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In this paper, a comparison of three different models for the conductivity and mobility is given for

the case of silicon nanowire devices in the presence of electron-phonon scattering. The consistency

of all three models in the case of homogeneous nanowires is demonstrated. The scattering limited

conductivity and mobility is a well defined quantity in this case. For nonhomogeneous systems like

triple-gate nanowires FETs, these scattering limited quantities are no longer well defined for very

short gate lengths. The quality of the underlying assumptions and the physical interpretation of the

differences in the resulting transport characteristics are discussed. VC 2011 American Institute of
Physics. [doi:10.1063/1.3573487]

I. INTRODUCTION

The physical properties of the electron inversion layer

define the transport characteristics of devices like nanowire

FETs (NWFET). With the reduction of both the cross section

and the gate length down to nanometer scale, the conductiv-

ity and mobility eventually show quite different behavior

when compared to devices with a characteristic length scales

of tenth of microns. This is due to the nonhomogeneity of

the inversion layer and the appearance of quantum mechani-

cal effects like tunneling. The scaling behavior of the con-

ductivity and the mobility as a function of the gate length

has been investigated in numerous experimental1–5 and sim-

ulational studies.6–9 One difficulty lies in the extraction of

the mobility from measurements of short-channel FET’s:

Since different measurement techniques can be applied, a

comparison of the data from different publications is not

straightforward. A second difficulty is the assumption of dif-

ferent functional dependencies of the current on the mobility

and geometrical quantities such as the (effective) gate length

in the different publications. Therefore the question arises,

whether these different models for the conductivity and mo-

bility can yield identical results. It is the goal of this paper to

give a computational comparison of three different models,

which are defined in Sec. II B, and discuss the underlying

assumptions and the physical interpretation of the differen-

ces in the resulting transport characteristics. To study the

transport properties of silicon nanowires in the presence of

electron-phonon scattering, the nonequilibrium Green’s

functions formalism10,11 (NEGF) is employed. The quantum

transport equations are given in Sec. II A. In Sec. II B the

different models for the calculation of the conductivity and

mobility are presented, which are then applied to two differ-

ent systems: a homogeneous nanowire in Sec. III A and a

triple-gate nanowire FET (TG-NWFET) in Sec. III B and

Sec. III C.

II. THEORY

A. Quantum transport equations

Assuming a parabolic band structure for silicon, we

express the effective mass Hamiltonian H(r) in the so-called

coupled mode expansion.12,13 The transport direction x coin-

cides with crystal direction h100i. The steady-state Dyson

and Keldysh equation14,15 for nanowire devices then read as

X
j;m

½Edijdnm � HijðxnÞ � RR
ijðxn; xm; EÞ�

� GR
jkðxm; xn0 ; EÞ ¼ dikdnn0 ;

(1)

and

G<
ij ðxn; xn0 ; EÞ ¼

X
k; l;m;m0

½GR
ikðxn; xm; EÞ

� R<
klðxm; xm0 ; EÞGA

ljðxm0 ; xn0 ; EÞ�; (2)

where GR and G< are the solution variables and i,j are the

mode indices. Carrier�carrier interaction is included in the

Hamiltonian via the Hartree potential. The retarded self-

energy RR contains the electron�phonon interaction in the

device as well as the boundary conditions:

RRðxn; xmÞ ¼ RR
scatðxn; xmÞ þ RR

bcðxn; xmÞ: (3)

The electron�phonon scattering is approximated as being

local in space;7

R<
i; jðxn; xm; EÞ ¼

X
k; l

C6
i; j; k; lG

<
k; lðxn; xm; E6�hxÞdn;m

RR
i; jðxn; xm; EÞ ¼ 1

2
½R>

i; jðxn; xm; EÞ � R<
i; jðxn; xm; EÞ�

þ iP

ð
dE0

2p

R>
i; jðxn; xm; E0<i; jðxn; xm; E0Þ

E� E0
; (4)

where P$dE0 is the principal part of the integration which is

not neglected in our calculation.16 The scattering parameters

are the same as in Refs. 7 and 17. The Green’s functions,a)Electronic mail: mfrey@iis.ee.ethz.ch.
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self-energies and electrostatic potential are iterated until

self-consistency is achieved.

