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It is demonstrated how band tail states in the semiconductor influence the performance of a Tunnel

Field Effect Transistor (TFET). As a consequence of the smoothened density of states (DOS)

around the band edges, the energetic overlap of conduction and valence band states occurs

gradually at the onset of band-to-band tunneling (BTBT), thus degrading the sub-threshold swing

(SS) of the TFET. The effect of the band tail states on the current-voltage characteristics is mod-

elled quantum-mechanically based on the idea of zero-phonon trap-assisted tunneling between

band and tail states. The latter are assumed to arise from a 3-dimensional pseudo-delta potential

proposed by Vinogradov [1]. This model potential allows the derivation of analytical expressions

for the generation rate covering the whole range from very strong to very weak localization of the

tail states. Comparison with direct BTBT in the one-band effective mass approximation reveals the

essential features of tail-to-band tunneling. Furthermore, an analytical solution for the problem of

tunneling from continuum states of the disturbed DOS to states in the opposite band is found, and

the differences to direct BTBT are worked out. Based on the analytical expressions, a semi-

classical model is implemented in a commercial device simulator which involves numerical inte-

gration along the tunnel paths. The impact of the tail states on the device performance is analyzed

for a nanowire Gate-All-Around TFET. The simulations show that tail states notably impact the

transfer characteristics of a TFET. It is found that exponentially decaying band tails result in a

stronger degradation of the SS than tail states with a Gaussian decay of their density. The devel-

oped model allows more realistic simulations of TFETs including their non-idealities. Published by
AIP Publishing. [http://dx.doi.org/10.1063/1.4994112]

I. INTRODUCTION

Tunnel Field Effect Transistors (TFETs) are considered

as a low-power alternative to the Metal-Oxide-

Semiconductor Field Effect Transistor (MOSFET) because

of their theoretical capability to exhibit sub-thermal sub-

threshold swing (SS).2,3 Band tail states have captured

renewed interest among TFET designers because of their

detrimental influence on the TFET characteristics.4,5 The

operation mode of a TFET is electron-hole pair generation

by band-to-band tunneling (BTBT) instead of thermionic

injection in a MOSFET. BTBT starts when the conduction

band (CB) edge energetically aligns with the valence band

(VB) edge. When both band edges are abrupt (as in an ideal

semiconductor), the energetic overlap takes place abruptly

which results in steeper switching of the device [Fig. 1(a)].

Band tails close to either of the bands represent a gradual

decay of the electron/hole density of states (DOS) into the

gap. Therefore, the energetic alignment of the two bands in

the presence of band tails takes place gradually which

degrades the SS of the TFET [Fig. 1(b)]. Besides DOS tails,

the SS of TFETs is mainly affected by Shockley-Read-Hall

(SRH) generation leakage and trap-assisted tunneling at

interfaces5 and in bulk regions.6 The latter can be viewed as

a field-enhanced multi-phonon process which depends on the

concentration of active defects and temperature. Another

field-enhanced generation process is tunnel-assisted impact

ionization7 which was recently identified as intrinsic limita-

tion to the SS of TFETs.8

Band tails can originate from random dopant placement

or the presence of defects, which gives rise to electronic

states in the forbidden gap close to the band edges.9–11,14

Random placement of the dopant atoms creates, on ioniza-

tion, randomly placed charge centers in the crystal lattice.

This forms the band tail states which are highly localized in

the warped region, but are strongly coupled to the nearest

band edge. The origin of band tails has been studied in detail

by many authors using different approaches. Kane derived

FIG. 1. Schematic band edge diagram of a semiconductor at the onset of

BTBT (a) in the absence of band tails and (b) when valence band tails are

present. In the latter case, the onset of BTBT is less sharp because of the

gradual increase of the DOS.
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the density of tail states originating from random dopant

fluctuation using the Thomas-Fermi approximation.15

Halperin and Lax20 used the minimum counting method and

computed the DOS tails numerically. Efros21 introduced an

optimal fluctuation method to derive the density of tail states

deep in the tail.

In the experimental analysis of the effect of tail states, the

DOS in the band gap is approximated by an exponential

(A exp ð�ðEc � EtÞ=gÞ) or by a Gaussian (A exp ð�ðEc

�EtÞ2=g2Þ) function.22 The characteristic energy g is obtained

from photoluminescence (PL) measurements of the semicon-

ductor. The value of g for bulk InAs was found to be 7 meV

(Refs. 23 and 24) for unintentionally doped InAs while being

25 meV (Ref. 25) in InSb when fitted to an exponential. For n-

doped GaAs, g ranges from 20 meV–25 meV.26 Conductivity

measurements, when fitted to a Gaussian decay mode, yielded

the value of g for GaAs to be around 60 meV.27

The effect of band tails on the transfer characteristics of

a nanowire TFET has been analyzed by Khayer and Lake4

using a Non-equilibrium Green’s Function approach. Their

study revealed a strong degradation of the TFET characteris-

tics in the presence of band tails. A characteristic tail energy

of g ¼ 25 meV was found to increase the SS by a factor of

four.

In Sec. II, we present a quantum-mechanical treatment

to analytically calculate the tunnel rate of electrons from VB

tail states into the CB. The entire range from very strong to

very weak localization is considered as well as the modifica-

tions for tunneling from continuum states of the non-ideal

VB DOS into CB states. For all cases, the essential differ-

ences compared to ideal direct BTBT are worked out. The

analytical results are then used to modify a semi-classical

BTBT rate which is implemented in a Finite Element

Method (FEM) based TCAD simulator. The impact of vari-

ous parameters of the model on the TFET performance is

studied for the case of a nanowire transistor in Sec. III. A

summary and the conclusions of the study are given in Secs.

IV and V, respectively. Appendixes A–D contain the details

of the analytical derivations.

II. QUANTUM-MECHANICAL MODEL FOR TUNNELING
BETWEEN TAIL AND BAND STATES

In the following, after introducing the DOS tail model,

three analytical models for the rate of tail-to-band tunneling

in a constant electric field will be derived based on the

degree of localization of the tail states (see Table I). They

are denoted model-0 in the case of strongly localized tail

states neglecting their field broadening, model-1 in the case

of field-broadened strongly localized tail states, and model-2
in the case of field-broadened weakly localized tail states.

A. DOS tail model

Random dopant distributions and crystal defects in the

semiconductor give rise to localized states with different

energies inside the band gap which in the aggregate form a

band tail. According to Kane’s theory of band tail states,15

the DOS of a semiconductor in the presence of random dop-

ant fluctuations takes the form

.t;e=hðEÞ ¼
ð2mt;e=hÞ3=2

2p2�h3

ffiffiffi
g
p

Yg=eðE=gÞ ; (1)

where mt;e=h is the effective mass of a carrier in the tail state,

�h is reduced Planck’s constant, and g is the characteristic

energy of the band tail. In Eq. (1), the energy E counts from

the respective band edge. In the case of Gaussian tails, the

function YðE=gÞ is given by

YgðxÞ ¼
1ffiffiffi
p
p
ðx

�1
df

ffiffiffiffiffiffiffiffiffiffiffi
x� f

p
e�f2

(2)

which in the limit x!1 turns into

YgðxÞ !
1

25=2x3=2
e�x2

: (3)

Therefore, if E� g; YgðE=gÞ can be approximated by Eq.

(3) and the tail DOS becomes

.t;e=hðEÞ ¼
ðmt;e=hÞ3=2

4p2�h3

g2

E3=2
exp � E=gð Þ2

h i
: (4)

Note that the approximation (4) cannot be used if jEj < g or

if E is an energy in the band. In this case, Eq. (1) has to be

applied which requires a numerical integration, or Eq. (3) is

empirically modified such that it approximates YgðxÞ up to

x¼ 0. A simple, but efficient modification is given by

YgðxÞ !
e�x2

25=2ðx3=2 þ sÞ
(5)

with s¼ 0.566. The modified expression for the tail DOS

then reads

.t;e=hðEÞ ¼
ðmt;e=hÞ3=2

4p2�h3

ffiffiffi
g
p

½ðE=gÞ3=2 þ s�
exp ½� E=gð Þ2� : (6)

In the case of exponential tails, the Gaussian function in the

integrand of Eq. (2) is replaced by an exponential function

and YðE=gÞ becomes

YeðxÞ ¼
1

2

ðx

�1
df

ffiffiffiffiffiffiffiffiffiffiffi
x� f

p
e�jfj (7)

which yields the correct ideal DOS in the limit g! 0. For

x< 0, the integral can be calculated exactly:

YeðxÞ ¼
1

4
ffiffiffi
p
p e�jxj; x < 0: (8)

For x> 0 (energies in the band), Eq. (7) has to be solved

numerically. Obviously, YeðxÞ !
ffiffiffi
x
p

for x!1.

