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ABSTRACT

In this paper we present a new one-particle Monte
Carlo iteration scheme to self-consistently take into ac-
count generation-recombination processes as well as quan-
tum corrections. The basic idea is to couple the Boltz-
mann transport equation (or the Boltzmann-Wigner equa-
tion) not only with the Poisson equation, but also with
the continuity equation by using exact transport coef-
ficients from the Monte Carlo simulation in high-field
regions and the known analytical transport coefficients
in low-field regions. This approach is useful e.g. for
the simulation of floating-body effects [1] in nanoscale
double- and multi-gate SOI MOSFETs.
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1 INTRODUCTION

17 years ago F. Venturi et al. published the now
well-known one-particle Monte Carlo (OPMC) method
[2],[3]. The idea of the method is to find a solution to
the Boltzmann transport equation (BTE) coupled with
the Poisson equation by alternating OPMC simulations
and updates of the electric field. This method has the
advantage to be ”self-consistent” in the sense that ide-
ally after the iteration the density from the Monte Carlo
(MC) simulation and the electric field exactly solve the
Poisson equation. The OPMC scheme has also the im-
portant advantage to be highly parallelizable due to the
small number of updates of the Poisson equation needed
as compared to the many-particle MC method. How-
ever, the standard OPMC method is still plagued with
two important problems. Firstly, by restricting the MC
simulation to only a part of the device (a so-called ”win-
dow”), the current continuity between the exterior and
the interior of the window is violated. This may lead to
inconsistent results. Secondly, and this is also a prob-
lem of the ensemble MC method, there is no way to take
the effects of generation-recombination (G-R) processes
(like e.g. Shockley-Read-Hall (SRH) or impact ionisa-
tion) into account. Here, we like to insist on the term
”effects”. It is clear that one can compute the mean G-
R rate in each point of a device also during a MC sim-

ulation, but to the authors best knowledge, no scheme
has ever been proposed to compute I-V curves including
G-R processes in a self-consistent way by a MC device
simulation. We will present, for the first time, a gen-
eral iteration scheme which keeps all advantages of the
OPMC method, but solves the two problems outlined
above. This scheme holds for any BTE and does not re-
quire any approximation besides those already present
in the BTE itself. We will then give results for a double
gate MOSFET.

2 THEORY

We found a general method and a general discreti-
sation scheme [4],[5] that can be applied at least to any
semiconductor BTE (linear and nonlinear) to compute
moments of its inverse scattering operator S−1

g with the
vital property:

< S−1

g |S|f >=< g|f > − < g|feq > . (1)

Here, S is the scattering operator (collision term in the
rhs of the BTE), feq the equilibrium distribution func-
tion, and f and g are arbitrary continuous functions.
Based on this theory, exact mobility tensors µij and dif-
fusion tensors Dij defined as

µij :=
q

n~
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∂kj

fd3k, (2)

Dij := −
1

n

∫

K

S−1

vi
vjfd3k, (3)

can be locally computed during a MC device simulation.
Using these tensors, the S−1

~v
-moment of the stationary

BTE for electrons (the current equation) can be written
as

qnµ~E + q∇T
r (nD) = ~J. (4)

To solve Eq. (4) coupled with the linear Poisson equa-
tion, the continuity equation

−∇r
~J = q(G − R) (5)

can be used. Eq. (5) is interesting, because it contains
information from the MC simulation and G-R processes
at the same time. Thus, solving Eq. (5) and its equiva-
lent for holes coupled with the linear Poisson equation, a



new electric field can be computed, which contains the
whole MC physics coupled with G-R processes. This
new electric field can then be used for the next OPMC
simulation and so on. This defines our new iterative
scheme. The advantage of this scheme, besides the pos-
sibility to include G-R processes, is that the low-field
transport coefficients can be used in all parts of the de-
vice where the electric field is sufficiently small. These
coefficients are known and do not need to be computed
during the simulation. This allows to apply the MC
technique only to the regions where the Drift-Diffusion
model fails without sacrificing the current continuity
equation. Note that our new scheme can be easily cou-
pled with quantum correction terms.

3 NUMERICAL METHODS

To solve Eq. (5) coupled to the Poisson equation, the
finite element method (FEM) described in [4] is used.

