kx), ε⊥(n,m), and m̂−1 are taken from
Sec. 3.2. After assuming that in the presence of a
strong transverse confinement the condition ε‖ �
ε⊥ holds for the relevant expansion coefficients re-
lated to |kx, n,m〉 one can modify the matrix ele-
ments given in Eq. (29) according to Eq. (20). In par-
ticular, after appropriately replacing β(α, ε⊥) the
matrix elements become identical to the ones ob-
tained via the simplified kinetic operator given in
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Fig. 3. TB dispersion relations for a square silicon nanowire grown along the 〈100〉 direction with widths (a) D=2.04nm and

(b) D=4.75nm. The length of the wire unit cell is a0 = 0.543nm. In addition, the dispersions εNP
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Fig. 5. (a) Renormalized conduction mass mxβc compared to mTB
x

≡ ~
2/(∂2ETB/∂2kx) obtained via the TB conduction

band ETB(kx) at the Γ point, i.e. kx = 0. Data is given for a distinct set of widths D (b) Conduction band edges εTB
c

and
εEMA
c

≡ εNP
c

(α → 0eV−1) as a function of the wire width. The condition εNP
c

= εTB
c

holds for the set of coefficients α given

in Fig. 4.

Eq. (23) thus justifying the form of the operator
even in the presence of a general transverse poten-
tial U(y, z).

4. Simulation Results

The suitability of the NP model presented in
Sec. 3.2, i.e. the assumptions leading to Eq. (23),
are quantitatively investigated by means of a com-
parison to transfer characteristics calculated via the
TB framework [2]. The device of choice consists of
a triple gate SQWT having a channel grown in the
〈100〉 direction as described in Fig. 6. The source
and drain regions are n-doped with a concentration
of 1020cm−3 and a fixed source-to-drain bias VDS

of 0.6V is applied. The currents are computed for
a distinct set of wire widths D being identical to

Table 2

Different set of parameters which enter the NP model de-
scribed in Sec. 3. The resulting VT are summarized in Fig. 7.

In particular, set I is referred to as the EMA case and the
notation α(D) refers to the NP coefficients plotted in Fig. 4.

I II III

α 0eV−1 α(D) α(D)

m̃x 0.19me 0.19meβc 0.19me

the one used in Sec. 3. Finally, the penetration of
charge in the oxide is neglected during both NP and
TB current calculations.

A quantity which is suitable for the comparison
of transfer characteristics is given by the threshold
voltage VT which is defined according to Ref.[13] via

IDS(VGS = VT, VDS = 0.6V) = 300nA, (30)
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Fig. 6. Schematic representation of a triple gate silicon quan-

tum wire having a channel grown in the 〈100〉 direction used

for the comparisons in Sec. 4.
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Fig. 6 for a wire width D = 2.04nm. Shown are the results

from the TB calculation as well as from set II and III given

in Table 2.

where IDS and VGS denote the drain current and
gate voltage, respectively. The VT is computed for
the set of parameters given in Table 2 and the corre-
sponding results are summarized in Fig. 7. For the
smallest wire widths the overestimation of VT by set
I, i.e. the EMA case, is quite notable. An substantial
improvement is achieved by using II and III and note
that the use of m̃x = 0.19me has a minor impact on
the calculation of the VT. Another bandstructure ef-
fect which is included in the NP model is related to
the shift between εEMA

c and εTB
c as shown in Fig. 5.

As the shift is comparable to the VT overestimation
it is assumed to be the main effect leading to the dis-
crepancy manifested by set I. A similar observation
has been reported for the case of cylindrical silicon
nanowire transistors [17]. It has to be noted that
only the ∆4 valleys are modified as the difference af-
ter applying the NP model to either both ∆4 and ∆2

or to the ∆4 valleys alone is found to be negligible.
Finally, the transfer characteristics belonging to

the different parameterizations of Table 2 are sum-
marized in Fig. 8 for the case of the smallest wire
width D = 2.04nm. The current calculated via set
II is slightly smaller compared to set III for large
VGS which can be related to the onset of tunneling
currents being larger for smaller conduction masses.
However, in the regime where the VT is measured,
the tunneling currents are assumed to be negligible
as can be seen by the strong similarities between the
outcomes of set II and III.

5. Conclusions

A suitable NP model is introduced which im-
proves a present EMA quantum transport simulator
for computing transfer characteristics by account-
ing for the main bandstructure effects appearing in
SSQWs. In particular, the VT belonging to a series
of SSQW are computed via a full-band TB frame-
work and the corresponding NP results are found to
be notably closer to the TB data with respect to the
EMA case. The calibration of the NP model relies
upon the adjustment of a single coefficient which
can be extracted from the corresponding TB band-
structure of the considered device. Consequently,
the NP model includes the TB conduction band
edge and is able to satisfactorily predict the increase
of the conduction mass for the case of the unprimed
valleys. A numerical solution of the problem is
straightforward and the computational burden is
comparable to the one caused by the EMA simula-
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tor. In conclusion, this work is strongly focused on
the technicalities of a newly introduced NP model
while the application is preliminarily restricted to
the VT of SSQWs.
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