TABLE I. Summary of analytical models of the tail-to-band tunnel rate.

Model Localization Field broadening

Model-0 Strong Neglected

Model-1 Strong Included

Model-2 Weak Included
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All functions defining Gaussian and exponential tails are

compared in Fig. 2.

B. Tunneling from/into tail states ignoring their life
time Broadening

In this subsection, tunneling from tail states at the VB

into the ideal CB is considered. For the rate derivation, it is

assumed that they are sufficiently localized such that the

pseudo-d-potential model1,16 can be used which enables to

express the transition rate between localized states near the

VB (energy Et, spatial density 1=ð2pr3
0Þ) and a CB state by17

Dt;cðE;E0;EtÞ ¼ 8p
P
~E

2
E2

t r3
0 .tð ~E;EtÞ .cðE0Þ : (9)

Here, P is the Cauchy principal value of integrals over
~E ¼ Eþ Eg, and .tð ~E;EtÞ denotes the density of the local-

ized single-level states

.tð ~E;EtÞ ¼
1

2pr3
0

dð ~E � EtÞ : (10)

The energy level Et of the tail state is measured from the VB

edge. The different energy variables in Eq. (9) and their

meaning in the derivation below are presented in Fig. 3.

For Eq. (10), the field effect on the localized state was

neglected.17 It will be included in Subsection II C. Note that

Eq. (9) is a special case of Eq. (27) which is derived in

Appendix A. The “effective” mass mt of the localized elec-

tron is simply related to its localization radius r0 by

Et ¼
�h2

2mtr2
0

; (11)

which can be viewed as fitting of the localization radius r0.

The mass mt appears as a result of the single-band envelope

method applied to the localized state, a method limited to a

single, parabolic, and isotropic band. This parameter takes

account of the presence of heavy and light holes and the

anisotropy of their bands. Deeper tail states might even be

affected by the conduction bands. Hence, mt becomes a

parameter of the analytical model. Table II lists the localiza-

tion radius r0 for various values of mt at three values of Et.

The tail DOS Eq. (1) (with E replaced by � ~E) is

assumed to be a dense ladder of single-level DOSs Eq. (10)

and will be composed with weight functions wðEtÞ as

.t;hð ~EÞ ¼
ðEg

Eedge

dEtwðEtÞ.tð ~E;EtÞ : (12)

The integration over tail states is restricted to Eedge < ~E <
Eg (see Fig. 3). The lower limit Eedge separates localized

states from continuum states, and it is assumed that

0 < Eedge < g. Thus, Eedge plays the same role as the

“mobility edge”18 in transport. The mass mt;h from Kane’s

DOS model could be set to the hole mass mh, as done by

Kane,14 or to mt which is preferred here (see discussion

above). The model has then just one fitting parameter to

account for the unknown electronic structure of the tail

states. However, its value cannot differ vastly from that of a

hole mass.

The weight function wðEtÞ immediately follows from

inserting the DOS expressions into the above equation:

wðEtÞ ¼
ffiffiffi
g
p

pE
3=2
t

Y Et=gð Þ : (13)

In the case of Gaussian tails, it can be simplified using (5) to

wðEtÞ ¼
ffiffiffi
g
p

exp �E2
t =g

2
� �

25=2pE
3=2
t ðEt=gÞ3=2 þ s
h i : (14)

FIG. 2. Comparison of the conduction band DOS in InAs with Gaussian and

exponential tails calculated by the exact expression (1) and by various

approximations.

FIG. 3. Representation of the energy variables used in Eq. (9) and thereafter.

TABLE II. Localization radius for various values of the effective mass mt.

Et ¼ 0.01 eV Et ¼ 0.025 eV Et ¼ 0.05 eV

mtðm0Þ r0ðnmÞ mtðm0Þ r0ðnmÞ mtðm0Þ r0ðnmÞ

0.001 87.34 0.001 55.24 0.001 39.06

0.01 27.62 0.01 17.47 0.01 12.35

0.025 17.47 0.025 11.05 0.025 7.81

0.05 12.35 0.05 7.81 0.05 5.52

0.1 8.73 0.1 5.52 0.1 3.91

1 2.77 1 1.75 1 1.23
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The transition rate between a tail state with energy E
and a CB state with energy E0 becomes

Dt;cðE;E0Þ ¼
ðEg

Eedge

dEtwðEtÞDt;cðE;E0;EtÞ

¼ 8p
�h2

2mt
~E

 !3
2

.t;hð ~EÞ.cðE0Þ (15)

with

.t;hð ~EÞ ¼
2mt

�h2

� �3
2
ffiffiffi
g
p

2p2
Y ~E=g
� �

: (16)

In a constant electric field F and assuming a parabolic dis-

persion for the CB, the CB DOS .cðE0Þ has the form19

.cðE0Þ ¼
ffiffiffiffiffiffiffiffi
8m3

c

p
4p�h3

ffiffiffiffiffiffiffi
�hhc

p
F � E0

�hhc

� �
(17)

with FðxÞ ¼ Ai0ðxÞ2 � xAiðxÞ2

and �hhc ¼
e2�h2F2

2mc

 !1=3

:

Here, e is the electron charge and Ai(x) denotes the Airy

function. The total emission rate from all tail states with

energy E into the CB is given by

Gtc ¼
ðeFÞ2z2

cv

�h

ð0
Eedge�Eg

dE

ð1
�1

dE0 Dt;cðE;E0ÞdðE� E0Þ ; (18)

where zcv is the interband transition matrix element29–32 z2
cv ¼

�h2=ð4mrEgÞ with the reduced effective mass

mr ¼ mcmv=ðmc þ mvÞ ¼ mcmv=mR. For the completion of

the band-to-band process, it is assumed that the thermionic emis-

sion step from the VB to the tail state is very fast and, therefore,

not rate limiting. Then, after inserting (15) with (4) and (17) into

Eq. (18), the generation rate via Gaussian tail states becomes

Gtc ¼
ðeFÞ2 ffiffiffi

g
p ffiffiffiffiffiffiffi

�hhc

pffiffiffi
2
p

p2�h2Eg

m
3=2
c

mr

�
ðEg

Eedge

d ~E

ð ~EÞ3=2
Y �

~E

g

 !
F Eg � ~E

�hhc

 !
: (19)

Since Eg � �hhc, the function F can be replaced by its

asymptotic limit for large positive arguments

FðxÞ ! exp ð�4x3=2=3Þ=ð8pxÞ. If Y is replaced by approxi-

mation (5), Eq. (19) simplifies to

Gtc ¼
ðeFÞ3 ffiffiffi

g
p

64
ffiffiffi
2
p

p3�hE2
g

mc

mr

�
ðEg

Eedge

d ~E

exp �
~E

2

g2
� 4

3

Eg � ~E

�hhc

 !3
2

2
4

3
5

~E
3=2 ð ~E=gÞ3=2 þ s
h i : (20)

In order to demonstrate what distinguishes the tunnel

rate (20) from the rate of band-to-band tunneling (BTBT),

the remaining integral is calculated analytically. The inte-

grand is dominated by the overlap of the steep DOS tail of

the VB and the so-called Franz-Keldysh tail of the CB.

Since the product of both results in a sharply bell-shaped

curve, one can determine its peak position ~E ¼ D approxi-

mately and map the integrand to a Gaussian bell curve.

This leads to

ðEg

Eedge

d ~E
e
� ~E2

g2�4
3

Eg� ~E

�hhc

� �3
2

~E
3=2 ð ~E=gÞ3=2 þ s
h i

� e
�D2

g2�4
3

Eg�D
�hhc

� �3
2

D3=2 ðD=gÞ3=2 þ s
h i ð1

�1

d� e
��2

c2 (21)

with

D �
ffiffiffiffiffi
Eg

p
g2

�hhcð Þ3=2
and c � g : (22)

These expressions rely on the assumption g� Eg. The gen-

eration rate finally takes the form

Gtc ¼
ðeFÞ3 g3=2

64
ffiffiffi
2
p

p
5
2�hE2

g

mc

mr

�
exp �D2

g2
� 4

3

Eg � D
�hhc

� �3
2

" #

D3=2 ðD=gÞ3=2 þ s
h i : (23)

When the one-band effective-mass approximation and the

WKB limit are applied to compute the generation rate of

direct BTBT (with ideal DOS), one obtains19

GBTB ¼
ðeFÞ3

64p�hE2
g

exp � 4

3

Eg

�hhr

� �3
2

" #
: (24)

Comparing the last two equations, three differences become

obvious: (i) the tunnel barrier (Eg) is effectively reduced by

D due to the energetic separation of the tail states from the

ideal VB, (ii) the imaginary dispersion is determined by the

one-band effective mass mc instead of the reduced effective

mass mr due to the assumption of strong localization of the

deep tail states, and (iii) the pre-exponential factor is

reduced by g3=2

D3=2½ðD=gÞ3=2þs�
exp ð� D2

g2Þ. In the low-field range,

which is relevant for the slope of a TFET, ðD=gÞ3=2 � s and

only deep tail states contribute to the generation rate. For

an estimate of the ratio r ¼ Gtc=GBTB, the following

assumptions for the parameters are made:

mr ¼ mc=2; g ¼ �hhc ¼ Eg=10. This gives r ¼ 1:43� 10�4.

