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Low thermal conductivity and high power factor are desirable for thermoelectric materials.
These properties can be achieved by patterning devices into nano-structures such as nanowires
(NWs). The thermal conductivity can be further reduced by altering the NW geometry through the
introduction of surface roughness (SR) or stacking faults (SFs). In this paper, relaxation times for
scattering of phonons at SFs and SR are developed to accurately compute the impact of both effects
on the thermal conductivity of InAs NWs with different diameters. It is found that similar reductions
of the thermal conductivity can be obtained with SFs instead of SR. For the shortest possible dis-
tance between SFs along a NW, the room temperature thermal conductivity can be reduced to 25%
compared to an ideal NW. For a NW with rough surface, a more than 80% decrease of the thermal
conductivity is possible for specific roughness profiles. All available experimental data on the lattice
thermal conductivity of InAs NWs confirm the theoretical models and simulation results. Published
by AIP Publishing. https://doi.org/10.1063/1.5051677

I. INTRODUCTION

About two-thirds of the global energy production is lost
as waste heat. Thermoelectric materials with a high ZT figure
of merit are, therefore, long-desired to directly and reversibly
convert heat back into usable electrical energy.1 So far the
highest ZT value, which is proportional to the power factor
of the considered structure divided by its thermal conduc-
tivity, has been found in bulk SnSe. It could be attributed to
its intrinsically ultra-low lattice thermal conductivity.2 More
conventional materials could also exhibit a high ZT value if
they are patterned into nanostructures with a properly engi-
neered surface. For instance, nanowires (NWs) with a rough
surface have a higher ZT than their bulk counterparts due to
their reduced lattice thermal conductivity.3,4 An ultra-low
lattice thermal conductivity can also result from the pres-
ence of stacking faults (SFs) intrinsic to NWs. The latter are
naturally observed in III-V NWs, where zincblende (ZB)
and wurtzite (WZ) crystal structures alternate (Fig. 1).5

Engineering the density of the SFs inside NWs may
become an attractive design method for thermoelectric devices
if the power factor term in ZT remains essentially unchanged
or is not altered as much as the thermal conductivity.
A high value of the power factor term can be obtained by
(i) enhancing the Seebeck coefficient through a distortion
of the electronic density of states (DOS), (ii) achieving high
valley degeneracy by tuning the doping and composition or
(iii) embedding nanocrystals in a thermoelectric material with
further reducing the thermal conductivity.6–13 Simulation
and experiment have recently reported that the effect of
electron-phonon interaction on phonon transport in samples
with high doping concentration even reduces significantly the

lattice thermal conductivity.14,15 However, electron-phonon
scattering is not included here because the conductivity
model will be limited to the case of undoped InAs which
also corresponds to the measurements by Karg et al.5

The distribution of the SFs can be controlled by tuning
the growth parameters such as wire diameter, temperature,
and doping concentration.16,17 The optical and electrical
properties of the material change as a function of the SF
density. This offers opportunities for electronic band engineer-
ing and optoelectronic applications such as lasers, quantum-
dot devices, and single-photon emitters for sensing, quantum
information, and nano-photonics.18–27 The focus of this
paper is on properties like phonon dispersion, lattice thermal
conductivity, phonon mean-free-path (MFP), and phonon
lifetime in InAs NWs.

The situation is reversed in logic switches where silicon,
the reference semiconductor, could be replaced in the near
future by materials with better transport properties to give
rise to transistors with enhanced performance (Fig. 1).
This is the case of III-V materials (InGaAs), which are ideal
for n-type applications due to their very high electron
mobility.28–30 However, it is not clear whether such materials
can provide high enough thermal conductivities and
thus minimize self-heating and the formation of local hot
spots.31 To shed light on this issue, the developed simulation
model includes scattering of phonons at surface roughness
(SR) and SFs and is applied to InAs NWs with diameters
below 150 nm. This is the key to improve the figure of
merit of thermoelectric generators based on III-V NWs or
to minimize the impact of SR and SFs on the heat genera-
tion or evacuation in III-V logic switches.

