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Abstract

TCAD models of the ballistic mobility are developed where the mean ballistic velocity is not a

fitting parameter, but a function of either the quasi-Fermi potential or the density. In the first case,

a local version can be derived which is more robust when used together with a model for source-to-

drain tunneling. The second form conserves the thermionic ballistic current and better matches the

on-currents of short-channel FETs obtained from a quantum-transport solver, in particular at low

source-drain bias. It requires the iterative extraction of the top-of-the-barrier density. This is the

only non-local remnant of the hydrodynamic term in the balance equation for the mean velocity

which is discarded in all commercial 2D/3D device simulators. The ballistic mobility, used with

the Matthiessen rule, substitutes for this term and prevents that the drift-diffusion current diverges

in the limit of zero gate length. The numerical integration of the models with the TCAD simulator

S-Device is set out, and simulated transfer characteristics of In0.53Ga0.47As double-gate ultra-thin-

body FETs with gate lengths ranging from 7 nm to 40 nm are compared with the corresponding

quantum-transport results. It is shown that under conditions of dominant source-to-drain tunneling,

the concepts of local quasi-Fermi potential and mean ballistic velocity break down. Suggestions

for non-local modifications of both the mobility and tunneling models are given that would allow

to use the same setup for all gate voltages from deep sub-threshold to deep inversion.

1. Introduction

As the length of transistor channels is scaled down into the range of a few nanometers, quantum

[1, 2] and ballistic effects [3] start to play a major role. Quantum transport (QT) solvers (e.g. [4])
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can accurately simulate such devices, but they are computationally expensive and still not mature

for industrial environments. In drift-diffusion (DD) TCAD one tries to mimic the above effects

with models that depend on the continuous solution variables of the van Roosbroeck equation

system [5]. In [6] the quantum drift-diffusion (QDD) tool Sentaurus-Device from Synopsys [7]

was used to simulate source-to-drain tunneling (STDT) in In0.53Ga0.47As double-gate ultra-thin-

body (DG UTB) FETs with gate lengths LG ranging from 10 nm to 25 nm (see Fig. 1). Their

IDVGS-characteristics exhibit a pronounced current overshoot after the onset of inversion due to

the exclusive usage of a diffusive mobility (µd). Since electron-phonon scattering is weak in these

devices, the so-called ballistic QT solution can be taken as reference. The aim of this work is to

develop TCAD models of the “ballistic mobility” capable to limit the current to the correct QT

values and to test their applicability together with source-to-drain tunneling (STDT). As distinct

from various models in the literature [8, 9, 10, 11, 12], the ballistic velocity is modeled explicitly

either as a function of the quasi-Fermi potential (QFP) or the density (n). Such choices are “TCAD-

friendly” and hence preferred to other dependencies e.g. on the electric field [13]. Since the mean

ballistic velocity is the key quantity of the models, the physical consequences of the different

expressions are analyzed and the resulting transfer characteristics are compared with each other.

As shown, the origin of the “ballistic mobility” is the omitted quadratic term in the conservation

law of the mean velocity. A factor with the dimension of a mobility can be singled out in this

term, hence the quotation marks in “ballistic mobility” will be skipped as usually done in the

community.

Figure 1: Schematic of the In0.53Ga0.47As double-gate UTB FET used as test device.

2



The paper starts with a rigorous classification of the different transport regimes in Section 2.

In particular, the difference between “kinetic” and “ballistic” is worked out since it is essential

to understand the steps towards a local model of the ballistic mobility. Then, the kinetic limit

is used in Section 3 to derive the mean ballistic velocity as function of the QFP in local form.

The necessary assumptions and simplifications are pointed out and the induced error is discussed.

This also provides a natural explanation for the observed weakness of such a model in the linear

regime [13]. In Section 4, a simple model of the mean ballistic velocity as function of density is

proposed which conserves the current. In this model, the position of the top of the source-to-drain

potential barrier must be found numerically. With this non-locality the injection velocity becomes

independent of source resistance and bias. Details of the numerical implementation are provided

in Section 5. The interplay between the ballistic mobility models and a model for STDT with local

QFPs is studied in Section 6. Since in the regime of dominant STDT the TCAD variables QFP and

density are determined by the tunneling carriers, their usage in the ballistic mobility leads to an

artificial suppression of the tunneling current. To circumvent this problem, a modification of the

STDT model is suggested. Finally, Section 7 discusses the shortcomings of the models implicated

by the locality, the problem of an inhomogeneous band structure, and the difficulty to compare

QDD with QT characteristics due to the different density-of-states (DOS) models.

2. Transport Regimes and Ballistic Mobility

The first moment of the Boltzmann transport equation in the relaxation time approximation,

reads in the stationary, iso-thermal, and non-degenerate case, as [14](
µ−1

d +
me

q
~v · ∇

)
~v = ∇ψn , (1)

where µd is the diffusive mobility, ~v the mean velocity, me the effective mass, and q the elementary

charge. The function ψn = Φ−VT ln (n/ni) on the right-hand side contains the electrostatic potential

Φ, the density n, the intrinsic density ni, and the thermal voltage VT = kBT/q. It has the meaning

of the QFP, provided the concept of local equilibrium is (at least approximately) applicable. The

second term on the left-hand side, typical for hydrodynamic equations, is generally skipped in
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2D/3D device simulators to ensure convergence. Simplifying Eq. (1) to the 1D case (channel

direction x) one obtains
v
µd

+
me

q
v v′ = ψ′n . (2)

The second term becomes larger than the first one if µd > q/(me|v′|). For an estimate one can

replace v′ by vth/LG with the root mean square (r.m.s.) 1D thermal velocity vth =
√

kBT/me which

gives approximately µd > LG
√

q/(VTme) ≡ µlim. For example, LG = 15 nm and me = 0.0516 m0

yield µlim = 1719 cm2/Vs.