Thus, the contribution of deep tail states to the total band-

to-band generation is negligible.
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Figure 4 compares the full model Eq. (19) with the ana-

lytical approximation Eq. (23) and the BTBT rate [Eq. (24)]

as a function of electric field. The band gap and effective

mass of bulk InAs have been used. In the low-field range, the

contribution of tail states to the total band-to-band generation

is negligible if the life time broadening of their energy levels

is ignored. In this range, the analytical expression agrees

well with the full model as deep tail states are dominant.

With increasing field, shallower states become more and

more important and the saddle-point method based on deep

Gaussian tails fails at the band edge, causing a growing devi-

ation from the full model.

C. Tunneling from/into shallow tail states including
their life time broadening

The life time broadening is approximately given by Ds ¼
h�1

t which is a measure of the tunnel probability out of the

localized tail state. At F ¼ 1� 105 V/cm, the characteristic

energy �hht ranges from 20 meV to 12 meV for mt between 0.5

m0 and 2 m0. This is of the same order as the energies Et in the

tail. Thus, the zero-field DOS of the sharp single-level, Eq.

(10), is to be replaced by a properly broadened delta-function.

This can be done thanks to an analytical solution of the

Schr€odinger equation for an effective potential which is the

sum of the pseudo-d-potential and the electrostatic potential in

a constant electric field.1 The DOS Eq. (10) is then replaced by

(see Appendix A, Eqs. (A4)–(A9) and also Ref. 17)

.tð ~E;EtÞ ¼
1

4p3r3
0

ffiffiffiffiffiffiffiffiffiffiffi
Et�hht

p
F

~E

�hht

 !

F 2
~E

�hht

 !
þ G

~E

�hht

 !
þ 1

p

ffiffiffiffiffi
Et

�hht

q" #2
;

(25)

which is a Lorentzian-like function of Et with the property

that it approaches the delta-function Eq. (10) for �hht ! 0.

The peak position is determined by the zero of

Gð ~E
�hht
Þ þ 1

p

ffiffiffiffiffi
Et

�hht

q
. The function Gð ~E

�hht
Þ is given by

GðxÞ ¼Ai0ðxÞBi0ðxÞ � xAiðxÞBiðxÞ

! �
ffiffiffi
x
p

p
1� 0:03123

x3

� �
for large x > 0 (26)

where Bi(x) denotes the Airy function of the second kind.

The second term in braces is proportional to F2 and results in

a shift of the resonance peak to larger energies (quadratic

Stark effect). The peak height is determined by the inverse

of the function Fð ~E
�hht
Þ given in Eq. (17).

The transition probability from a field-broadened local-

ized tail state to a field-dependent state in the opposite band

is derived in Appendix A. A closed-form expression can be

obtained for the cases of strong and very weak localization,

respectively. No analytical solution is possible in the gen-

eral case. The critical parameter is a3 ¼ mc=ðmc þ mtÞ
¼ l=mt, where l denotes the reduced effective mass

mcmt=ðmc þ mtÞ. Strong localization is defined by the

condition a3 � 1, whereas very weak localization by

a3 � 1.

1. Strong localization

In the case of strong localization (a3 � 1), one obtains

(see Appendix A)

Dt;cðE;E0;EtÞ ¼ 8p
mc

l
P
~E

2
E2

t r3
0 .tð ~E;EtÞ .lðE0Þ : (27)

Obviously, Eq. (9) is the special case in which the field-

effect on the localized states is neglected. The essential dif-

ference to Eq. (9) is that the CB DOS .cðE0Þ given by Eq.

(17) is replaced by the joint DOS

.lðE0Þ ¼
ffiffiffiffiffiffiffi
8l3

p
4p�h3

ffiffiffiffiffiffiffi
�hhl

p
F � E0

�hhl

 !
(28)

which contains the reduced effective mass l instead of the

CB mass mc. This leads to an increased tunnel probability.

Note that this result is non-trivial. The occurrence of a

reduced effective mass for a transition from a localized state

into a Bloch state is due to the assumption that the localized

state is built from a single, parabolic band with “effective”

mass mt. Note also that .tð ~E;EtÞ is exactly the same as

defined in Eq. (25).

With (25), the generation rate is given by

Gtc ¼
ðeFÞ2 ffiffiffi

g
p

23=2p4�h2Eg

mc
ffiffiffi
l
p

mr

ffiffiffiffiffiffiffi
�hhl

�hht

s ðEg

Eedge

dEt Y �Et

g

� �

�
ðEg

Eedge

d ~E

~E
2

F Eg � ~E

�hhl

 !
F

~E

�hht

 !

F 2
~E

�hht

 !
þ G

~E

�hht

 !
þ 1

p

ffiffiffiffiffiffi
Et

�hht

r" #2
(29)

which after inserting the function Y for Gaussian tails

becomes the triple integral

FIG. 4. Generation rates due to strongly localized tail states without field

broadening calculated with exact Gaussian tail DOS [Eq. (19)] in compari-

son to the analytical approximation [Eq. (23)] and the BTBT rate [Eq. (24)].
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Gtc ¼
ðeFÞ2

23=2p9=2�h2Eg

mc
ffiffiffi
l
p

mr

ffiffiffiffiffiffiffi
�hhl

�hht

s
1

g

�
ð1
0

df
ffiffiffi
f

p ðEg

Eedge

d ~E

~E
2
F Eg � ~E

�hhl

 !
F

~E

�hht

 !

�
ðEg

Eedge

dEt

exp �ðfþ EtÞ2

g2

" #

F 2
~E

�hht

 !
þ G

~E

�hht

 !
þ 1

p

ffiffiffiffiffiffi
Et

�hht

r" #2
: (30)

For an analytical treatment, one can use the fact that even if

�hht � g, the Lorentzian describing the trap DOS has a sharp

maximum at the resonance energy defined by

Gð ~E
�hht
Þ þ 1

p

ffiffiffiffiffi
Et

�hht

q
¼ 0. At F ¼ 1� 105 V/cm, a mass as small

as mt ¼ 0:003 m0 results in a broadening of only �1 meV.

Hence, one can replace F=ðF 2 þ Ĝ2Þ ! 2p2
ffiffiffiffiffiffiffiffiffiffiffi
Et�hht

p

dð ~E � EtÞ. With the asymptotic limit for FðEg� ~E
�hhl
Þ, this leads to

Gtc ¼
ðeFÞ3

16p3�hE2
g

mc

mr

ðEg=g

Eedge=g

d�

�3=2
exp � 4

3

Eg � � g
�hhl

� �3=2
" #

� 1ffiffiffi
p
p

ð1
0

dt
ffiffi
t
p

exp �ðtþ �Þ2
h i

: (31)

Note that the last line is just Ygð��Þ. In the low-field range,

only deeper tail states contribute and the saddle-point

method can be applied as before. Using approximation (5)

for the Gaussian tail DOS yields

Gtc ¼
ðeFÞ3 g3=2

64
ffiffiffi
2
p

p
5
2�hE2

g

mc

mr

l
mc

� �1
3

�
exp �D2

g2
� 4

3

Eg � D
�hhl

� �3
2

" #

D3=2 ðD=gÞ3=2 þ s
h i (32)

where hc has to be replaced by hl in the expression (22) for

D. Hence, basically Eq. (23) is recovered, with the reduced

effective mass l instead of the CB effective mass. At high

fields (large �hhl) or for small g, the most contributing ener-

gies are close to the VB edge. The factor of the integrand in

the first line of Eq. (31) is a relatively smooth function here

and can be taken out at the characteristic tail energy g ð� ¼
1Þ or at some fraction �	 ¼ E	=g of it ðEedge=g < �	 < 1Þ.
The integration limits of the �-integral can be approximately

changed such that the remaining double integral becomes

ð1
0

d�

ð1
0

dt
ffiffi
t
p

exp �ðtþ �Þ2
h i

¼ c ¼ 0:302 : (33)

The error compared to Eq. (31) vanishes with the ratio

Eedge=g. The result is

Gtc ¼
c ðeFÞ3

16p7=2�hE2
g

mc

mr

g
E	

� �3
2

exp � 4

3

Eg � E	

�hhl

� �3
2

" #
: (34)

In the case of exponential tails, the factor c has the value

0.785.