The contributions from different scattering processes
and phonon energy channels to the total thermal conductiv-
ity of bulk, ideal NWs, and non-ideal NWs with SFs and
SR are analyzed. Predictions are made for modified NW
structures that may open the door for new high-efficiency
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thermoelectric nano-devices that could be readily
fabricated.3,16,17,32

II. THERMAL CONDUCTIVITY CALCULATION

Bulk InAs phonon dispersions of ZB and WZ structures
calculated by a density-functional-theory (DFT) approach
and a valence-force-field (VFF) model are shown in Fig. 2.
The Vienna ab initio simulation package (VASP) was used
for the DFT calculations.33,34 The atomic Coulomb long-range
potential which splits the transverse (TO) and longitudinal
(LO) optical branches at the Γ-point and its vicinity is included
in the calculation. The details of the simulation procedures
can be found in Appendix A. Phonon bands calculated
with the VFF model match the experimental data very well,
whereas DFT calculations result in some deviations from
both the measured acoustic and optical branches. For more
accurate predictions of the thermal conductivity, the VFF
model was chosen to produce the results outlined below.

The diffusive Landauer (Ld) formula is used to compute
the thermal conductivity of bulk and NW structures36

k ph Tð Þ ¼ 1
A

ð
Ξ ωð ÞλLdph(ω, T)

�hω

2π
@n0
@T

dω: (1)

From the bulk band structure, the number of states crossing
a given frequency can be extracted to obtain the number of
modes Ξ ωð Þ at a given phonon frequency ω. Here, T is the
lattice temperature, A is the cross-sectional area of the

conductor, and n0 is the Bose-Einstein distribution function.
The Landauer (or phonon) mean-free-path (MFP) for
backscattering λLdph(ω, T) is 4/3 times longer than the
common MFP [λ ph ω, Tð Þ ¼ v ph ωð Þτ ph ω, Tð Þ] in the three-
dimensional q-space, where v ph ωð Þ is the average phonon
group velocity at a given frequency.37 Each scattering mecha-
nism is described by a relaxation time (RT) [partial phonon
lifetime τα ω, Tð Þ]. The total scattering rate τ�1

ph ω, Tð Þ is
obtained by summing the inverse partial RTs of all involved
scattering processes. Apart from scattering at SFs and SR,
anharmonic phonon-phonon scattering (only Umklapp pro-
cesses) [τ�1

anh ω, Tð Þ ¼ Bω2Te�C=T], scattering at defects from
isotope mass variations [τ�1

def ωð Þ ¼ Pω4], and crystalline
boundary scattering [τ�1

b ωð Þ ¼ v ph ωð Þ=lb] are taken into
account. The crystalline boundary scattering MFP (lb) is
often used as fitting parameter to model the transition from
bulk to narrow NWs. The schematics of NW geometries with
SFs and SR as well as the different scattering mechanisms
are illustrated in Fig. 3. SR scattering can be diffusive [short
phonon wavelengths comparable to the asperity height (Δ)]
or specular (phonon wavelength much longer than Δ).38

Large computational efforts are required to calculate the
phonon bands of NWs with diameters larger than 50 nm.
An alternative way is to rely on bulk properties to estimate the
NW ones.36 As in bulk phonon band structure calculations
and in a previously proposed approach, cubic unit cells are
extracted from the NWs.36 The orientations of these unit cells
are changed according to the NW growth directions, h111i for
ZB and h0001i for WZ. The full-band phonon dispersions
are computed from these unit cells. The transport direction
is aligned with the x-axis in all cases. The wave vector q in

FIG. 1. Physical characterization of NWs with SFs. Top panel: Transmission
electron micrograph of an InAs NW with SFs. From the zoom, one can
extract the distance between the ZB/WZ interfaces. Bottom panel: Schematic
view of a gate-all-around nanowire field-effect transistor and an atomic struc-
ture of the InAs NW with SFs. The blue box indicates the smallest unit cell
forming a ZB lattice, while the red box refers to the WZ lattice.

