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Abstract— The density gradient model (DG) is tested for its
ability to describe tunneling currents through thin insulating
barriers. Simulations of single barriers (MOS diodes, MOS-
FETs) and double barriers show the limitations of the DG model.
As a reference the Schrödinger-Bardeen method is taken. ‘Reso-
nant tunneling’ in the density gradient model turns out to be an
artifact related to large density differences in the semiconductor
regions.

I. INTRODUCTION

Quantum effects in modern deep-submicron devices are of
growing interest. A prominent unwanted quantum effect in
MOSFETs is direct tunneling through the thin gate dielectric,
which increases the off-state power consumption. Another
important effect is quantum depletion, the carrier density de-
cay towards barriers. In MOSFETs this leads to a shift of
the inversion charge maximum away from the oxide interface
which in turn causes a shift of the threshold voltage, a low-
ering of the gate capacitance and an apparent increase of the
oxide thickness.

There are several methods that can be combined with con-
ventional drift diffusion simulators to include these effects:

Quantum depletion effects can be accurately modeled by
solving the one-dimensional Schrödinger equation along the
confinement direction self-consistently coupled with the de-
vice equations [1].

Established methods for modeling direct tunneling [2] are
the calculation of a transmission coefficient [3] and the use
of Bardeen’s transfer Hamiltonian [4, 5] with either quasi-
classically Wentzel-Kramers-Brillouin (WKB) wave func-
tions or self-consistently obtained numerical solutions of the
1D-Schrödinger equation [1].

An interesting, computational efficient alternative for in-
cluding quantum effects into conventional device simulators
is the density gradient (DG) model. This model introduces a
quantum correction term containing higher derivatives of the
density or the electrostatic potential into the usual drift diffu-
sion or hydrodynamic device equations [6–9]. The DG model
is known to describe quantum depletion effects very well [1].
It also has been applied to one-dimensional insulator tunnel-
ing [10] (using two carrier populations according to tunnel-
ing direction) and source to drain tunneling in short channel
MOSFETs [11].

The aim of this paper is to demonstrate the degree to which
the DG transport model is capable of reproducing direct tun-
neling currents through insulating barriers. As a reference
we use simulations solving the one-dimensional Schrödinger

equation combined with Bardeen’s transfer Hamiltonian
method for calculating the tunneling current [1, 4]. All de-
vices studied here are silicon based with single or double SiO�

barriers.
The DG model and modifications for non-equilibrium are

described in section II. Simulations of tunneling characteris-
tics with these models and the reference method are presented
in section III. The findings are discussed in section IV.

II. MODEL

The density gradient (DG) model (or ‘quantum drift diffu-
sion’, QDD) [1, 7, 9, 12, 13] can be viewed as a modification
of the usual drift diffusion (DD) model. A ‘quantum poten-
tial’ � is introduced into the classical formulas of the electron
density � and the current density ��� (we restrict the consider-
ations below to electrons, for holes corresponding expressions
exist):
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with � � ���	 , the electron quasi-Fermi energy �F��, the
conduction band edge �c and a mass driving term �� �
��	 
���c from DOS discontinuities. In the formulation
presented here, � is the solution of the partial differential
equation:

� � �
���

��


�
�� 
���


�

�
�� 
����

�

�
(3)

� �
����

��


�
��

�
��F����

�


�

�

�
�
�
��F����

����

 (4)

where � � �, � is a fit factor and � � �c 
 �� 
 �.
Together with Poisson and continuity equation the formulas
(1,2,4) form a system that has to be solved self-consistently.

The density gradient model is derived as a moment expan-
sion of the Wigner-Boltzmann [14] or a corresponding quan-
tum Liouville equation [9] and a situation close to thermal
equilibrium is assumed. The derivation in [1] calculates an
equilibrium solution for the density matrix as a first order per-
turbation in ��. Additionally it is assumed that �� varies only
slowly on the scale of the thermal de-Broglie wavelength. The
result is a formulation given by (1,2,3) with � � � where in-
stead of the density � actually the classical equilibrium den-
sity ��� � ��������� appears in (3). When this is replaced



by the quantum mechanical density � we obtain (3) with �
appearing also on the right hand side. This replacement gen-
erates a smooth � even at band edge jumps ��� � ��	 ,
which violates the assumptions made above, but corresponds
to the situation encountered at the Si-SiO� interface. This
step still lacks a satisfactory justification. Nevertheless the
DG model is able to describe equilibrium densities in MOS
channels very well when compared to a more accurate 1D-
Schrödinger solver [1].