B. Definition of conductivity and mobility

1. Kubo–Greenwood formula

Using linear response theory, the conductivity for an

open system with a continuous spectrum can be extracted

from equilibrium simulations by means of the Kubo–Green-

wood formula:18–20

r ¼
X

v

X
i; j

2pe2�h

V

ð
dE
@f ðEÞ
@l

dðE� HvÞ

� dðE� HvÞvij; vðEÞvji; vðEÞ; (5)

where the sum is taken overall valleys v and modes i, j, and

vij; v is the associated velocity. In terms of Green’s functions,

this can be rewritten as:21–23

r ¼
X

v

2pe2�h

ðm�vÞ
2V

ð
dE
@f ðEÞ
@l

1

4p2

� Tr½p_AvðEÞp_AvðEÞ�; (6)

where p
_

is the momentum operator and the spectral density

function is defined as:

AvðEÞ ¼ i½GR
v ðEÞ � GA

v ðEÞ�: (7)

Introducing coordinates leads to:21

r ¼
X

v

�2pe2�h3

ðm�vÞ
2V

ð
dE
@f ðEÞ
@l

1

4p2

ð1
�1

dx1

ð1
�1

dx2

� Tr½rx1
Avðx1; x2; EÞrx3

Avðx3; x4; EÞjx3¼x2

x4¼x1
�: (8)

For a homogeneous system, it can be shown23 that the lead-

ing term of Eq. (8) has the form:20,23

rðxnÞ ¼
X

v

X
i

e2

VðxnÞ

ð
dE
h si; vðxn; EÞ

m�v

�hReðkiÞ½ �2

2m�v

� Aii; vðxn; xn; EÞ @f ðEÞ
@l

i
; (9)

as expected from semiclassical transport theory, i.e., from

the Boltzmann equation. The individual quantities in Eq. (9)

are defined as follows:

si; vðxn; EÞ :¼ �h Im RR; scat
ii; v ðxn; xn; EÞ

h ih i�1

; (10)

ki : ¼ ki; vðxn; EÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�v E� Ei; vðxnÞ � RR; scat

ii; v ðxn; xn; EÞ
h ir

�h
; (11)

and VðxnÞ is the volume of the slice associated with xn.

From the definition of the conductivity, the mobility

lðxnÞ can be written as:7,24

lðxnÞ ¼
1

nðxnÞ
X

v

X
i

li; vðxnÞni; vðxnÞ;

¼ 1

enðxnÞ
X

v

X
i

ri; vðxnÞ;

¼ rðxnÞ
enðxnÞ

:

(12)

It is obvious, that in the case of a homogeneous system, the

local conductivity and mobility in Eq. (9) and Eq. (12) must

be constant throughout the device.

2. Macroscopic definition

The resistivity of a rectangular device, which in general

is an inhomogeneous system, is given by the partial deriva-

tive of the resistance

RðLÞ ¼ VDS

IDðLÞ
; (13)

with respect to the device length L:

qðLÞ :¼ @RðLÞ
@L

� Across; (14)

where VDS is the applied bias, IDðLÞ the total current and

Across is the uniform cross section of the device. The conduc-

tivity is then defined as the inverse of the resistivity:

rðLÞ :¼ ½qðLÞ��1 ¼ @RðLÞ
@L

� ��1

� 1

Across

: (15)

In this case, the conductivity and mobility are determined

from a nonequilibrium simulation. The mobility is obtained

by inserting Eq. (15) into Eq. (12).

3. Shur model

Following the concept of the simple Drude model, an

effective conductivity or mobility can be defined, to which

the current ID is proportional:

ID / reff , R / ðreffÞ�1: (16)

However, in devices such as nanowires, there are several

contributions to the resistance and these individual contribu-

tions show different scaling behavior with respect to the de-

vice geometry. Therefore, a distinction was introduced

between the contributions that can be associated with a well-

defined scattering mechanism, as for example electron-pho-

non scattering, while all other contributions are lumped into

a single term.8,25 The first type of contributions is labeled

scattering limited conductivity rscat while the latter gives rise

to the so-called ballistic conductivity rbal. The different con-

ductivities are related by assuming Matthiessen’s rule to be

valid:

1

reffðLÞ
:¼ 1

rscatðLÞ
þ 1

rbalðLÞ
: (17)
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This is equivalent to demand the additivity of the different

resistance contributions:

RðLÞ ¼ RscatðLÞ þ RbalðLÞ: (18)

Note that in order to determine rscatðLÞ, two types of none-

quilibrium simulations need to be carried out:

(1) A computation of the total current ID, including scatter-

ing effects, and

(2) the computation of Ibal
D , i.e., a ballistic simulation without

scattering effects

The quantity reffðLÞ is calculated in the following way:

reffðLÞ :¼ GðLÞ L

Across

� IDðLÞ
VDS

L

Across

: (19)

In Eq. (19) the conductance G(L) was approximated with the

ratio of the current divided by the applied voltage VDS, which

is only valid in the linear response regime, i.e., for a small

applied bias. The calculation of rbalðLÞ is done by using Ibal
D

instead of ID in Eq. (19).