FIG. 2. Bulk phonon band structures of InAs with ZB and WZ lattices cal-
culated by a VFF model and DFT. Circles represent experimental data.35

205101-2 Vuttivorakulchai, Luisier, and Schenk J. Appl. Phys. 124, 205101 (2018)



the first Brillouin zone (BZ) of both structures is discretized
by 401 points along the transport direction and 101 in
the others. Ξ ωð Þ and v ph ωð Þ can then be obtained from these
ballistic phonon bands along the x-axis. The phonon
density-of-states (DOS) and v ph ωð Þ of the ZB and WZ
structures are shown in Fig. 4. Small differences between
the ZB and WZ DOS can be observed. The perturbation
operator needed for the relaxation time of SF scattering is
assumed to be proportional to the difference ΔV of the bulk
ZB and WZ phonon band structures integrated over the first
BZ and summed over all branches. However, the bulk band
structures of Fig. 2 cannot be directly used because the

number of bands and the unit cells are different. The bulk
phonon bands of a ZB, ZB-WZ super-lattice (SL), and WZ
structure with equal number of bands and computed with
the same unit cells (hexagonal structure) are presented in
Appendix A. Despite the close resemblance of the ZB-WZ,
ZB, and WZ band structures, the measured thermal conduc-
tivity of InAs nanowires with stacking faults is much
smaller than in ideal nanowires.5 Thus, in this paper, the
interface scattering at stacking faults is treated in the relaxa-
tion time approximation using the difference between the
ZB and WZ phonon bands as perturbation.

Figure 5 shows ΔV as a function of phonon energy.
The number of atoms in the unit cells of ZB and WZ was
chosen such that the number of bands becomes equal. The
form of the two (three) cubic unit cells along the x-axis of
the ZB (WZ) structure was adapted accordingly. The first
Brillouin zone (BZ) was discretized as described in the
above procedure. The overall average of the energy differ-
ence is about 0.14 meV (0.21 meV) as a result of the VFF
(DFT) calculation. Note that ΔV has a maximum of about
2 meV at a phonon energy of �20 meV in the DFT case.
This can also be seen in Appendix A.

For the modeling of the scattering processes, the only
difference between bulk and NW is the boundary scattering
due to geometrical confinement in the NW. In NWs, the
parameter lb is equal to the nanowire diameter (d) multiplied
by a factor F which accounts for the uncertainty of the mea-
sured diameter. Note that the parameter lb will be used in the
following. The parameters B, C, and lb are derived by fitting
the thermal conductivity to experimental data of bulk-like
InAs samples, while P is analytically determined from the
isotope mass variations39,40

P ¼ Va

2πv3s

�MIn

�MIn þ �MAs

� �2

gIn þ
�MAs

�MIn þ �MAs

� �2

gAs

" #
, (2)

where Va is the atomic volume, vs is the average sound velocity,
and g is the phonon scattering parameter of the mass fluctua-
tion made up of several isotopes for a single element

g ¼
X
m

fm
Mm � �M

�M

� �
: (3)

FIG. 4. Top panel: Phonon DOS (solid lines) and vph ωð Þ (dotted lines) of
the ZB (blue color) and WZ (red color) phases. Bottom panel: The corre-
sponding unit cell structures of ZB and WZ and an example of 5� 5� 5
q-point sampling in the first BZ.

FIG. 5. Energy difference between ZB and WZ phonon band structures as a
function of phonon energy.

FIG. 3. Phonon scattering mechanisms. Top panel: An InAs NW with SFs.
Bottom panel: An InAs NW with SR.
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In this expression, fm is the atomic fraction of the mth
isotope whose mass is Mm and �M is the average mass of differ-
ent isotopes from the same atomic element. The parameters
B, C, P, and lb (bulk InAs) are equal to 2:3� 10�19 s/K, 59 K,
2:7� 10�45 s3, and 2.8 mm, respectively. No further parameter
is required to predict the thermal conductivity of the NW.