The proportionality to v in the second term of Eq. (2) suggests to introduce a quantity called

ballistic mobility in the form

µb =
q

me

1
v′b

(3)

which requires to define a local model for the mean ballistic velocity vb(x).

The ballistic regime is defined by µd “ � ” µlim. The quotation marks mean that µd still has to be

small enough such that a local, non-constant QFP ψn(x), i.e. the concept of local thermodynamic

equilibrium, can be assumed and used. In the simulation samples sketched in Fig. 1, the measured

bulk mobility of In0.53Ga0.47As (∼ 104 cm2/Vs) could be seen as such a limit.

There is no analytical solution of the differential equation (2) even for constant mobility µd.

Setting µd = ∞ makes Eq. (2) to an Euler equation and defines the kinetic transport regime (see

Table 2) where in analogy to Eq. (3) a kinetic mobility could be introduced in the form

µk =
q

me

1
v′k

(4)

with a mean kinetic velocity vk. This expression for µk can also be motivated from Heisenberg’s

uncertainty principle (a method often used in the past for the development of TCAD mobility

models, e.g. [17]). In the limit LG → 0 one can write ∆t ∆E ≈ τk∆Ek ≈ ~/2 ≈ ∆x mevk ≈

∆x ∆p , where τk is a ’kinetic relaxation time’ related to the kinetic mobility by µk = q τk/me. By

division it follows that τk = (mevk∆x/∆k)(∆Ek/∆k)−1, and with the parabolic band approximation

∆Ek/∆vk = mevk one obtaines Eq. (4).

Since µd � µb holds in the ballistic transport regime, the left-hand side of Eq. (2) can be

approximated by vb/µb (neglecting the first term) which yields another definition of the ballistic
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mobility:

µb(x) =
vb(x)
ψ′n(x)

. (5)

The nomenclature for the different transport regimes in relation to QFP and mobilities is sum-

marized in Table 2. In the emission regime, the electron is decoupled from any thermodynamic

bath, i.e. short-range electron-electron interaction is not efficient to ensure particle and energy

exchange, hence a QFP is not defined. In textbooks, the course of the QFP in emission regions is

often symbolized by crosses. Diodes (pn-junction and Schottky) have been treated in the emission

theory with the result that the slope of the current-voltage characteristics is the same as in the

diffusion theory, only the pre-factors differ (by a moderate factor).

In the kinetic transport regime, electrons keep the QFP of the contact from which they are

injected until they hit the opposite contact. Short-range electron-electron interaction is efficient to

ensure particle and energy exchange in the ensemble of moving electrons. The QFP is constant

in the channel because of the absence of scatterings that can relax the total momentum of the

system. At the channel-drain junction, due to the vast number of electrons in the drain reservoir

and due to the very quick thermalization by short-range electron-electron interaction, the incoming

electrons rapidly become members of the drain ensemble, i.e. they attain the Fermi level of the

drain. Thus, the change of the QFP is step-like. In most of state-of-the-art NEGF QT simulators,

short-range electron-electron interaction is not included in the Hamiltonian, and the position of

the step remains undetermined.

Table 1: Nomenclature for different transport regimes in relation to QFP and mobilities.

emission QFP in contacts, no QFP defined in channel

kinetic QFP in contacts, constant QFP in channel, µd = ∞

ballistic non-constant QFP ψn(x) in channel can be assumed and used, µd “ � ” µlim

quasi-ballistic intermediate regime, µd ≈ µb

diffusive dissipative regime, µd � µb
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In the ballistic regime, a weak relaxation of the total momentum disturbs the kinetic motion

(similar to the trajectory of a cannonball which is not parabolic but ballistic due to the air drag). In

the community the name “ballistic” is commonly used instead of “kinetic/emission”. DD TCAD

simulators are based on the concept of local thermodynamic equilibrium. The value of the diffusive

mobility µd must not be much larger than the value of µlim. The latter corresponds to the case where

the momentum relaxation time is approximately equal to the transit time. As shown by Frensley

in his pioneering paper [3], the shape of the QFP along the channel is essentially given by an error

function if the barrier is treated with the saddle-point method. This analytical solution for ψn(x)

does not depend at all on the value of the diffusive mobility µd, only µd = ∞ is excluded. However,

the existence of a continuous function ψn(x) warrants the limitation of the diffusive mobility to µlim.

When LG → 0 (kinetic case), the error function is “squeezed” to a step function.

A step-like change of the QFP can also occur in DD transport as the result of sharp density

gradients, as visible in Fig. 2b). The figure shows a TCAD simulation of the QFP along the

channel of the test transistor of Fig. 1. A gate length of 40 nm was used which is long enough

to safely neglect STDT. The softened step function is symmetrical in the linear regime (50 mV)

with an almost linear potential drop typical for an Ohmic resistor, but strongly asymmetrical in

the saturation regime (0.63 V) with a sharp edge at the drain-side pn-junction (x = xj = 80 nm).