Note that in Shur’s definition, the device length L (or the

gate length LG in case of TG-NWFETs) explicitly enters the

expressions for the conductivity and the mobility, unlike the

definitions in Secs. II B 1 and II B 2.

III. RESULTS

A. Conductivity of resistors

The first category of nanowire based devices used in this

study is labeled Resistors. The detailed specifications are: A

silicon cross-section of tSi � tSi ¼ 3� 3 nm2, a silicon diox-

ide layer of thickness tox ¼ 0:6 nm wrapped all around the

silicon, device lengths between L ¼ 10 nm and L ¼ 60 nm

with a homogeneous arsenic doping concentration of

ND ¼ 2e20 cm�3.

In the equilibrium state of a resistor with Ohmic con-

tacts, the electrostatic potential and therefore all subbands

must be constant along the transport direction x in the device.

This cannot be achieved by the standard boundary conditions

for the quantum transport equations, where scattering in the

contacts is ignored, resulting in the injection of coherent

states from the contacts into the device.26 Therefore, scatter-

ing in the contacts must be taken into account, resulting in

incoherent injection.27,28 In the case of local electron–pho-

non scattering, the equilibrium state of the (infinite) homoge-

neous system can be computed in an exact way, since the

analytical form of the Green’s functions are known. A

detailed description of the boundary conditions used in this

work can be found in the references.27,29

In order to be able to compare the conductivities

obtained from the three different models described in Sec.

II B, a restriction to the linear response regime is necessary.

In Fig. 1 the current is shown as function of a small applied

bias eVDS < kBT, for several device lengths. In Fig. 2 the

scaling behavior of the resistance

RðLÞ :¼ VDS

IDðLÞ
; (20)

as a function of the device length L is shown. As expected,

all curves collapse to a single straight line, i.e., the resistance

is of the form:

RðLÞ ¼ RscatðLÞ þ Rbal ¼ q
L

Across

þ ðGbalÞ�1; (21)

where q 6¼ qðLÞ and Rbal 6¼ RbalðLÞ are constants, solely

defined by the cross section and the material. Note that Rbal

in Eq. (21) must be computed from an equilibrium simula-

tion, since self-consistent nonequilibrium simulations within

the ballistic transport regime do not converge for resistors,

due to the lack of an internal resistance.29 Instead the Lan-

dauer–Büttiker formalism is used to compute Gbal from an

equilibrium simulation:30

Gbal ¼ 10:2
e2

h
! Rbal ¼ 2:5 kX: (22)

Despite this drawback, it is clear from the results in Fig. 2

that the quantity rscat in Eq. (17) is still well defined in the

case of resistors and can be calculated with the help of Eq.

(19) and Eq. (21). No such difficulties occur if the definition

(15) is applied. The derivative of the resistance with respect

to the device length is evaluated on a linear fit of the data, as

shown in Fig. 2:

FIG. 1. (Color online) The current is a linear function of the small applied bias.

FIG. 2. (Color online) For the Resistors, all resistance curves obtained for

the different applied voltages collapse to a single straight line, resulting in

Ohmic scaling behavior.
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@RðLÞ
@L

¼ 9662
X

nm
! r ¼ 0:80660:015

e2

ha0

: (23)

Extrapolating the linear fit toward L ! 0 yields the inverse

of the ballistic equilibrium conductance Gbal. It is straightfor-

ward to see from Eqs. (15) and (21), that the macroscopic

definition of the conductivity results in the scattering limited

conductivity rscat of Eq. (17). As the last step, the conductiv-

ity is computed by means of the Kubo–Greenwood formulas

(8) and (9). The summary of all results is given in Table I.

From the discussion above we conclude, that all defini-

tions yield the scattering limited conductivity rscat in the

case of Resistors.

B. Conductivity of triple-gate nanowire FETs

The second category of devices are TG-NWFETs. The

detailed specifications are: A silicon cross-section of

tSi � tSi ¼ 5� 5 nm2, a silicon dioxide layer of thickness

tox ¼ 0:6 nm wrapped all around the silicon, and various gate

lengths from LG ¼ 3 nm up to LG ¼ 40 nm. In all simulated

TG-NWFETs the source and drain extension are 10 nm long

and homogeneously doped with an arsenic doping concentra-

tion of ND ¼ 2e20 cm�3, while the channel remains undoped.

