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Charge transport through ultra�thin dielec�
tric barriers is of considerable interest for vari�
ous applications� such as advanced MOSFETs
���� EPROMs andMIS solar cells� In the thick�
ness range ���	
nm direct tunneling between
the two electrodes of a MOS system is becom�
ing the main mechanism� A fast and accu�
rate computation of the transmission coe��
cient �TC
 T �E
 as function of applied gate
voltage is a condition for the numerical simu�
lation of the elastic tunnel current� Restricting
to electrons� the current density from the so�
lution of the �D barrier penetration problem
��� reads
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and the normalized quasi Fermi levels �F�S �
�F�M of the electrodes� Approximating in�
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Figure � Idealized potential barrier due to an
oxide of � nm thickness with �solid curve� and
without �dashed curve� image force� Parame�
ters� �ox � 	��� �B � 	��� eV � mox � ���m��

coming and outgoing states by plane waves�
the oxide barrier by a trapezoid �no �xed

charges
� and assuming a parabolic E��k
 re�
lation in the barrier region as well� the TC is
found by the common matching procedure �	�
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where Ai� � Ai ���B � �kBT 
 ��h�ox�� Aid �
Ai ���B � qFoxd� �kBT 
��h�ox� and �h�ox �
�q��h�F �

ox��mox
��	� �B denotes the barrier
height for electrons� mM � mox� and mSi are
the e�ective electronmasses in the three mate�
rials� respectively� kF and kSi are the momenta
in the electrodes� and �� � �h�ox�qFox� The
E��dependence of T �E
 was neglected replac�
ing kM �E�
 by the Fermi momentum kF � The
e�ect of the classical image force on the barrier
potential is demonstrated in Fig� �� Although
there is substantial controversy about the im�
age force �the same holds for the value of �ox�
the signi�cance of a band structure in case of
only a few molecular layers� and the issue of
k��conservation
� it � or a proper modi�ca�
tion � should be most important for ultra�thin
oxides with large TCs�
For the purpose of device simulation both

the numerical solution of the Schr�odinger
equation and the WKB approximation� which
includes the numerical action integral� are too
time�consuming� since the outer numerical in�
tegration is unavoidable to obtain the current�
An analytical function T �E
 is desirable that
takes into account the image force in a better
way than by the lowering of a trapezoidal bar�
rier� Based on the observation that the tun�
nel probability is mainly determined by the
action S of the barrier� we propose the fol�
lowing �pseudobarrier method�� The actual
barrier potential is mapped to a trapezoid �the
�pseudobarrier�
 under the constraint of equal
actions S

Stra�E
 � Sim�E
 	

where the subscripts refer to �trapezoid� and
�image force�� For the thickness d of the

�



pseudobarrier we use the distance between the
two turning points at the energy of the silicon
conduction band edge at the interface� The ac�
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Figure � Calculated transmission probabilities
for a MOS structure with � nm oxide thickness�
Parameters� Fox � ��MV�cm� �ox � 	���
�B � 	��� eV � mox � ���m��

tion of the trapezoidal pseudobarrier Stra�E

has a simple analytical form� whereas Sim�E

has to be found by numerical integration� In
balancing the actions� the barrier height of the
trapezoid is released as a free parameter� If
this is done for each energy of the tunneling
electrons� the barrier height becomes a func�
tion of energy� Since �B�E
 results from a
numerical iteration� there would be no advan�
tage in terms of CPU time consumption as
compared to the WKB approximation� Tak�
ing into the bargain some loss in accuracy�
we approximate �B�E
 by an analytical func�
tion in the following way� The action bal�
ance is applied to only three energy values
Ej �j � �	 �	 �
 in the lower part of the barrier�
which gives us the pseudobarrier heights for
these energies� The complete function �B�E

is then found by parabolic interpolation
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The accuracy of this approach depends slightly
on the choice of E������ However� an excellent
overall�agreement with the numerical solution
of the Schr�odinger equation was found for ox�
ide thicknesses in the range of ������
nm� Fig�
ure � illustrates the di�erent approximations
in the case of a � nm barrier�
The surprising agreement is achieved by

varying only one parameter of the pseudobar�
rier � its height� One and the same set E�����

also yields a comparable accuracy for di�erent

oxide �elds which makes the method applica�
ble to the simulation of IV �curves� Figure 	
was obtained assuming that Ec�d
�EF�S�d
 �
��� eV � const and that the voltage drops only
over the barrier� In Fig� � the voltage range
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Figure 	 IV �characteristics of an Al�SiO��
Si�n� diode for di	erent oxide thicknesses�
Solid curves� numerical solution of the
Schr
odinger equation� dashed curves� pseudo�
barrier method� Parameters� �ox � ���	�
�B � 	��� eV � mox � ���m��

was extended to the Fowler�Nordheim regime�
Again� the pseudobarrier method gives results
very close to the numerical solution of the
Schr�odinger equation�
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Figure � IV �characteristics of an Al�SiO��
Si�n� diode with ��� nm oxide thickness for dif�
ferent temperatures� Solid curves� numerical
solution of the Schr
odinger equation� dashed
curves� pseudobarrier method� Parameters�
see Fig� �
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