To the left of xj, the QFP belongs to the moving electrons coming from the source which have

a very small density (that nevertheless determines the total value of n in this region), but to the

right of xj the QFP belongs to the thermalized high-density electrons of the drain. A heavy S/D

doping of ND = 5 × 1019 cm−3 was chosen to demonstrate the degeneracy effect. It shows up as

a slight difference between ψn(x) and Φ(x) − VT ln (n(x)/ni) in the pn-junctions (see the insert of

Fig. 2(a)). Whereas degeneracy is negligible for the shape of the QFP, it impacts the on-current

of a FET due to a Fermi correction term −µnnkBT∇ ln(γn) in the equation for the current density,

where γn = n/nB is the ratio between the actual density and its Boltzmann form. This term tends

to reduce the on-current (negative sign), thus it has the same effect as the ballistic mobility. For a

better decoupling of both effects, the S/D doping is kept at ND = 6 × 1018 cm−3 in Sections 3 and

4.
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Figure 2: Quasi-Fermi potential ψn(x) along the channel of the transistor shown in Fig. 1 at (a) VDS = 50 mV, (b)

VDS = 0.63 V obtained from TCAD simulations with constant mobility. Parameters: LG = 40 nm, VGS = 0.31 V,

µd = 104 cm2/Vs. The small difference between ψn(x) and Φ(x) − VT ln n(x) in the case ND = 5 × 1019 cm−3 is shown

in the insert of (a).

3. Ballistic Velocity as Function of Quasi-Fermi Potential

Two expressions for the ballistic mobility were suggested in Section 2: Eq. (3) and Eq. (5).

Equating them leads to the balance equation

qψ′n(x) =
me

2

(
v2

b

)′
, (6)

stating that the loss of electro-chemical energy of the ballistic electrons is compensated by the gain

of their kinetic energy. Integrating this equation from a starting point xS near the source-channel

junction to a point x in the channel results in a solution for the mean ballistic velocity:

vb(x) =

√
v2

b(xS) +
2q
me

[
ψn(x) − ψn(xS)

]
(x > xS) . (7)

This solution contains two non-localities: the QFP and the velocity at the starting point xS. In

order to obtain a local model, one has to (i) define the starting point as the boundary of ballistic

motion, (ii) to find a reasonable expression for vb(xS), and (iii) to replace ψn(xS) by a reasonable

value. For the choice of xS one can proceed as in the compact modeling of the ballistic transistor

and set xS = xTOB, where xTOB is the so-called virtual source, i.e. the top-of-the-barrier (TOB)
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point. The only way to remove the non-locality vb(xTOB) is to consider the kinetic limit (LG → 0),

where only thermionic electrons with energies higher than the TOB contribute and are injected

with the mean thermal velocity vth,i. Then,

vk(xTOB) = vth,i
1 − e−VDS/VT

1 + e−VDS/VT
= vth,i tanh

(
VDS

2VT

)
≡ 〈vinj〉 . (8)

Note that vk(xTOB) vanishes at thermodynamic equilibrium (VDS = 0 V , ψn(x) = const). The mean

thermal velocity vth,i at the injection point could be set to the r.m.s. value in one dimension vth

or to the mean of the value in one dimension vth
√

2/π ≈ 0.8vth. The latter option is used in the

following simulations. The actual value needed for 2D/3D device simulation might be slightly

different. This will be further discussed in Section 7.

Finally, the value of ψn(xTOB) is approximated by zero (grounded source contact). This removes

the second non-locality, however it neglects the voltage drop up to the virtual source caused by the

finite series resistance between contact and xTOB. Inserting the above simplifications (vb(xS) →

〈vinj〉, ψn(xS = xTOB)→ 0) into Eq. (7) one obtains

vb(x) =

√
〈vinj〉

2 + 2v2
thψn(x)/VT , (9)

which is a local model up to the VDS-dependence of the mean injection velocity 〈vinj〉. The same

form of the ballistic velocity was suggested in Ref. [13], with a fitting parameter instead of the

first term under the square root, and called Kinetic Velocity Model (KVM). The non-local factor

tanh(VDS/2VT) becomes 0.75 at 300 K and VDS = 50 mV, the standard voltage for the linear regime.

It quickly approaches unity, when the source-drain bias exceeds a few VT.

The mean ballistic velocity Eq. (9) was implemented in the Physical Model Interface (PMI)

of S-Device (for details see Section 5). In Fig. 3 it is extracted from the self-consistent TCAD

simulations and compared with the mean kinetic velocity from the effective-mass QT solver QTx

[18]. The extraction of velocity profiles from QTx is delicate. To compare with the ballistic

velocity of thermionic electrons (9), the QTx kinetic velocity is computed by

vk =
IT

q n1D−T
, (10)

where IT is the thermionic current and n1D−T is the 1D density of thermionic electrons, obtained

by integration of the thermally weighted LDOS over energies above the TOB. The thermionic
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(kinetic) electrons are assumed to possess the QFP of the source up to the drain contact. For

the high source-drain bias, the velocity profiles agree well in the channel region (from 40 nm to

80 nm). The oscillatory behavior in the source found with QTx is caused by quantum reflection. In

the drain, the velocity extracted from QTx becomes much larger than the one computed by Eq. (9)

which is attributed to the 2D DOS model of QTx.

Note, that the total increase of the mean ballistic velocity is approximately given by
√

2 VDS/VT.

At xTOB (indicated by an arrow in Fig. 3), the mean ballistic velocity has already increased from its

initial value 〈vinj〉 = 1.78 × 107 cm/s at VDS = 50 mV and 〈vinj〉 = 2.37 × 107 cm/s at VDS = 0.63 V.

In the linear regime the increase is ≈ 85% and in the saturation regime ≈ 60%. This increase is

Figure 3: Comparison of the mean ballistic velocity Eq. (9) (black dashed, extracted from the self-consistent TCAD

simulations) with the mean kinetic velocity extracted from QTx (red symbols). (a) VDS = 50 mV, (b) VDS = 0.63 V.