As in the case of the resistors in Sec. III A, a restriction

to the linear response regime is necessary in order to allow a

comparison of the different conductivity definitions. In the

following, a source-drain bias of VDS ¼ 5mV is used for all

nonequilibrium simulations. The scaling of the resistance

RðLGÞ as a function of the gate length LG for different gate

voltages VGS is shown in Fig. 3. In the limit LG ! 0 the TG-

NWFET becomes a resistor of device length L¼ 2� 10

nm¼ 20 nm. Therefore all curves for the different gate

voltages VGS merge at LG ¼ 0 nm. The scaling behavior of

the resistance in the interval LG ¼ 0! 10 nm is dominated

by the tunneling component of the current. Obviously the

change in the resistance is larger for smaller gate voltages,

i.e., when the source-to-drain barrier is higher. For larger

gate lengths 10nm < LG < 20 nm, the transition between the

ballistic regime and the Ohmic regime occurs. It is worth-

while to note, that the ballistic resistance does depend on the

gate length LG, but not on the length of the source-drain

extension, while the resistance associated with electron-pho-

non scattering depends on both. This is true for the case of

quantum transport as well as for semiclassical transport mod-

els based on the Boltzmann equation.6,31

In order to compute the conductivity from the macro-

scopic definition Eq. (15), the derivative is evaluated on a fit

F½RðLGÞ� of the data in Fig. 3, which is of the form

F½RðLGÞ� ¼ a � 1þ e�bðLG�cÞ
� ��1

þd � LG þ e; (24)

having five degrees of freedom a; b; c; d; e. For the compu-

tation of reff and rbal for TG-NWFETs using Shur’s defini-

tion, the device length L must be replaced by the gate length

LG in Eq. (19).9,32 Then rscat can be calculated from Eq.

(17). Unlike a resistor, a TG-NWFET is an inhomogeneous

system. Thus, strictly speaking, the Kubo–Greenwood for-

mula (9) is no longer valid. However it is plausible, that in

the limit of a vanishing bias VDS ! 0 and long gate lengths

LG � kT and LG � kmfp, where kT is the DeBroglie wave

length and kmfp is the mean free path, the inversion layer

under the gate contact is a quasihomogeneous system, deter-

mining the conductivity of the device. In the regime LG>	
kT ,

where tunneling and other coherent effects begin to occur,

this is no longer the case. To study the validity and the

breakdown of the Kubo-Greenwood formula, the respective

conductivities were evaluated in the middle of the gate. This

is in contrast to the macroscopic definition, where the influ-

ence of the entire device is automatically included, without

any ambiguity. In Shur’s definition, the influence of the

entire device enters through the current, yet two types of

simulations are required and an additional functional de-

pendence of the conductivity on the gate length is assumed.

As already mentioned, it also requires the validity of

TABLE I. A summary of the calculated conductivities from the different

definitions. The variance of the conductivity calculations Dr is also shown.

In the case of the Resistors they all coincide and yield the scattering limited

conductivity rscat.

Definition Eq. (8) Eq. (9) Eq. (15) Eq. (17)

r 0.831 0.816 0.806 0.802 e2ðha0Þ�1

Dr 0.010 0.011 0.015 0.015 e2ðha0Þ�1

FIG. 3. (Color online) The resistance of TG-NWFETs as a function of the

gate length and the gate voltage. The source-drain bias is VDS ¼ 5 mV.

FIG. 4. (Color online) The conductivities of TG-NWFETs computed with

the macroscopic definition (macro) of Eq. (15), using the fit formula given

in Eq. (24).
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Matthiessen’s rule. The results of the three definitions are

shown in Figs. 4–6. The relative differences are shown in Fig.

7, where the results from the Kubo–Greenwood formula and

Shur’s model are compared to the macroscopic definition:

X
VGS

jrKGðLG; VGSÞ � rMacroðLG; VGSÞj
rMacroðLG; VGSÞ

; (25)

and

X
VGS

jrshurðLG; VGSÞ � rMacroðLG; VGSÞj
rMacroðLG; VGSÞ

: (26)

For gate lengths LG 
 20 nm, the macroscopic and the

Kubo–Greenwood model are identical up to a numerical

error of 3%. For LG � 15 nm, which is in the transition

region between the ballistic and the Ohmic regime, this dif-

ference increases up to 5–6%, and increases further as the

gate length decreases, due to the breakdown of the assump-

tions for the Kubo–Greenwood model, i.e., the required qua-

sihomogeneity of the system.