The generation rate obtained for the field-broadened tail

states [Eq. (29)] is compared with the analytical approxima-

tion [Eq. (32)] and the rate of BTBT for reference in Figs. 5

and 6. If the effective mass of the localized state mt is set to

the light-hole mass, the generation rate due to tail states

almost coincides with the BTBT rate. For strong localization

(mt ¼ 0:41 m0), the effect of field broadening almost disap-

pears and model-1 gives a similar curve to model-0.

2. Very weak localization

In the case of very weak localization (a3 � 1), one

obtains for the transition rate (see Appendix A)

Dt;cðE;E0;EtÞ ¼8p

Bi2
~E

�hhl

 !

�hhlð Þ2
mt

l

� E2
t r3

0 .tð ~E;EtÞ .lð�EgÞ (35)

which holds for �hhl ! �hht.

Instead of Eq. (29), the generation rate is now given by

Gtc ¼
ðeFÞ2 ffiffiffi

g
p

23=2p4�h2Eg

mt
ffiffiffi
l
p

mr

1ffiffiffiffiffiffi
�hht

p
ð�hhtÞ3=2

� F Eg

�hhl

� � ðEg

Eedge

dEtY �Et

g

� �

�
ðEg

Eedge

d ~E

Bi2
~E

�hhl

 !
F

~E

�hht

 !

F 2
~E

�hht

 !
þ G

~E

�hht

 !
þ 1

p

ffiffiffiffiffiffi
Et

�hht

r" #2
: (36)

FIG. 5. Generation rates due to strongly localized tail states with mt

¼ 0:025 m0 including their field broadening calculated with the full model

[Eq. (29)] in comparison to the analytical approximation [Eq. (32)] and the

BTBT rate [Eq. (24)].
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As discussed in Subsection II C I, one can apply the

replacement F=ðF 2 þ Ĝ2Þ ! 2p2
ffiffiffiffiffiffiffiffiffiffiffi
Et�hht

p
dð ~E � EtÞ. This

simplifies (36) in the case of Gaussian band tails to

Gtc �
g2ðeFÞ2

ð2pÞ7=2�h2E2
g

mt
ffiffiffi
l
p

mr

1ffiffiffiffiffiffiffi
�hhl

p
� exp � 4

3

Eg

�hhl

� �3=2
" #

�
ðEg=g

Eedge=g

d�

ð1
0

dt
ffiffi
t
p

Bi2 �
g

�hhl

� �
exp �ðtþ �Þ2

h i
: (37)

The initial assumption of small masses mt implies that

�hhl ! �hht � g and the argument of Bi2 varies slowly.

Taking Bi2 out of the �-integral at � ¼ Eedge=g then gives

Gtc �
g2ðeFÞ2

ð2pÞ7=2�h2E2
g

mt
ffiffiffi
l
p

mr

Bi2 Eedge

�hhl

� �
ffiffiffiffiffiffiffi
�hhl

p exp � 4

3

Eg

�hhl

� �3
2

" #

�
ðEg=g

Eedge=g

d�

ð1
0

dt
ffiffi
t
p

exp �ðtþ �Þ2
h i

: (38)

The remaining double integral is the same as in Subsection II

C I and can be calculated as described there. The final

result is

Gtc �
c g2ðeFÞ2

ð2pÞ7=2�h2E2
g

mt
ffiffiffi
l
p

mr

Bi2 Eedge

�hhl

� �
ffiffiffiffiffiffiffi
�hhl

p
� exp � 4

3

Eg

�hhl

� �3
2

" #
: (39)

The generation rate obtained for the full model [Eq. (36)] is

compared with the analytical approximation [Eq. (39)] and

the rate of BTBT for reference in Fig. 7. If the effective mass

of the localized state mt is set to the light hole mass, the full

model and analytical approximation agree very well.

Decreasing mt shifts the curves up, but a value as small as

0.01 m0 is needed to match the BTBT curve at low fields.

This demonstrates that model-2 is completely inappropriate.

It is evident that tail-to-band tunneling becomes comparable

to BTBT for some field value in the sub-threshold regime.

For mt ¼ mc, the rate of tail-to-band tunneling must be in the

same order of magnitude as the rate of BTBT. This is

the outcome in the case of strong localization (model-1, see

Fig. 5) which is, therefore, the recommended model.

D. Tunneling from/into continuum states of the
non-ideal DOS

States with energies ~E < Eedge are considered as Bloch

states. However, compared to the usual description of direct

BTBT [e.g., Eq. (24)] the rate will be different due to the

modified shape of the DOS at these energies. The goal of

this subsection is to find a proper replacement for Eq. (24) if

the VB DOS is non-ideal.

In a first step, the ideal BTBT rate, which is proportional

to the reduced DOS, is written as convolution of the ideal

CB and VB DOSs:

GBTB ¼
ðeFÞ3

8�hEg�hhr

F Eg

�hhr

� �
¼ c

ð1
�1

dE .vð ~EÞ .cðEÞ

¼ c
ð2mvÞ3=2ð2mcÞ3=2

ð2p�h3Þ2
ffiffiffiffiffiffiffi
�hhv

p ffiffiffiffiffiffiffi
�hhc

p

�
ð1
�1

dEF
~E

�hhv

 !
F �E

�hhc

� �
(40)

[see Eq. (17)]. In Appendix B, it is demonstrated that the

integral in Eq. (40) can be calculated exactly, but c becomes

a complicated function of various Airy functions then. A

simple form of c turns out in the asymptotic (WKB) limit

which holds if Eg � �hhr:

FIG. 6. Generation rates due to strongly localized tail states with mt ¼
0:41 m0 including their field broadening calculated with the full model [Eq.

(29)] in comparison to the analytical approximation [Eq. (32)] and the

BTBT rate [Eq. (24)].

FIG. 7. Generation rates due to very weakly localized tail states with mt ¼
0:025 m0 including their field broadening calculated with the full model [Eq.

(36)] in comparison to the analytical approximation [Eq. (39)] and the

BTBT rate [Eq. (24)].
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c ¼ p7=2

�h

�h2

mR

 !3=2

ð�hhrÞ3=4

E
1=4
g

: (41)

In a second step, the ideal field-broadened VB DOS .vð ~EÞ is

replaced by the non-ideal field-broadened VB DOS .v;tð ~EÞ,

.v;tð ~EÞ ¼
2mv

�h2

� �3=2 ffiffiffi
g
p

2p
ffiffiffiffiffiffiffi
�hhv

p
ð1
�1

d�Hð�Þ 1ffiffi
�
p

� Y
�� Eedge

g

� �
Ai2 �� Eedge þ ~E

�hhv

 !
: (42)

Note that .vð ~EÞ is reproduced in the limit g! 0 since Eedge

is always a fraction of g. The proof of Eq. (42) is presented

in Appendix C. The calculation of the rate of transitions

from continuum states of the non-ideal VB DOS into CB

states now proceeds in a similar way as outlined in Appendix

B for the ideal VB DOS. Appendix D contains details of this

derivation. Inserting c, it follows exactly:

Gcond
tc ¼ðeFÞ3

2�hEg

Eg

�hhr

� �3
4
ffiffiffi
p
p ffiffiffi

g
p

ð�hhrÞ2
ð1
0

d�ffiffi
�
p Y

�� Eedge

g

� �

�
ð1
0

dt
ffiffi
t
p

Ai2 tþ
�þ E0g

�hhr

 !
(43)

where E0g ¼ Eg � Eedge. The last step is to convert the double

integral into two useful forms: (i) a convolution integral of

the ideal field-broadened BTBT rate GBTB with a “smoothing

function” S, and (ii) a fully analytical expression to better

understand the main effects that the non-ideal DOS has on

the rate. As shown in Appendix D, the first form can be writ-

ten as

Gcond
tc ¼

ð1
0

d� Sð�ÞGBTB

�þ E0g
�hhr

 !
(44)

with

Sð�Þ ¼ Eg

�hhr

� �1
2
ffiffiffi
2
p

p
�hhr

ffiffiffi
g
�

r
Y

�� Eedge

g

� �
: (45)

The fully analytical form, valid in the asymptotic limit, reads

(see Appendix D)

Gcond
tc ¼ ðeFÞ3

64p�hE2
g

2
ffiffiffi
g
p

E
1=4
g

ð�hhrÞ3=4

� Y
ð�hhrÞ3=2

4gE
1=2
g

� Eedge

g

" #
e
�4

3

E0g
�hhr

� �3
2

: (46)

As shown in Appendix D, the pre-factor has been slightly

adjusted to ensure that limg!0 Gcond
tc ¼ GBTB. Equation (46)

reveals two non-ideality effects of the DOS: (i) an effective

reduction of the gap by Eedge and (ii) a smoothing effect

described by a factor which depends on the four

characteristic energies Eg, �hhr, g, Eedge, and the tail shape

function Y. There is no analytical approximation for the

smoothing factor
ffiffi
z
p

Yð1=z� nÞ !g!0
1 around the band

edge. The factor is plotted as function of g for different val-

ues of the ratio Eedge=g in Fig. 8. The plots are normalized

by the generation rate at g ¼ 0. The rate first decreases with

increasing g due to the redistribution of VB states which

leads to a reduction of the VB DOS at the band edge. As g
increases further, the shrinking effective tunnel gap increases

the tunnel rate. However, the overall reduction of the genera-

tion rate is very weak. Even for a ratio Eedge=g as large as

0.55, the maximum reduction of the rate amounts to only

�25%. Thus, one can conclude that the modification of the

rate due to the redistribution of extended states of the VB

DOS is a second-order effect and can be ignored.