Parameters: ND = 6 × 1018 cm−3, LG = 40 nm, VGS = 0.31 V. The arrow points to xTOB, the position of the TOB.

due to the non-zero value ψn(xTOB) (see Fig. 2), i.e. the price for the negligence of the last term in

Eq. (7). It not only depends on source doping and source extension, but also on the gate bias VGS.

The latter dependence is uncritical because ψn(xTOB) changes by less than VDS/10 over the whole

gate voltage range. The three assumptions that lead to a local model will be further discussed in

Section 7. In Section 4 another model of the ballistic velocity will be proposed which requires the

numerical determination of xTOB. Introducing this non-locality in the above model would allow to

keep the term ψn(xTOB) with the result that vb(xTOB) = 〈vinj〉.
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Frensley [3] suggested to make use of ∇ · ~jn = 0 in the Euler equation and to replace (v2)′ by

−2v2(ln n)′. Based on this he derived the kinetic (actually: ballistic) current density of a model

problem with the essential feature that the current depends on the QFP at xTOB, in contrast to the

emission theory, where no QFP exists in the barrier region. Applying the same replacement to the

more general equation (2) it can be cast into the form [13]

v
vd

+
v2

v2
b

= 1 (11)

with

v2
b = −

qψ′n
me(ln n)′

= v2
th

(
1 +

Φ′

ψ′n − Φ′

)
= v2

th
ψ′n

ψ′n − Φ′
. (12)

This model for vb could be used for x ≥ xTOB because ψ′n(xTOB) , 0. However, it depends on the

electric field, and gives 0/0 in the heavily doped drain region.
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Figure 4: Comparison of driving forces along the channel obtained from TCAD simulations with a constant mobility

of µd = 104 cm2/Vs. (a) VDS = 50 mV, (b) VDS = 0.63 V. Parameters: LG = 40 nm, VGS = 0.31 V.

Fig. 4 compares the driving forces ψ′n, Ex, and VT(ln n)′. As can be seen, in the source-side

part of the channel ψ′n is dominated by the density gradient whereas in the drain-side part it is

dominated by the electric field. Therefore, ψ′n cannot be replaced by one of the two. This becomes
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clear if one plots the local inverse mobility µ−1
b (x) and the local resistivity ρ(x) = (q µb(x) n(x))−1

using the ballistic velocity (9). Fig. 5 shows that the whole channel contributes to both the inverse

ballistic mobility and the ballistic resistivity. Furthermore, a sharp drop is observed towards the

gate edges so that TCAD artifacts from model simplifications can be tolerated here. Fig. 6

Figure 5: Inverse ballistic mobility (using Eq. (5) with the velocity model Eq. (9) in the TCAD simulations) and

the corresponding resistivity along the channel. Parameters: VDS = 50 mV , ND = 6 × 1018 cm−3, LG = 40 nm,

VGS = 0.31 V.

presents the simulated IDVGS-curves for LG = 15 nm, computed with µb(x) (Eq. (5) with Eq. (9))

and µd = 104 cm2/Vs, respectively, for VDS = 50 mV (a) and for VDS = VD,sat = 0.63 V (b). The QTx

reference characteristics are plotted for comparison. The shift of the threshold voltage Vth due to

geometrical confinement [16] found with QTx was modeled by a work function fit in S-Device.

All transfer curves in this paper are plotted as function of gate overdrive VGS − Vth, where Vth is

defined as the gate voltage at which the current becomes 100 nA/µm. Geometry parameters [19],

effective masses, and applied VDS,sat are summarized in Table 2. The QDD current after the onset

of inversion is still overestimated compared to QTx. The relative deviation is quite strong in the

linear regime, but much smaller in the saturation regime. This behavior can be attributed to the

shape of the QFP ψn(x) (see Fig. 2). At high drain bias, it is much closer to a step function, i.e. to

the kinetic case where the electrons keep their QFP from the contact. Note, that the latter had been

one of the initial assumptions to construct the local model (9). In contrast, the channel behaves like
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Figure 6: IDVGS-characteristics of an In0.53Ga0.47As DG UTB FET (LG=15 nm) computed with µb from Eq. (5) with

the velocity model Eq. (9) (red-dashed curves) and with constant mobility µd = 104 cm2/Vs (solid blue curves) for

(a) VDS = 50 mV and (b) VDS = VD,sat = 0.63 V. Parameters: ND = 6 × 1018 cm−3, vth,i = 2.37 × 107 cm/s. The

self-consistent TCAD simulations are compared with the QTx reference characteristics (black lines with squares).

STDT was turned-off in all simulations.

a low-Ohmic resistor with an almost linear ψn(x) in the linear regime, a situation furthest from the

kinetic case. Second, due to the large series resistance, the injection velocity at the virtual source

is overestimated which contributes to the overestimation of the on-current at low VGS. This calls

for improvements in modeling the ballistic velocity. Penzin et al. [13] added an empirical function

of ψn in their KVM model to achieve the necessary drop of the on-current in the linear regime. In

the next section, another option for the ballistic velocity will be considered.

4. Ballistic Velocity as Function of Density

An obvious feature of the ballistic velocity (9) is, that the ballistic current density jb is not

conserved when used in the mobility µb. Evaluating the continuity equation with a density that de-

pends on a local QFP ψn(x) results in a position-dependent jb(x). For jb(xTOB) = jb(xD) to hold, the

densities of thermionic electrons would have to fulfill nTOB(xTOB)/nTOB(xD) = vb(xD)/vb(xTOB) ≈
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Table 2: Summary of geometry parameters, effective masses, and VDS,sat of the simulated devices.