3.1 Extraction of the Transport

Coefficients

From Eqs. (2) and (3) one can see that the trans-
port coefficients are functions of the position which can
be quite complicated. In the following, all terms la-
beled with MC are assumed to be computed using the
distribution function fMC resulting from a MC simula-
tion. To avoid the explicit computation of µMC

ij (~r) and

DMC
ij (~r) (Eqs.(2) and (3)) on each element Tl of the grid

(used to solve Eq.(5)), one can replace them by simpler
functions µTM

ij (~r) and DTM
ij (~r) as long as the conditions

∫

Tl

nMC(~r)µMC
ij (~r)d3r =

∫
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nMC(~r)µTM
ij (~r)d3r, (6)

and
∫
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∇T
r (nMC(~r)DMC(~r))d3r =

∫
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r (nMC(~r)DTM (~r))d3r, (7)

are fulfilled for all elements Tl. This is because for the
FEM, only the integration of Eq. (5) with a test function
is relevant.

The simplest function fulfilling Eq. (6) is a constant.
Therefore, the mobility is taken as a constant 3× 3 ma-
trix on each element and is computed using the formula

µTM
ij :=

q
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T
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, (8)

which fulfils Eq. (6). The simplest function fulfilling
Eq. (7) is a linear one. The diffusivity tensor is therefore
taken as a 3 × 3 matrix being a linear function on each
element. For a triangle, it has the form

D
TM (~r) = D

1ξ1(~r) + D
2ξ2(~r) + D

3ξ3(~r), (9)

where ξj(~r) is the linear function which is 1 in the point
j and 0 in the others points and D

1 (resp. D
2 or D

3)
is a constant 3 × 3 matrix. The equivalent formula to
Eq. (8) can then be found by requiring the integral of
the function nMC(~r)DTM (~r) to be equal to the integral

of the function
∫

K
S−1

vi
vjf(~r,~k)d3k on each side of the

element Tl.

3.2 Iterative Scheme

Once the tensorial transport coefficients are extracted
from the MC simulation, Eq.(5) can be solved using our
FEM, and a new electric field can be computed. Then,
a new frozen-field MC simulation is started until the
transport coefficients can again be extracted. This it-
erative scheme may be repeated until a certain conver-
gence criterion is achieved. In our case the criterion is
that the current should fluctuate by less than 1%.

4 RESULTS

The new iteration scheme is applied to the simple
double gate structure illustrated in Fig. 1. The impact
ionisation (II) rate is computed during the MC simu-
lation and Shockley-Read-Hall recombination is added
via the usual model (e.g. [6]), using doping-dependent
life times τn,p(N):

τn,p(N) = τ
n,p
min +

τn,p
max − τ

n,p
min

1 +
(

N
1016cm−3

) , (10)

where τn (resp. τp) is the local electron (resp. hole) life
time, and N is the total doping concentration. For the
simulations the parameters

τ
n,p
min = 0, τn

max = 10−5s, τp
max = 3 · 10−6s, (11)

were used.

Results are shown for a constant gate voltage (Vg)
of 1.1V and for a drain bias (Vd) ranging from 0.3V to
1.3V . Fig. 1 shows the SRH recombination rate. An
interesting feature is that the maximum of the SRH re-
combination rate is located in the source region of the
device. As the device is small, the holes generated in
the drain region have no time to recombine noticeably
before arriving in the source region.

Figs. 2 to 5 show the effective (i.e. weighted with the
associated carrier density) transport coefficients along
the transport direction (x-direction, see Fig. 1).

Fig. 7 shows the effective II rate as obtained by the
new method and Fig. 6 shows the hole current as a func-
tion of the drain voltage. It is noteworthy that impact
ionisation starts between 0.8V and 0.9V i.e. before the
drain voltage has reached the band gap energy.



24nm

12nm

60nm

y
x

Source Drain

Figure 1: Double-gate MOSFET: Geometry and Shockley-Read-Hall recombination rate at Vd = Vg = 1.1V .
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Figure 2: Profile of the xx-component of the electron
effective mobility as function of the drain voltage at
Vg = 1.1V .
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Figure 3: Profile of the xx-component of the hole ef-
fective mobility as function of the drain voltage at
Vg = 1.1V .
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Figure 4: Profile of the xx-component of the electron
effective diffusivity as function of the drain voltage at
Vg = 1.1V .
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Figure 5: Profile of the xx-component of the hole ef-
fective diffusivity as function of the drain voltage at
Vg = 1.1V .
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Figure 6: Hole current as function of drain voltage at
Vg = 1.1V .
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Figure 7: Profile of the effective impact ionisation rate
as function of the drain voltage at Vg = 1.1V .

5 CONCLUSION

A new OPMC iteration scheme has been presented
to self-consistently take into account generation-recom-
bination processes. The basic idea is to couple the BTE
not only with the Poisson equation, but also with the
continuity equation by using the exact transport coeffi-
cients from the MC simulation in high-field regions and
the known analytical transport coefficients in low-field
regions. This approach is useful e.g. for the simulation
of floating-body effects in nanoscale double- and multi-
gate MOSFETs. Quantum corrections as described in
[7] could be easily added to this new scheme.
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