‘Tunneling’ in the DG formulation originates from the re-
duction of the barrier1 by the presence of � in the current
equation (2). The carriers only have to surmount the resid-
ual barrier �. The tunneling current is not separated from the
drift-diffusion current and hence is determined by the mobility
�ox in the oxide, which we use as a fitting parameter.

In order to allow for transport modeling a space dependent
quasi-Fermi energy is introduced in (4). This expression can
be generalized by setting � �� � [15]. As the derivation of Eq.
(3) is valid close to equilibrium only, the proper value for �
is not known from theory. For tunneling, �F�� varies signifi-
cantly over the barrier, and the value for � matters. Therefore,
we examine the cases ��� � � and ��� � � in oxide regions.
In semiconductor regions, �F�� varies little and we use � � �
throughout.

III. SIMULATIONS AND RESULTS

Single and double barrier devices were studied with the
simulation tool DESSIS. The implementation of the density
gradient model is described in [15]. As a reference the one-
dimensional Schrödinger equation is solved self-consistently
coupled to the potential in a region containing the oxide and a
part of the substrate next to it. The Bardeen tunneling current
is then calculated a posteriori using the resulting numerical
wave functions and assuming plane waves in the polysilicon
gate [1].

A. N-channel MOSFET

Gate tunneling characteristics (gate current �Gate versus gate
voltage �GS) were produced for symmetric n-channel MOS-
FETs2 with two oxide thicknesses (Fig. 1). Source, drain and
back contact were kept at zero potential.

For ��� � � and small positive bias (�GS � ���V) one ob-
tains DG curves close to Schrödinger-Bardeen (SB) results by
using an oxide mobility �ox � ���� cm�/Vs. However, for
�GS � � there is a strong discrepancy, the most peculiar fea-
ture being a current peak very close to 0V and a minimum
enclosing a region��V� �GS � �V where negative differen-
tial resistance (NDR) occurs.

Using ��� � � yields monotonously rising currents, which
are, however, too high for positive and too low for negative
bias. Hence, fitting �ox does not improve the situation.

For the 2nm device additional SB simulations have been
carried out including a self-consistent current calculation.
�The insulator is treated as a semiconductor with a wide bandgap and insu-

lator parameters.
�For all simulated devices the term MOS actually implies a highly n-doped

(���� cm��) polysilicon region instead of metal.
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Fig. 1. Gate ‘tunneling’ currents in n-channel MOSFETs. Density gradient
results (symbols) are compared to Schrödinger-Bardeen (lines).
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Fig. 2. DG ‘tunneling’ currents for MOS diodes (structure n�Polysilicon–
Oxide–Si) with different Si dopings. All curves are shown for ��� � � unless
indicated otherwise.

Apart from a worse convergence behaviour no difference was
found for the current characteristics. The current is too small
to add a significant contribution to the substrate space charge.

B. MOS-diode

For a simpler system, a one-dimensional MOS-diode with
a 2nm oxide, similar DG current characteristics are obtained
as for the MOSFET (symbols in Fig. 2). The name �GS ap-
plies now to the voltage at the n�-polysilicon ‘gate’ contact
with respect to the substrate. Here, having no source and
drain contact the carrier supply is limited by thermal gener-
ation. For a better comparability, the lifetimes of SRH gen-
eration/recombination in the substrate were set to extremely
small values.
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Fig. 3. Electron density � (a) and effective band edge � (b) along a MOS
diode at different gate voltages for ��� � � (lines) and ��� � � (symbols).
The structure (from left to right) is: n�-Polysilicon—Oxide—Si. The oxide-
semiconductor interfaces are located at 0 and -2nm, respectively. The inset
in b) shows the equilibrium effective barrier � compared to the conduction
band edge ��. The small steps in � at the interfaces are due to the DOS
discontinuities �� that are not included in this graph.

The electron density � and the residual barrier � are shown
for ��� � � and ��� � � in Fig. 3a) and b), respectively. The
inset in Fig. 3b) compares the conduction band edge � � with
the effective band edge � for the case of thermal equilibrium.
The barrier is largely reduced. In equilibrium the two cases
for ��� are equivalent, but with ceasing inversion they exhibit
different profiles in the oxide as well as in the substrate region
next to it. Most striking is the discontinuity of the density at
the oxide-silicon interface for ��� � �.