LG tbody tox me/m0 VDS,sat

7 nm 2.8 nm 2.6 nm 0.080 0.56 V

11.5 nm 4.6 nm 3.2 nm 0.0678 0.61 V

15 nm 7 nm 3.7 nm 0.0516 0.63 V

√
2 VDS/VT which is not the case. Here, xD denotes a point near the channel-drain junction. Den-

sities, whether TOB or total, depend exponentially on VDS. A ballistic velocity that conserves the

current is

vb(x) = 〈vinj〉
nTOB(xTOB)

nTOB(x)
=

jk

qnTOB(x)
, (13)

where the mean injection velocity is divided by the normalized density of thermionic electrons in

channel direction. Because of current conservation,

jb(xTOB) = q vb(xTOB) nTOB(xTOB) = q 〈vinj〉 nTOB(xTOB) = q 〈vinj〉 n(xTOB).

The last identity is due to the fact that at xTOB the TOB density is exactly equal to the total density.

The replacement vb(xTOB) → 〈vinj〉 is the same local approximation as in Section 3. Inside the

channel region, using parabolic bands, a relation between nTOB(x) and the total density n(x) can be

found:

nTOB(x) = n(x)
2
√
π

Γ

(
3
2
,
Φ(x) − Φ(xTOB)

VT

)
. (14)

Here, Γ(ν, b) denotes the incomplete Gamma function. The derivation of Eq. (14) is given in Ap-

pendix A. Fig. 7 compares nTOB(x) and n(x) in the channel region. As one can see, both practically

coincide in a large part of the channel. Deviations only occur where the local resistivity quickly

drops to zero (compare Fig. 5). Hence, the model (13) can be simplified in the following way:

the density nTOB(x) in the denominator can be replaced by the actual density n(x) which avoids to

evaluate Eq. (14) and results in

vb(x) = 〈vinj〉
n(xTOB)

n(x)
. (15)

Fig. (8) compares the ballistic velocities (9) and (15). Where needed, i.e. in the channel region, the

n-dependent model Eq. (15) yields a slower increase of the mean velocity towards the drain which
13



Figure 7: Comparison between nTOB(x) and n(x) along the channel in the middle of the body. Parameters: ND =

6 × 1018 cm−3, LG = 40 nm, VGS = 0.31 V. The n(x)-profiles are direct extractions from the self-consistent TCAD

simulation, whereas the nTOB(x)-profiles are a post-processing evaluation of Eq. (14) with all densities imported from

TCAD.

results in a lower ballistic mobility. Consequently, the on-current in the linear regime is reduced.

This is demonstrated by the comparison of the transfer characteristics of an In0.53Ga0.47As DG

UTB FETs with gate lengths of 40 nm in Fig. 9, where STDT is absent. The agreement with the

QTx-curves is reasonable considering the fact that the DOS models are different. In contrast to the

ψn-dependent model in the previous section, the n-dependent model (15) makes explicit use of the

injection point with the obvious advantage that vb(xTOB) = 〈vinj〉. The non-locality n(xTOB) cannot

be removed, since the point xTOB has to be under full gate control. Though replacing n(xTOB) by the

source doping ND would make the model local (analogous to setting ψn(xTOB) = 0 in the previous

section), this would lead to bias-dependent velocities with extreme values. The replacement of

the TOB density by the density overestimates the TOB density in the region between the source-

channel junction and xTOB. This artificially drops the velocity and underestimates the ballistic

mobility. Thus, a possible refinement of the model could be to replace vb by 〈vinj〉 for all x < xTOB,

leading to vb(x) = 〈vinj〉[Θ(xTOB − x) + Θ(x − xTOB)n(xTOB)/n(x)].

Devices with shorter gate were at first simulated without STDT. For this, the tunneling part of
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Figure 8: Profiles of the ballistic velocities along the channel with model (9) (black dashed) and with model (15)

(red symbols) extracted from self-consistent TCAD simulations. Parameters: VDS = 50 mV, ND = 6 × 1018 cm−3,

LG = 40 nm, VGS = 0.31 V, vth,i = 2.37 × 107 cm/s.

the spectral current in QTx was filtered out, and no model for STDT was used in the simulations

with S-Device. Fig. 10 presents transfer characteristics for DG FETs with LG = 11.5 nm and

LG = 7 nm with the mean ballistic velocity Eq. (15). Note, that there is no explicit fitting except

the electrostatics in the sub-threshold range at VDS = 0 V (no influence of the mobility model).

The agreement with QTx is very good up to an overdrive voltage of 0.2 V. In deep inversion, the

deviation increases with decreasing gate length and becomes more significant in the saturation

regime. This behavior is attributed to the different DOS models which will be discussed in more

detail in Section 7. The shorter the gate, the thinner the body (see Table 2) and the stronger the

impact of the true 2D DOS of QTx. The dashed curves in Fig. 11 represent the corresponding

profiles ψn(x) and µ−1
b (x) along a cut line in the middle of the body. The solid curves in this figure

are obtained with the ψn-dependent model of the ballistic velocity.