E. Comparison of the localization regimes

The tail-to-band generation rates in a constant electric

field were evaluated numerically for three cases (see Table I):

Eq. (19) (strong localization without field broadening !
model-0), Eq. (29) (strong localization with field broadening

! model-1), and Eq. (36) (weak localization with field

broadening ! model-2). They are shown as a function of

electric field in Fig. 9. The band gap and effective masses of

bulk InAs have been used for the calculation. The effective

mass mt was set to a value of 0:025 m0 (i.e., close to the mea-

sured light-hole mass in InAs) for calculating the generation

rate in the cases of model-1 and model-2 (note that model-0

is independent of mt). This choice agrees with the masses to

be used in BTBT, and consequently, the rate from model-1 is

very close to the BTBT rate. Model-0 corresponds to the

limit mt !1 in model-1, and results in a rate which is four

orders of magnitude smaller at low fields. This demonstrates

the importance of lifetime broadening of the localized state

which must be taken into account. The generation rate calcu-

lated with model-2 is small compared to that from model-1

which just indicates the strong violation of the condition

mt � mc.

FIG. 8. Generation rate between extended states of the VB DOS and the CB

calculated using Eq. (46) versus characteristic energy g at different values of
Eedge

g . The electric field was set to 1 MV/cm.
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III. DEVICE APPLICATION

A. Formulation for the Dynamic Nonlocal Path (DNLP)
algorithm

The analytical forms of the generation rates for tunnel-

ing between VB tail states and CB states have been derived

for a long semiconductor region with constant electric field.

Using them as local models in TCAD would result in an

over-estimation of the generation current in TFETs. This is

illustrated in Fig. 10. A tunnel path starting from the CB

edge at x¼ x1 ends at the VB edge. Therefore, electrons

from all tail states throughout the band gap

(Eedge < Et < Eg) tunnel to the CB at x1. However, a tunnel

path starting at x¼ x2 on the CB edge can only be used by

tail states with an energy above the mid-gap (Et > Eg=2). As

a result, the tail states above the mid-gap (Eedge < Et <
Eg=2) are active. A calculation of the electron generation at

x1 using the expressions in Sec. II would yield correct

results. However, employing the same expressions to calcu-

late the generation rate at x2 would over-estimate the tunnel

current. Therefore, the numerical implementation must be

generalized to inhomogeneous electric fields. This is done in

the commercial device simulator Sentaurus-Device28 by the

so-called Dynamic Nonlocal Path (DNLP) Algorithm which

calculates the tunnel rate by numerical integration over the

action along dynamically extracted tunnel paths. The algo-

rithm checks if a tunnel path is actually active. Thus, the

expressions derived in Sec. II need to be adapted to the

DNLP algorithm.

In general, all energetic tunnel rates are transformed

into position-dependent rates defined along a tunnel path.

The adaptation of Eq. (19) proceeds as follows. Each tunnel

path connects the CB edge and VB edge. At any point along

the tunnel path located at a distance xt 2 fx1; x1 þ Lg; ~E !
Etun � EvðxtÞ and d ~E ! eFðxtÞDxt. In this way, Eq. (19)

becomes locally defined at x1:

Gtcðx1Þ ¼
Xxt¼x1þL

xt¼x1

gtcðxtÞ (47)

gtcðxtÞ ¼
eFavðxtÞð Þ2 ffiffiffi

g
p ffiffiffiffiffiffiffi

�hhc

p
m

3
2
cffiffiffi

2
p

p5=2�hE2
g mr

eFðxtÞDxt

Etun � EvðxtÞð Þ
3
2

� Y �Etun � EvðxtÞ
g

� �
F EcðxtÞ � Etun

�hhc

� �
� fnðx1Þ � fpðxtÞ
	 


: (48)

Here, L is the length of the tunnel path, xt 2 fx1; x1 þ Lg is

the location of the tail state along the tunnel path, Dxt is the

discretization interval, FavðxtÞ ¼ 1
jxt�x1j

Ð xt

x1
FðxÞdx is the elec-

tric field averaged over the segment of the tunnel path

between x¼ x1 and x ¼ xt, and Etun is the CB energy at the

beginning of the tunnel path. EcðxtÞ, EvðxtÞ, and FðxtÞ are,

respectively, the CB edge, the VB edge, and the electric field

at the location of the tail state, gtc is the generation rate at xt,

and Gtc is the total generation rate at x1. The function

fn=pðxÞ ¼ ½exp ðEtun � EF;n=pðxÞÞ=kBT þ 1��1
represents the

Fermi distribution at x. The value of Yð� Etun�EvðxtÞ
g Þ is calcu-

lated at each xt using Eq. (2) or Eq. (8) for Gaussian or expo-

nential tails, respectively.

If field broadening of the tail states is considered,

the generation rate due to tail states is given by Eq. (29)

ða3 ¼ mc

mcþmt
� 1Þ which is modified by making the substitu-

tions Et ! Etun � EvðxtÞ ¼ EtðxtÞ and dEt ! eFðxtÞDxt. If ~E
in the second integral is replaced by � �hht, the generation rate

gtcðxtÞ becomes

gtcðxtÞ ¼
eFavðxtÞð Þ2 ffiffiffi

g
p

23=2p9=2�h2Eg

mc
ffiffiffi
l
p

mr�hht

ffiffiffiffiffi
hl

ht

s
eFðxtÞDxt

� Y �EtðxtÞ
g

� �
H Eg

�hhl
;
EtðxtÞ
�hht

 !

� fnðx1Þ � fpðxtÞ
	 


(49)

with

Hðp; qÞ ¼
ðEg=�hht

Eedge=�hht

d�

�2

Fðp� a �ÞFð�Þ
F 2ð�Þ þ Gð�Þ þ 1

p

ffiffiffi
q
p	 
2 : (50)

The total generation rate at x1 is calculated by the

sum (47).

FIG. 9. Comparison of different models for tunneling from DOS tail states

into the CB. The BTBT rate [Eq. (24)] based on the same dispersion is also

shown. Curves correspond to the model of strong localization without field

broadening [model-0—Eq. (19)], with field broadening [model-1—Eq.

(29)], and the model of weak localization [model-2—Eq. (36)].

FIG. 10. Schematic representation of two generic types of tunnel paths

occurring in a TFET. The path beginning at x2 does not come across tail

states with Et < Emid. Various variables used in Eqs. (48)–(51) are shown.
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In the same manner, the expression for tail-to-band

tunneling in the case of very weak localization [Eq. (36)] can

be modified for TCAD simulations. The role of the function

H is adopted by the function

Bðp; qÞ ¼
ðEg=�hht

Eedge=�hht

d�
Bi2ða �ÞFð�Þ

F 2ð�Þ þ Gð�Þ þ 1
p

ffiffiffi
q
p	 
2 : (51)

The functions Y, H, and B can be implemented in the form

of look-up tables which are evaluated at the beginning of the

simulation run, once the values of mc;mv; and mt are known.

They are computed at any given input by interpolating

between pre-evaluated values using cubic splines. For the

integrals to be accurate, the input q ¼ EtðxtÞ=�hht in Eqs. (50)

and (51) needs to be less than the upper limit of the integral,

i.e., EtðxtÞ < Eg. For look-up tables, it is necessary that the

integration limits are fixed. For the lower limit, Eedge=�hht ¼
0:03 is used and Eg=�hht ¼ 10 for the upper. With the fixed

lower limit, all contributions to the integral are safely

embraced, and the divergency at Eedge ¼ 0 is excluded. In

this way, the double/triple integrals in Eqs. (48) and (49) can

be transformed into a single integral along the tunnel path.

The equations have been implemented in the Finite-Element-

based TCAD simulator Sentaurus-Device using the Physical

Model Interface (PMI) Nonlocal Generation-Recombination.

The original DNLP BTBT model requires the effective tun-

nel barrier and the electron/hole effective masses as input

parameters. In addition to these parameters, for the new

DNLP tail-to-band tunneling model one has to provide the

effective mass mt of a hole (or electron for the complemen-

tary process) localized in the tail state as well as the charac-

teristic energy g of the DOS tail.