Next we discuss the comparison of Shur’s model to the

macroscopic definition. The reason for the drastic relative

difference of 50% for LG ¼ 10 nm lies in the fact, that the

macroscopic definition automatically takes tunneling effects into

account, i.e., it can no longer be identified with rscat from the

Shur definition as in the case of the resistors. These tunneling

effects are dominant for short gate lengths and low gate voltages.

Although the relative difference between Shur’s model and the

macroscopic definition does decrease for increasing gate lengths,

it is still larger than 6% even for LG ¼ 40 nm. This is either due

to a higher numerical error of Shur’s method or a violation of an

underlying assumption. A small numerical error in reff and rbal

can lead to a relatively large error in

rscatðLGÞ ¼
reffðLGÞ � rbalðLGÞ
rbalðLGÞ � reffðLGÞ

; (27)

especially if current is dominated by ballistic effects, e.g.,

reff � rbal. On the other hand, a certain part of the ballistic

resistance Rbal ¼ VDS � ðIbal
D Þ
�1

is due to tunneling currents.

The assumption that such kind of resistance obeys Matthies-

sen’s rule is rather fallacious.

In the end, it is clear from Fig. 7 and the underlying equa-

tions that for large gate lengths LG > 40 nm, all three defini-

tions of the conductivity eventually yield the same result.

C. Mobility of triple-gate nanowire FETs

Using the definition in Eq. (12), the mobility can be com-

puted for the three different models, as shown in Figs. 8–10.

FIG. 6. (Color online) The conductivities rscat of TG-NWFETs computed

with Shur’s definition (Shur) in Eq. (17).

FIG. 7. (Color online) The relative differences of the conductivities as

defined in Eqs. (25) and (26).

FIG. 5. (Color online) The conductivities of TG-NWFETs computed with

the Kubo–Greenwood formula (KG) of Eq. (9), which was evaluated in the

middle of the channel: xn ¼ 0:5 � L.

FIG. 8. (Color online) The mobility computed with the macroscopic defini-

tion (macro) of Eqs. (15) and (12). Ninv was evaluated in the middle of the

channel: xn ¼ 0:5 � L.
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The inversion-charge density Ninv was evaluated in the middle

of the channel. While Ninv is almost constant for gate lengths

LG > 15 nm (and a fixed gate voltage), its value increases for

shorter gate lengths due to tunneling, resulting in a reduction of

the mobility. This effect is more pronounced in the case of high

source-to-drain barriers, i.e., for the lower gate voltages. Com-

paring the results of Fig. 8 to Fig. 9, we find a good agreement

between the macroscopic and the Kubo–Greenwood data for all

gate lengths LG 
 15 nm. This is trivial given the results for the

conductivity of the two models in Sec. III B On the other hand,

the mobility data computed with Shur’s model shows quite dif-

ferent characteristics for the gate lengths LG � 20 nm. While

the saturation mobility for the smaller gate lengths increases for

low values of Ninv, the decrease of the mobility in Fig. 10 is

stronger with increasing Ninv than in Fig. 8 and Fig. 9.

IV. CONCLUSION

The question of the proper definition for the scattering lim-

ited conductivity and mobility have been discussed for quantum

transport in silicon nanowires in the presence of electron-phonon

scattering. In the case of homogeneous systems as resistors, it

was shown that all three models discussed here coincide and

yield the scattering limited conductivity, which is a well defined

quantity for such systems. For nonhomogeneous systems as TG-

NWFETs, this is in general no longer the case, since there are

different contributions to the resistance with a completely differ-

ent scaling behavior. While the results for both conductivity and

mobility from the macroscopic model and the Kubo–Greenwood

formula match down to gate lengths of LG ¼ 15 nm with a rela-

tive difference of less than 6%, the results from Shur’s definition

deviate much stronger. For a very short gate length

LG ¼ 10 nm, the results of the models are in complete disagree-

ment. For long gate lengths LG 
 40 nm, when quasihomogene-

ity of the system is recovered, all results converge and the

scattering limited conductivity is well defined again.
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FIG. 10. (Color online) The mobility computed with Shur’s definition of

Eqs. (17) and (12). Ninv was evaluated in the middle of the channel:

xn ¼ 0:5 � L.

FIG. 9. (Color online) The mobility computed with the Kubo–Greenwood

formula (KG) in Eqs. (9) and (12). Ninv was evaluated in the middle of the

channel: xn ¼ 0:5 � L.
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