5. Implementation Details

All above considerations apply to the ballistic transport regime. Of practical interest is the

quasi-ballistic regime, defined by µd ≈ µb (see Table 2). Eq. (2) yields v = vqb = µn ψ
′
n, and µn is

given by the Matthiessen rule in its common form µ−1
n = µ−1

d + µ−1
b . Weighting factors for diffusive

and ballistic sub-populations [10, 15] are not considered here. For µb it would mean an additional
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Figure 9: IDVGS-characteristics of an In0.53Ga0.47As DG UTB FET with LG = 40 nm at (a) VDS = 50 mV and (b)

VDS = 0.63 V computed with µb (Eq. (5)). Blue solid curve: vb-model as function of ψn (Eq. (9)), red dashed curve:

vb-model as function of n (Eq. (15)). Parameters: ND = 6 × 1018 cm−3, vth,i = 2.37 × 107 cm/s. STDT was suppressed

by the sufficiently long gate. Other parameters are given in Table 2.

fitting factor, and the PMI of S-Device internally combines mobility models with the common

Matthiessen rule.

The models (4) with (9) and with (15) were implemented in the PMI “HighFieldMobility”

which combines the ballistic mobility model with the user-defined diffusive mobility µd by the

Matthiessen rule. Generalization of Eq. (4) to the 2D/3D case is done by µb = vb/(|∇ψn| + ε),

where ε is an appropriate cut-off. The computation of an average 1D density n(x) is prohibitive,

hence n(~r) is used. Density minima perpendicular to the channel yield high local values of µb and

do not contribute. The obviously better approach would be to compute nTOB as average over a

line/slice perpendicular to the transport direction. However, this would require the availability of

a tensor-product grid in the PMI of S-Device which is not the case. To extract n(~rTOB), a search

algorithm was implemented to find the point where the conduction band (CB) energy is maximum.

In each step of the Newton iteration, a variable Ec,ref is first set to a large negative value. Then,

the local value of the CB energy is compared with Ec,ref on every vertex ~rn of the search path.
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Figure 10: IDVGS-characteristics of In0.53Ga0.47As DG UTB FETs with LG = 11.5 nm and LG = 7 nm at VDS = 50 mV

(left) and VDS = VD,sat (right) computed with µb (Eq. (5)) and vb(n) (Eq. (15)). Parameters: ND = 6 × 1018 cm−3,

vth,i = 2.37 × 107 cm/s. STDT was turned off. Other parameters are given in Table 2.

Only if Ec(~rn) > Ec,ref, Ec,ref is updated and set to the value of Ec(~rn). The vertex ~rTOB is found for

Ec(~rTOB) = Ec,ref . The electron density is extracted at this vertex and used for the mobility model

in the next Newton step. A sufficient mesh refinement, in particular at the source-channel junction,

is required to ensure convergence.

6. Model Behavior in the Case of Strong Source-to-Drain Tunneling

Below 20 nm gate length, STDT is not negligible and notably increases the leakage current

in the sub-threshold regime [21, 22]. In the FET with LG = 7 nm and ND = 5 × 1019 cm−3, at

VDS = 50 mV and VGS = 0 V, over 95% of the spectral current is tunnel current. STDT can be

simulated in S-Device with the Nonlocal Tunneling (NLT) model [7] using the effective transport

mass extracted from QTx for the tunneling mass. The used values that change with body thickness

are given in Table. 2. Details of the NLT model can be found in Appendix B. The choice of

the model for the ballistic velocity has a strong effect on the sub-threshold current, which can

be explained as follows. When using the NLT model in S-Device, electrons “recombine” at the
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(d)(c)

(a) (b)

Figure 11: Profiles of ψn(x) and µ−1
b (x) along a cut line in the middle of the body of the In0.53Ga0.47As DG UTB FETs

with LG = 11.5 nm (black) and LG = 7 nm (red) at VDS = 50 mV (left) and VDS = VD,sat (right). Solid curves: vb(ψn)

(Eq. (9)), dashed curves: vb(n) (Eq. (15)). Parameters: VGS = 0.45 V (LG = 7 nm), VGS = 0.35 V (LG = 11.5 nm,

VDS = 50 mV), VGS = 0.27 V (LG = 11.5 nm, VDS = VD,sat), ND = 6 × 1018 cm−3, vth,i = 2.37 × 107 cm/s. Other

parameters are given in Table 2.

beginning of a tunnel path, whereas they are “generated” at its end. The generation/recombination

rates, shown in Fig. (12), are computed with the local QFPs at the classical turning points. These

G/R rates are the source/sink of an additional DD current which adds to the thermionic current

and determines the shape of the QFP in the self-consistent solution. As a result, the DD current

is driven by the gradient of this QFP, and the current level is the integral over the G/R rates with

the corresponding QFP values at the classical turning points. The profile of the current density in

Fig. (12) reveals a strong compensation of the oppositely flowing partial currents of recombining

and generated electrons in the channel region which leads to a sharp drop of the total current under

the gate. The small thermionic current (shown by the black curve in Fig. (12)) is not perfectly

constant due to a x-dependent y-component that still exists even in the narrow slab of only 2.8 nm

width. As the tunnel-generated density is much smaller than the channel doping in the simulated

transistors, it has no electrostatic effect, i.e. the tunnel barrier remains unchanged. Hence, the
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Figure 12: Profiles of the STDT rate (blue curve) and the current densities with STDT (red curve) and without STDT

(black curve) along a cut in the middle of the channel of the In0.53Ga0.47As DG UTB FET with LG = 7 nm. Parameters:

ND = 5 × 1019 cm−3, VDS = VGS = 50 mV. The vb-model as function of ψn (Eq. (9)) was used.

strong dependence of the off-current on the mobility model originates from the changed values of

ψn(x) at the classical turning points.