Note that the implemented tail-to-band tunneling models

employ an effective average electric field for the computa-

tion of the rate in contrast to the DNLP BTBT model in

Sentaurus-Device where the action integral over the imagi-

nary dispersion is computed numerically. The loss in accu-

racy may be compensated through calibration of the

parameters g and mt.

B. Implementation of the DNLP Tail-to-band tunneling
model

A semiconductor may exhibit both CB and VB tail states

with different characteristic energies g. This general case is

approximated here by the sum of the rates for VB-tail-to-CB

tunneling and CB-tail-to-VB tunneling. The expressions for

the latter are straightforwardly obtained by obvious changes

in the notation of parameters occurring in the former, e.g.,

mc ! mv; hc ! hv. The contribution from tail-to-tail tunnel-

ing is neglected due to the small probability when both initial

and final states are localized. A further refinement of the

model would be achieved if in the derivation the ideal DOS

of the final states is replaced by the continuum states of the

non-ideal DOS, i.e., Eq. (42) for the VB and its counterpart

for the CB.

As in the original DNLP model for BTBT, the proposed

model involves searching for active tunnel paths. A tunnel

path (a straight line in the semi-classical treatment) starting

at the VB edge must have an end point at the CB edge at the

same energy. If no such point is found, the path is discarded.

Once all the active tunnel paths at a given bias voltage are

found, the tail-to-band tunnel rates are calculated at each dis-

cretization point along the tunnel path using one of the three

models described above and summed up to obtain the rate at

the starting point. Tunneling of an electron from the tail state

generates a hole at the same location since it is implicitly

assumed that thermionic emission into the VB continuum is

very rapid and thus not rate-limiting. The densities of gener-

ated holes and electrons enter the Poisson equation and self-

consistently impact the solution of the drift-diffusion equa-

tion system.

In a TFET, two cases occur that need special treatment.

They are sketched in Fig. 11. Figure 11(a) presents the case

in which a tunnel path encounters an insulator interface

instead of the CB edge. In this situation, the tunnel path is

accepted if the energy difference between the tunnel energy

(�) and the CB edge at the end point is smaller than a cut-off

energy (Ecutoff ). The integration of the generation rate is per-

formed over all tail states along the path up to the intersec-

tion point. The second special case [Fig. 11(b)] occurs when

the tunnel path exceeds a maximum length (set to 100 nm)

but is still fully contained in the semiconductor. Then the

cut-off energy is set to five times the characteristic tail

energy (g) or to half of the gap, whichever is smaller. The

choice of the band tail shape (Gaussian or exponential) rests

upon the user.

IV. SIMULATION RESULTS

In order to analyze the impact of band tails on the trans-

fer characteristics of TFETs, a representative sample was

simulated with Sentaurus-Device. The structure is a radially

symmetric InAs nanowire with a diameter of 10 nm and a

gate of 80 nm length. Its radial cross section is shown in Fig.

12(a). The gate is overlapped with the heavily doped source

(p-type, NA ¼ 1� 1019 cm–3) making it a Gate-overlapped-

Source (GoS) Nanowire TFET. The electron and light-hole

FIG. 11. Treatment of special cases - (a) The tunnel path intersects the

semiconductor-oxide interface instead of the CB edge. (b) The tunnel path

reaches a maximum length without intersecting the CB edge. In both cases,

the tunnel path is accepted if at its end point the energy difference between

the CB edge and tunnel energy is smaller than a cut-off energy.
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effective mass values of InAs were set to 0.023 m0 and 0.026

m0, respectively.33 As a result of geometrical confinement,

the InAs band gap increases from 0.36 eV to 0.76 eV.34 Band

gap narrowing (BGN) due to heavy doping was neglected in

the simulations. The inclusion of BGN would reduce the tun-

nel gap for both BTBT and tail-to-band tunneling thereby

scaling up both rates. To first order, this does not much

change the relative strength of both generation mechanisms.

BTBT between the CB and the heavy-hole band was also

ignored.

The TFET operates as follows. With increasing gate

bias, accumulation begins in the channel region. A further

increase in the gate voltage pushes the entire band edge

down and a tunnel window opens at the source edge of the

gate as shown in Fig. 12(c). Electrons tunnel from the source

region to the channel along tunnel paths parallel to the gate

(so-called point tunneling) as illustrated in Fig. 12(b). Due to

the accumulation in the channel region, tunneling normal to

the gate (so-called line tunneling) does not take place.

In the following, the effect of various model parameters

such as the characteristic energy of the tail g, the tail shape,

and the effective mass mt on the transfer characteristics will

be analyzed. In all cases, model-1 developed above is

applied to the device shown in Fig. 12(a).

The characteristic energy g of the tail determines how

deep the latter penetrates into the gap, although the penetra-

tion depth is different for Gaussian and exponential tails.

The value of g was varied over a feasible range to analyze its

impact. The simulated transfer characteristics in the case of

exponential tails are presented in Figs. 13(a) and 13(b) for

two values of the parameter mt. One can distinguish two dis-

tinct branches originating from tail-to-band tunneling and

BTBT, respectively. This distinction is more pronounced for

smaller g or larger mt. As observed, a decreasing g steepens

the transfer characteristics. For the range of the effective

mass mt, an interval between the light-hole mass and the

valence band DOS mass was assumed (see the discussion in

Subsec. II B). An increasing mt reduces the drain current

arising from tail-to-band tunneling as a consequence of its

reduced rate. The almost constant drain current prior to the

onset of tunneling arises from SRH generation of electron-

hole pairs in the depletion region. Carrier lifetimes of 10�9 s

were used.

The average sub-threshold swing (SS) was calculated

for different values of g by averaging the inverse slope of

the transfer curve over the range from 10�15 A to 10�11 A

in the drain current. The result is shown in Fig. 14 as a

function of g for the two values of mt. Increasing g degrades

the average SS, but the degradation tends to saturate at

larger g. Reducing mt from 0:41 m0 to 0:025 m0 results in an

only small increase of SS. A possible reason for this rela-

tive insensitivity of the swing to a variation of mt could be

the following. The steep onset of BTBT in the considered

TFET results from the energetic alignment of the DOS in

the source with the DOS in the channel at a certain gate

bias [see Fig. 1(a)]. The onset is gradual due to the presence

of tail states in the heavily doped source [see Fig. 1(b)]

which smoothen the band edge. Therefore, the SS depends

only on g which defines the degree of smearing. The param-

eter mt merely determines the tunnel rate between the tail

FIG. 12. (a) Radial cross section of the cylindrical nanowire TFET simu-

lated to analyze the impact of tail states. (b) Color-mapped diagram of the

BTBT rate in the radial cross section. (c) Band diagram along the axis of the

nanowire showing that the tunnel window is opened at the source edge of

the gate.

FIG. 13. Impact of the characteristic

energy g of an exponential DOS tail on

the transfer characteristics of the

TFET.
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state and the CB state. The transfer characteristics for dif-

ferent mt presented in Fig. 15 show that an increasing mt

scales down the tail-to-band current but does not signifi-

cantly change the swing.

The transfer characteristics of the TFET for different

values of mt resulting from a Gaussian shape of the DOS tail

are plotted in Fig. 16. Again, the drain current is reduced

with increasing mt. A comparison of the transfer characteris-

tics of the device with exponential and Gaussian DOS tails,

respectively, implies that the exponential shape of the DOS

tails degrades the TFET performance more severely than the

Gaussian shape. This is due to the fact that, for any given g,

a band edge with Gaussian smoothing is sharper compared to

a band edge with exponential smoothing. PL measurements

infer the worst case, i.e., the presence of exponential DOS

tails.

V. CONCLUSION

A theory of tail-to-band tunneling in semiconductors

has been developed. Compared to prior art, the localized

nature of tail states was taken into account. For the

complete picture, the field-induced lifetime broadening of

these localized states was computed from a 3-dimensional

pseudo-delta potential.1 The basic idea has been to com-

pose the tail DOS as a weighted integral over single-level

trap DOSs where the envelope is determined by the mea-

sured shape (exponential or Gaussian) and characteristic

energy (g). The deeper the energy in the tail, the stronger

the localization and the smaller the probability of trap-

assisted tunneling between the tail state and opposite

band. The simple potential model yields s-like states with

a certain localization radius which is parametrized by an

effective mass mt of the localized electron. This is the

only fitting parameter of the theory, but its value can be

assumed to be in the range between light-hole and VB

DOS (heavy hole) mass. The explicit calculation of the

generation rates is only possible in the limits of strong and

weak localization, respectively. However, the systematic

analysis has shown that the important mt-range is best

described by the limit of strong localization. For a homo-

geneous electric field, the complicated multiple integrals

have been simplified to fully analytical expressions with

high accuracy and compared to the band-to-band tunneling

rate using the same one-band envelope method. An analyt-

ical solution for the generation rate due to tunneling from

continuum states of the disturbed DOS to states in the

opposite band was also derived. The difference to ordinary

band-to-band tunneling (Franz-Keldysh effect), however,

is small and almost negligible.