Exploring the case ��� � � for different substrate doping
(Fig. 2) we find that the NDR behaviour vanishes for sym-
metric doping, as expected for a symmetric device structure.

C. Resonant tunneling diode

NDR is an effect known to occur in resonant tunneling de-
vices (RTDs). The results with single barrier MOS-structures
motivated the investigation of the DG model applied to sili-
con RTDs with two SiO� barriers enclosing a quantum well
of varying thickness. The structure is shown in Fig. 4. The
well is intrinsic and the outer regions are highly n-doped
(��������). The barriers are 1nm wide. For all following
results ����� was used.

Current characteristics obtained from DG simulations are
shown in Fig. 5 (dashed lines). In addition, a curve for a single
oxide barrier between intrinsic and n-doped silicon is included
(circles in Fig. 5) which seems to be approached by the double
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Fig. 4. Structure of a RTD as used in the simulations. The well consists of an
intrinsic silicon region sandwiched between two SiO� barriers of 1nm width.
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Fig. 5. Currents for RTDs with different well lengths calculated with the DG
model (��� � �). The small pictures illustrate the device structure. There are
three kinds: The RTDs have an intrinsic well with different lengths (dashed
lines, white middle regions). One RTD has a n-doping of �������� also
in the well (solid line, shaded middle region). The third structure is a single
barrier MOS-diode with an intrinsic substrate (�).

barrier devices, if the well length is increased. Furthermore,
the NDR-like feature vanishes, if the outer regions and also
the well are equally n-doped (solid line in Fig. 5).

The existence of the DG current peak and a corresponding
NDR is related to the dimension of the intrinsic well region.
It is present if the well extends over 5nm or more. For a nar-
row well, measuring only 1nm, this effect does not appear
(thin dashed line in Fig. 5). For this small well length NDR
reappears only by switching to p-doping in one of the outer
regions, i.e. when the difference in density across the whole
device is increased, which is shown in Fig. 6 (solid line).

In Fig. 6 characteristics of SB and DG simulations are com-
pared for a RTD having a p-doped and a n�-doped electrode
and an intrinsic well with a length of 1nm. The SB character-
istics exhibits two main resonance peaks (symbols in Fig. 6)
that are clearly different in number, location and peak value
from the single current peak that is obtained for the same de-
vice with the DG model (solid line in Fig. 6). Consequently,
the DG model can not reproduce the resonance effects of this
device.

For the corresponding symmetrically n�-doped device with
an intrinsic well, the peak is absent (dashed line in Fig. 6). As
seen before, this is related to the small well dimension. This
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Fig. 6. DG current characteristics for an RTD with asymmetrical (p-i-n�)
doping (solid line) compared to Schrödinger-Bardeen (symbols). A symmet-
rically doped device (n�-i-n�) is also shown (dashed lines). Well and barriers
are both 1nm wide.

curve, like for a WKB approximation, shows no resonance but
seems to depict an average of the SB characteristics.

IV. CONCLUSION

The DG model has been used to simulate electron tunnel-
ing across oxide barriers in silicon MOSFETs, MOS-diodes
and RTDs. The modified model (��� � �) produces discon-
tinuous carrier densities, if tunneling occurs from high to low
density regions. Non-monotonous current-voltage curves are
observed for standard (� � �) DG simulations of single bar-
rier as well as double barrier structures.

The negative differential resistance vanishes, if both sides
of a barrier are symmetrically n-doped or bias conditions are

such that high electron densities exist on both sides (inver-
sion). Only in this case a satisfying description similar to the
WKB approximation can be obtained. Thus, the presence of
NDR-features is related to large density differences across the
barrier.

Particularly for RTDs a NDR-like feature in the DG sim-
ulation disappears, if all semiconductor regions are equally
doped. Furthermore, the resonances of a Schrödinger-
Bardeen simulation of a RTD are not related to the DG current
peak. Therefore this peak is not related to resonant tunnel-
ing. The similarities between single and double barriers also
indicate that these features are not caused by quantum inter-
ference. They are an artifact of the standard DG model which
has to be further examined.
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