If the ballistic mobility, modeled by Eq. (5), becomes dominant, it strongly changes the shape

of the QFP ψn(x) (∼ ln n(x)) in the sub-threshold region. This is a consequence of current con-

servation enforced by the continuity equation and the small electron concentration in the channel.

Only a constant mobility has no effect (see Fig. 2). The high sensitivity of ψn(x) to the ballistic

mobility is demonstrated in Fig. 13 for LG = 11.5 nm. If STDT is absent (Fig. 13 a)), the edge

in the error-function-like profile becomes steeper with the ballistic mobilities - more pronounced

when the n-dependent model of the ballistic velocity is used. The position of the edge is not chan-

ged and remains at the center of the device. If the strong STDT is now turned on (Fig. 13 b)),

the slope further increases and the edge is shifted towards the drain. The electron quasi-Fermi

energies at the drain side increase which reduces the STDT rate and the off-current. In the case

of the n-dependent model of the ballistic velocity, the QFP shape degenerates into a step function

located at the channel-drain junction. The constant QFP under the gate suppresses the STDT rate

and, therefore, the sub-threshold current as shown in Fig. 14. This behavior can also be understood

analytically inserting the models of the ballistic mobility into the continuity equation and using a

simplistic x-dependence of the STDT rate.
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Figure 13: Profiles of the quasi-Fermi potential along a cut in the middle of the channel of the In0.53Ga0.47As DG

UTB FET with LG = 11.5 nm for different mobility models. a) STDT turned off, b) with STDT. Parameters: ND =

5 × 1019 cm−3, VDS = 0.05 V, VGS = -0.23 V.

7. Discussion

Introducing a ballistic mobility can be seen as the re-introduction of the hydrodynamic term in

the balance equation for the mean velocity. In FETs with ultra-short channels this term is crucial

to prevent the divergence of the DD current when LG → 0 and no series resistance is present. The

expression of the ballistic mobility contains the mean ballistic velocity. It’s determination would

necessitate the iterative solution of the whole equation system in the ballistic regime. In order to

avoid this, two explicit models of the mean ballistic velocity as function of solution variables were

suggested, vb(ψn) and vb(n). Utilizing the kinetic limit, locality can be approximately achieved in

the case of vb(ψn). In the vb(n)-model, the TOB density n(xTOB) has to be extracted which requires

to find the virtual source xTOB numerically. This is the only non-local remnant of the hydrodynamic

term. The models have no free parameters, but the mean injection velocity is not unique and can

serve as TCAD parameter with the mean thermal velocity as default.

The models were implemented in the Physical Model Interface of S-Device, and transfer cha-

racteristics of InGaAs DG FETs with LG ranging from 7 nm to 40 nm were simulated. InGaAs was

chosen because of the small transport and tunnel mass that both highlight the ballisticity effect and
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Figure 14: IDVGS-characteristics of an In0.53Ga0.47As DG UTB FET with LG = 11.5 nm for different mobility models.

STDT is included by the NLT model. Parameters: ND = 5 × 1019 cm−3, VDS = 50 mV.

the interplay with STDT. Benchmarking against real devices would require a fully characterized

(electrical and physical) ultra-short-channel FET which is not available. Instead, the simulations

were benchmarked against quantum-transport results obtained with QTx, but also here a precise

one-to-one comparison is impossible. This is mainly due to the different DOS models. The DOS in

S-Device is the common 3D DOS of a 3DEG populating one valley. (In all released versions of the

commercial simulator there are no low-dimensional DOS models.) QTx features the correct 2D

DOS of a 2DEG, and the sub-band dispersions are self-consistent Poisson-Schrödinger solutions.

For any comparison between S-Device and QTx the first step is always to match the electrostatics.

This is done at zero current to avoid any influence of the mobility model. Furthermore, a longer

gate is used in order to suppress the effect of charge penetration into the S-D potential barrier.

However, it is not possible to match the electrostatics over the entire VGS-range. In deep inversion,

not only the relative contribution of different sub-bands has changed, but also their dispersion. In

other words, the DOS in QTx self-consistently depends on the gate voltage, but is a constant in

S-Device.

The developed models of the ballistic velocity are oversimplified in the following sense. First,

the starting point of ballistic motion is not well defined. The virtual source has been chosen, but a

better option could be a point between the source-channel junction and xTOB. The practical advan-
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tage of xTOB is that it can be easily found numerically because of ∇Φ(x = xTOB) = 0. In 2D/3D

devices, under flat-band conditions, the point can degenerate to a contour line/surface. Second, the

injection velocity at the virtual source is, in general, not a mean thermal velocity. Even the mean

kinetic velocity has already increased here from the latter due to the steep density gradient (con-

tinuity equation holds in any transport regime). The mean ballistic velocity differs from the mean

kinetic velocity as result of the weak scattering related to the finite value of µd. The corresponding

small voltage drop adds to the possibly much greater voltage drop due to the source resistance.

Third, a local model requires to replace the QFP at xTOB by zero. This artificially increases the

mean ballistic velocity at the virtual source. Fourth, the locality in the range x < xTOB has the price

that the ballistic velocity is overestimated in the ψn-dependent model, but underestimated in the

n-dependent model.

The models of the ballistic velocity were derived for a homogeneous band structure (BS). Ho-

wever, alloy- or strain-induced gradients can be present in the channel of modern FETs. In the

TCAD simulator S-Device those gradients are treated by the driving force they induce in the cur-

rent equation. A similar term, the position-dependent Fermi statistics correction, was included in

the above simulations of the IV-characteristics. All those terms self-consistently change n, ψn, ψ′n,

and xTOB. As the models directly depend on them, they capture the influence of an inhomogeneous

BS to some extent. However, BS gradients, or even band edge discontinuities, could change the

injection velocity at xTOB significantly. A deeper investigation of BS inhomogeneities is beyond

the scope of the paper.