In a Tunnel FET, the presence of DOS tails is an impor-

tant non-ideality effect. The full model was implemented in

a commercial semi-classical device simulator and applied to

a nanowire Gate-All-Around TFET. As a consequence of the

smoothened band edge, the energetic overlap of initial and

final states occurs gradually at the onset of tunneling. This

increases the sub-threshold swing of the TFET. Exponential

tails have a much stronger impact here than Gaussian tails.

The localization parameter mt hardly changes the swing, but

determines the magnitude of the generation rate. When tail

states are assumed to be Bloch states, the rate is strongly

overestimated. Hence, DOS tails degrade the performance of

TFETs, but to a lesser extent than trap-assisted tunneling via
FIG. 15. Comparison of the transfer characteristics obtained using model-1

with different values of the effective mass mt.

FIG. 16. Impact of the effective mass mt in the case of a Gaussian DOS.

Model-1 which accounts for lifetime broadening of the tail states was used.FIG. 14. Degradation of the sub-threshold swing SS with characteristic

energy g for different values of the effective mass mt.
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deep levels in bulk, at hetero-interfaces, and at oxide-

semiconductor interfaces.5 The characteristic energy g has

a clear correlation with the doping concentration in the

source of the TFET. Simulations have shown that there is

an optimum doping level which should not be exceeded

since screening then reduces the gate control.41 This prac-

tically limits g and the effect of tails on the TFET perfor-

mance. The developed model is a “continuum model”, i.e.,

it implicitly assumes a proper average over random disor-

der caused by doping. Aggressive geometrical scaling of

nanowire TFETs leads to a countable number of doping

atoms in the source region. Then, the occurrence of tails

becomes questionable and only an atomistic approach, like

tight-binding NEGF, is able to correctly simulate the

effect.12,13
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APPENDIX A: DERIVATION OF ENERGETIC TAIL-TO-
BAND TUNNEL RATES

This appendix outlines the derivation of two approxima-

tions for the energetic rate of transitions from localized tail

states near the valence band (VB) into conduction band (CB)

states [Eqs. (27) and (35)]. Cylinder coordinates are chosen

as the constant field F is assumed to be aligned with the z-

direction. The normalized ground state U~E00 in the potential

�eFzþ 4pEtr
3
0dðrÞ½1þ r 
 rr� is given by1

U~E00ð.; zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eF�h2

2pð�hhtÞ3mt

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

~E

�hht

 !vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2

~E

�hht

 !
þ Ĝ2 ~E

�hht

 !vuut
ð1
0

dj j J0ðj.Þ Ĝ
~E

�hht

 !
Ai

EtðjÞ þ ~E

�hht

 !
Ai

EtðjÞ þ ~E þ eFz

�hht

 !(

�F
~E

�hht

 !
HðzÞAi

EtðjÞ þ ~E þ eFz

�hht

 !
Bi

EtðjÞ þ ~E

�hht

 !
þHð�zÞAi

EtðjÞ þ ~E

�hht

 !
Bi

EtðjÞ þ ~E þ eFz

�hht

 !" #)

(A1)

with

Ĝ
~E

�hht

 !
¼ G

~E

�hht

 !
þ 1

p

ffiffiffiffiffiffi
Et

�hht

r
: (A2)

In Eq. (A1), J0 denotes the Bessel function of the first kind,

of zero order, and EtðjÞ ¼ �h2j2=ð2mtÞ.
In the calculation of the matrix element between the

state U~E00 and the envelope wave function UE0k?m of the CB

UE0k?mð.;u; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
eFk?

2p

r
1

�hhc

Jmðk?.Þeimu

� Ai
Ecðk?Þ � E0 � eFz

�hhc

� �
(A3)

the first term in the curly braces in Eq. (A1) can be neglected

because jGj � jFj for the relevant energies ~E ¼ Eþ Eg.

After performing the .- and u-integration, one obtains

M2
k?;m
ðE;E0;EtÞ�j UE0k?mjU~E00

� �
j2

¼ dm0

ð�hhtÞ3
�h2k?
mt

F
~E

�hht

 !

F 2
~E

�hht

 !
þ Ĝ2 ~E

�hht

 !jCðx; yÞj2

(A4)

and

Cðx; yÞ ¼ 1

p

ð1
�1

dtAi
ht

hc

tþ x

� �

�
ð1
�1

dk
P
k

Aiðy� tþ kÞAiðyþ kÞ (A5)

and

x ¼ Ecðk?Þ � E0

�hhc

; y ¼ Etðk?Þ þ ~E

�hht

: (A6)

The energetic transition rate for one localized state fol-

lows from Eq. (A4) by summation over m and integration

over k?

~Dt;cðE;E0;EtÞ ¼
X

m

ð1
0

dk?M2
k?;m
ðE;E0;EtÞ : (A7)

The t-integral in C(x, y) [Eq. (A5)] can be calculated exactly

with the help of35

ð1
�1

dtAiðxþ tÞAið~y�atÞ¼ 1

ð1þa3Þ
1
3

Ai
~yþax

ð1þa3Þ1=3

 !
: (A8)

Introducing Eq. (25) for the field-broadened DOS, the transi-

tion rate simplifies to
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~Dt;cðE;E0;EtÞ

¼ 4pr3
0.tð ~E;EtÞ

hc

h3
t

ðl2mcÞ
1
3

mt

ffiffiffiffiffiffiffiffiffiffiffi
Et�hht

p ð1
0

dfjC0ðfÞj2 (A9)

with

C0ðfÞ ¼
ð1
�1

dk
P
k

Ai kþ fþ
~E

�hht

 !

� Ai akþ f=a2 þ
~E � E0

�hhl

 !
: (A10)

Here, a ¼ ht=hl ¼ ðl=mtÞ1=3
is the decisive parameter.

There is no general solution to the principle value integral

(A10) for an arbitrary a. An approximate treatment has been

suggested by Bechstedt et al.36 For demonstration, the abbre-

viations p ¼ fþ ~E=�hht and q ¼ f=a2 þ ð ~E � E0Þ=�hhl are

defined. Using the integral representation of the Airy func-

tion, C0 can be re-written as36

C0 ¼
ð1
�1

dk
P
k

Aiðkþ pÞAi akþ qð Þ

¼ ia

4p

ð1
�1

dr
ð1
�1

ds e�
i
3
a3r3�irapþ i

3
s3þisqsgnðs� rÞ ; (A11)

where sgn denotes the signum function. Now, the case of

strong localization is defined by the condition a3 � 1 and

the factor expð�ia3r3=3Þ is replaced by unity in the r-inte-

gral. This results in

C0 ! �P
p

Ai q� apð Þ

¼ � P
fþ ~E=�hht

Ai a
mt

mc

f� E0

�hhl

 !
: (A12)

Inserting into (A9), setting f ¼ 0 in the denominator (Ai2 is

rapidly decaying at E0 ¼ �Eg þ Et), and introducing the

joint DOS .lðE0Þ from Eq. (28) gives

~Dt;cðE;E0;EtÞ ¼ 16p2 mc

l
P
~E

2
E2

t r6
0 .tð ~E;EtÞ .lðE0Þ : (A13)

The final step is to multiply the energetic transition rate for

one localized state ~D by the density of the energy levels

1=ð2pr3
0Þ which yields Eq. (27):

Dt;cðE;E0;EtÞ ¼ 8p
mc

l
P
~E

2
E2

t r3
0 .tð ~E;EtÞ .lðE0Þ : (A14)

The case of very weak localization is defined by the condi-

tion a3 � 1.37 One obtains for C0

C0 !a

ð1
�1

dk
P
k

Aiðapþ kÞAiðqþ kÞ ¼ �ap Hðap� qÞ½

AiðapÞBiðqÞ þHðq� apÞBiðapÞAiðqÞ� :
(A15)

The first term in braces is zero because the argument of the

H-function is always negative. Thus,

ð1
�1

dfjC0ðfÞj2 ¼ a2p2Bi2
~E

�hhl

 ! ð1
�1

dfAi2 f
a2
þ Eg

�hhl

� �

�ap2Bi2
~E

�hhl

 !
F Eg

�hhl

� �
(A16)

which finally results in Eq. (35)

Dt;cðE;E0;EtÞ ¼8p

Bi2
~E

�hhl

 !