Under conditions where STDT dominates the current (high S/D doping, ultra-short channels,

deep sub-threshold regime) the ballistic mobility models cannot be used. The sharp maximum of

the STDT rate leads to a high local electron density exceeding the density of thermionic electrons.

This high local density has a catastrophic impact on the ballistic mobility which depends on ψ′n

in the denominator and either on the inverse density or on
√
ψn in the numerator. In turn, the

deformed QFPs shrink or even extinguish the tunnel current. This is an artifact, because the

true tunnel current is a spectral current that flows below the TOB. The generated density which

mimics this current has nothing to do with the thermionic density above the TOB in the model

of the ballistic velocity. One faces a fundamental TCAD problem here. The off-current becomes
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corrupted by the mobility model which is needed for the on-current, where, on the other hand,

the influence of STDT fades away. Thus, one cannot simulate the entire transfer characteristics

with the same model set. Obviously, if in the implemented NLT model of S-Device just the Fermi

levels of the S/D contact regions would be used (emission approach, ψn(x) → ψn(xS)Θ(xTOB −

x) + ψn(xD)Θ(x − xTOB)), the mobility would not change the STDT rate at all. This shows that not

only the concept of a local QFP breaks down in the STDT regime but also the concept of a mean

ballistic velocity. In other words, the situation in the deep sub-threshold region of an ultra-short

FET becomes comparable to a MIM (metal-insulator-metal) structure where a ψn(x) does not exist

in the insulator.

Appendix A

This appendix presents the derivation of Eq. (14) which relates nTOB(x) to n(x) in the chan-

nel region. Assuming Maxwell-Boltzmann statistics and a parabolic conduction band (CB), the

density is given by

n(x) = Nc
2
√
π

∫ ∞

Ec(x)
kBT

dε

√
ε −

Ec(x)
kBT

exp
(
−
ε − EF,n(x)

kBT

)
= Nc exp

(
−
ψn(x) + Ec(x)/q

VT

)
, (A1)

where Ec(x) is the energy of the CB edge, Nc the effective CB DOS, and EF,n(x) the quasi-Fermi

energy EF,n(x) = −qψn(x). The TOB density is computed with the same integrand, but the lower

integration limit has to be replaced by the energy of the TOB ETOB = Ec(xTOB):

nTOB(x) = Nc
2
√
π

∫ ∞

ETOB
kBT

dε

√
ε −

Ec(x)
kBT

exp
(
−
ε − EF,n(x)

kBT

)

= Nc
2
√
π

∫ ∞

0
dε

√
ε +

ETOB − Ec(x)
kBT

e−ε exp
(
−
ψn(x) + ETOB/q

VT

)
. (A2)

The last integral is proportional to the incomplete Gamma function [20]

Γ

(
3
2
, b

)
= e−b

∫ ∞

0
dε
√
ε + b e−ε . (A3)
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Expressing energies by the electrostatic potential, i.e. ETOB − Ec(x) = qΦ(x)− qΦ(xTOB), the TOB

density can be written with (A3) as

nTOB(x) = exp
(

ETOB − Ec(x)
qVT

)
Nc

2
√
π

Γ

(
3
2
,

ETOB − Ec(x)
qVT

)
exp

(
−

qψn(x) + ETOB

qVT

)
= Nc

2
√
π

Γ

(
3
2
,

Φ(x) − Φ(xTOB)
VT

)
exp

(
−
ψn(x) − Ec(x)/q

VT

)
=

2
√
π

Γ

(
3
2
,

Φ(x) − Φ(xTOB)
VT

)
n(x) (A4)

which is Eq. (14). The assumption of Maxwell-Boltzmann statistics holds in a large part of the

channel, but breaks down where Ec(x) − EF,n(x) < kBT , i.e. near the pn-junctions (see Fig. 7).

Since Γ
(

3
2 , 0

)
=
√
π/2 it follows that n(xTOB) = nTOB(xTOB) as required.

Appendix B

The Nonlocal Tunneling (NLT) model in S-Device [7] is an adaptation of the Schottky barrier

model originally proposed in Ref. [23] to a general barrier that carriers encounter in a device. The

actual spectral tunnel current through the source-to-drain potential barrier up to ETOB is mimicked

by a generation-recombination current with the net rate

Rn(u, l, ε)−Gn(u, l, ε) =
4πq2m0kBT

h3 δ [ε − Ec(u)] δ [ε − Ec(l)] |F(u)||F(l)|Θ [−F(u)] Θ [F(l)] ×

× Tn(u, l, ε)
{

ln
(
1 + exp

[
EF,n(u) − ε

kBT

])
− ln

(
1 + exp

[
EF,n(l) − ε

kBT

])}
, (B1)

where u and l are positions on a tunnel path with energy ε, F(x) = dΦ(x)/dx is the local field

strength, and

Tn(u, l, ε) = exp
(
−

2
~

∫ u

l
dx

√
2me[Ec(x) − ε] Θ[Ec(x) − ε]

)
(B2)

the WKB transmission probability. The contribution to the STDT current density by electrons that

tunnel from the CB edge at points ahead u, to the CB edge at the point u is obtained by a double

integral over the net rate:

d jtun,n

du
(u) = −q

∫ u

−∞

dl
∫ ∞

−∞

dε [Rn(u, l, ε) −Gn(u, l, ε)] . (B3)
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