�hhlð Þ2
mt

l

� E2
t r3

0 .tð ~E;EtÞ .lð�EgÞ : (A17)

APPENDIX B: REPRESENTATION OF BAND-TO-BAND
TUNNEL RATE BY CONVOLUTION OF IDEAL CB AND
IDEAL VB DOSs

In this appendix it is shown that the ideal BTBT rate,

which is proportional to the reduced DOS, can be repre-

sented as convolution of the ideal CB DOS and the ideal VB

DOS.

Inserting the function F for both bands explicitly into

Eq. (40), one obtains

GBTB ¼ c

ð1
�1

dE .vð ~EÞ .cðEÞ

¼ c
ð2mvÞ3=2ð2mcÞ3=2

ð2p�h3Þ2
ffiffiffiffiffiffiffi
�hhv

p ffiffiffiffiffiffiffi
�hhc

p
M ; (B1)

where

M ¼
ð1
�1

dE

ð1
0

dx

ð1
0

dy Ai2 xþ
~E

�hhv

 !
Ai2 y� E

�hhc

� �
: (B2)

With the help of35

ð1
�1

dtAi2ðxþ tÞAi2ð~y � atÞ

¼ 1

2p
ffiffiffi
a
p

ð1
0

duffiffiffi
u
p Ai2 uþ ~y þ ax

ð1þ a3Þ1=3

 !
; (B3)

the obvious identity

ð1
0

dx

ð1
0

dyf ðxþ yÞ ¼
ð1
0

dt t f ðtÞ; (B4)

and

ð1
0

duffiffiffi
u
p

ð1
0

dv v Ai2 uþ vþ xð Þ ¼ 4

3

ð1
0

dt t3=2Ai2ðtþ xÞ ; (B5)

M can be written as
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M ¼ �hhr

ðmcmvÞ1=6

2pm
1=3
r

4

3

ð1
0

dt t3=2Ai2 tþ Eg

�hhr

� �
: (B6)

The integral in Eq. (B6) can be calculated exactly using a

recursion relation35 for
Ð1

0
dt tnAi2ðtþ xÞ which gives

ð1
0

dt t3=2Ai2ðtþ xÞ ¼ 3

64
4x2 Ai1ðjxÞ þ j2x Ai0ðjxÞ
	

þjAiðjxÞ� ; j ¼ 22=3 : (B7)

With this, the parameter c is determined but depends in a

complicated way on F , Ai1, Ai0, and Ai. It takes a much

simpler form if the asymptotic limits of these functions are

used. This is admissible since Eg � �hhr holds in all practi-

cal cases. For the correct asymptotic limit of M, one has to

expand Ai1 and Ai0 up to third order and Ai up to second

order, all lower-order terms cancel each other. These

asymptotic forms read (note a mistake for Ai1 in Ref. 39

corrected by Nikishov and Ritus38 and studied for BTBT in

Ref. 40)
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:

Equation (B7) becomes in the asymptotic limit

lim
x!1

ð1
0

dt t3=2Ai2ðtþ xÞ ¼ 3

64
ffiffiffiffiffiffi
2p
p

x7=4
e�

4
3
z3=2

: (B8)

Now one easily finds Eq. (41) for the parameter c using the

asymptotic limit of GBTB in Eq. (B1).

APPENDIX C: FIELD MODIFICATION OF CONTINUUM
STATES OF THE NON-IDEAL DOS

Continuum states have energies ~E < Eedge in the VB

DOS, and the effective mass mt is assumed to be equal to the

hole mass mv. In this appendix, it is shown how the non-

ideal VB DOS in this energy range changes under the influ-

ence of a constant electric field. The field broadening will be

first demonstrated for the case of the ideal DOS

.ðF¼0Þ
v ð ~EÞ ¼

ffiffiffiffiffiffiffiffi
8m3

v

p
4p2�h2

ffiffiffiffiffiffiffi
� ~E

p
Hð� ~EÞ : (C1)

As limF!0 .vð ~EÞ ¼ .ðF¼0Þ
v ð ~EÞ, it follows:

lim
F!0

1ffiffiffiffiffiffiffi
�hhv

p
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�hhv

 !

¼ 1

p

ð1
�1

d�Hð�Þ
ffiffi
�
p

dð�þ ~EÞ : (C2)

Therefore, one can enforce the field-broadening by the

replacement

Hð�Þ
ffiffi
�
p

dð�þ ~EÞ ! Hð�Þpffiffiffiffiffiffiffi
�hhv

p Ai2 �þ ~E

�hhv

 !
: (C3)

This is now done for the non-ideal DOS in the energy range
~E < Eedge. It is given by

.ðF¼0Þ
v;t ð ~EÞ ¼ ð2mvÞ3=2 ffiffiffi

g
p

2p2�h3
Y �

~E

g

 !
H Eedge � ~E
� �

¼
ð2mvÞ3=2 ffiffiffi

g
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2p2�h3

ð1
�1

d� dð�þ ~EÞ Y
�

g

� �
H Eedge þ �ð Þ :

(C4)

After shifting the �-integration by �Eedge one can immedi-

ately apply the replacement (C3) which yields Eq. (42).

APPENDIX D: TRANSITION RATE FROM NON-IDEAL
CONTINUUM STATES

This appendix presents the calculation of the rate of

transitions from continuum states of the non-ideal VB DOS

into CB states.

Inserting Eq. (42) instead of .vð ~EÞ into the convolution

integral Eq. (40), one can calculate the E-integral over

Ai2Ai2 as done in Appendix B. Then

Gcond
tc ¼ c

ðmvmcÞ3=2�hhr

p3�h6

ffiffiffi
g
p ð1

0
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: (D1)

Using the identity

ð1
0

duffiffiffi
u
p

ð1
0

dv Ai2 uþ vþ xð Þ ¼ 2

ð1
0

dt
ffiffi
t
p

Ai2ðtþ xÞ ; (D2)

and inserting c results into Eq. (43)
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The last integral can be exactly expressed by Airy functions

using recursion relations35

ð1
0

dt
ffiffi
t
p

Ai2 tþ xð Þ ¼ � j2

16
Ai0ðjxÞ � 1

4
x Ai1ðjxÞ : (D4)

To make it proportional to F , the ansatz
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ð1
0

dt
ffiffi
t
p

Ai2 tþ xð Þ ¼ bðxÞ FðxÞ (D5)

is invoked. In the asymptotic limit (Eg � �hhr), Eq. (D4)

yields

lim
x!1

ð1
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dt
ffiffi
t
p

Ai2 tþ xð Þ ¼ x�5=4

16
ffiffiffiffiffiffi
2p
p e�

4
3
x3=2

; (D6)

and, therefore, with Eq. (D5)

lim
x!1

bðxÞ FðxÞ ¼ 1

8px
e�

4
3
x3=2

lim
x!1

bðxÞ ; (D7)

and by comparison of Eqs. (D6) and (D7) one finds b(x) for

large x:

bðxÞ ¼
ffiffiffiffiffiffi
2p
p

4x1=4
: (D8)

Now, Eq. (D3) can be written as
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tc ¼ðeFÞ3

8�hEg

Eg

�hhr

� �3
4

ffiffiffi
2
p

p
ffiffiffi
g
p

ð�hhrÞ2
ð1
0

d�ffiffi
�
p Y

�� Eedge

g

� �

� �hhr

�þ E0g

� �1
4

F
�þ E0g

�hhr

 !
: (D9)

The slowly varying factor ð…Þ1=4
in the last line can be

taken in front of the integral at � ¼ Eedge. Then, replacing F
by the rate of direct BTBT

F
�þ E0g

�hhr

 !
¼ 8�hEg�hhr

ðeFÞ3
GBTB

�þ E0g
�hhr

 !
(D10)

one obtains Eqs. (44) and (45). On the other hand, using the

asymptotic limit for F , Eq. (D9) turns into
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tc ¼ ðeFÞ3
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Expanding the exponent for small � and performing a partial

integration wrt the factor 1=
ffiffi
�
p

, this can be written as
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(D12)

The second term in angular braces dominates due to its propor-

tionality to ðE0g=�hhrÞ1=2
. Retaining only this term, taking

Y½ð�� EedgeÞ=g� out of the integral at �	 ¼ ð�hhrÞ3=2= ð4
ffiffiffiffiffi
E0g

p
Þ,

where the rest of the integrand becomes maximum, gives

Gcond
tc ¼ ðeFÞ3

64�hE2
g

ffiffiffi
p
p ffiffiffi

g
p

E
1=4
g

ð�hhrÞ3=4

� Y
ð�hhrÞ3=2

4gE
1=2
g

� Eedge

g

" #
e�

4
3

E0g
�hhr

� �3
2

: (D13)

To obtain the limit for the ideal DOS (g! 0), one has to

multiply by p3=2=2 which corrects for the above approxima-

tions. This finally yields Eq. (45).
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