The ZB and WZ crystal structures give almost the same
bulk lattice thermal conductivity which fits well to the experi-
mental data (Fig. 6). The thermal conductivity of a NW is cal-
culated here by adjusting the crystalline boundary scattering to
the NW geometry. Note that, due to the conical shape,44 the
diameter varies along the wire. The average of the values at
the two ends was chosen to determine the parameter lb. The
factor F was then fitted to the measured thermal conductivity
of the NWs. The calculated results show good agreement to
currently available measured values in the diameter range from
�60 nm to �150 nm in the case of InAs NWs (Fig. 6). SFs
and SR can be directly added to the picture through the inverse
phonon RT they induce.

A. Imperfect boundary scattering

First-order perturbation theory requires a proper pertur-
bation operator describing the lattice distortions. In the
general case of imperfect boundary scattering, phonons
experience different potential heights and widths along a
NW (see Fig. 7). The one-dimensional model for such a
chain of non-equidistant potential barriers with varying
width and height results in an inverse RT 1=τbs of the form
(see the derivation in Appendix B)

1
τbs(ω)

¼
P

n ΔV
2
nw

2
nsi

2 qxwnð Þ
vx ωð Þ�h2 Pn ln þ wnð Þ, (4)

where wn is the potential width at xn (n is up to the total
number of scattering boundaries, N), ln is the local distance
between two barriers, vx ωð Þ is the phonon group velocity in
x-direction at a given phonon energy, ΔVn is the height of
the potential barrier at xn, si(x) ¼ sin (x)=x, and ω ¼ ω(qx).
Note that non-diagonal terms � ΔVnΔVn0 do not occur for
random lsf and in the limit N ! 1 (see Appendix B), and
Eq. (4) can be applied to any boundary type such as grain,
line, dislocation, and SFs.

Under the assumption wn � ln for all n, one can use
the limits wn ¼ w ! 0 and ΔVn ¼ ΔV which lead to (see
Appendix B)

1
τsf (ω)

¼ vx ωð Þ
lsf

1� Tsf
Tsf

: (5)

Here, lsf is the average distance between SFs and Tsf is
the phonon transmission coefficient of the SF. For electron
scattering at grain boundaries (GBs), the same form of the
RT was first given by Mayadas et al.45 Serov et al. adapted
this expression to the scattering of phonons at GBs.46 If lsf
can be extracted from experiments, the phonon transmission
coefficient Tsf is the only fitting parameter. The underlying
assumption is that phonons are scattered at an ultra-thin
potential barrier induced by the SF, neglecting the differences
between ZB and WZ phonon properties. An alternative way
is to directly use Eq. (4) and apply the obvious replacements
ln þ wn ¼ 2lsf , ΔVn ¼ ΔV . This results in (see Appendix B)

1
τsf (ω)

¼ ΔV2

2�h2lsf vx ωð Þ
1
N

X
n

w2
nsi

2 qxwnð Þ, (6)

where ΔV is now the fitting parameter. Its value can be either
validated by or directly used from the calculated difference
between the ZB and WZ phonon band structures. Assuming
an exponential distribution of wn, the inverse RT becomes
(see Appendix B)

1
τsf (ω)

¼ lsfΔV2

�h2vx ωð Þ 1þ 4q2x l
2
sf

h i : (7)

The thermal conductivity of NWs with d � 125 nm that have
a dense distribution of SFs with lsf in-between 2 nm and 3 nm
(Fig. 1) was measured by Karg et al.5 Based on these
samples, lsf � 2:5 nm has been chosen for the simulations.

The fitting parameter ΔV ¼ 0:21 meV with lsf ¼ 2:5 nm
was found to produce a good fit to the experimental data,
as shown in Fig. 8 (black dotted line). After fitting the
model parameters, the thermal conductivity of structures with
various distributions of lsf , including the case of a super-
lattice, can be predicted. The period of the latter covers one

FIG. 6. Thermal conductivity of InAs as a function of T for bulk, ideal
NWs, NWs with SFs of ZB and WZ structures. Numbers inside (outside) the
figure obtained from the literature5,41–44 (from our calculations) are repre-
sented by d (lb). The symbols refer to experimental data.5,41–44

FIG. 7. Model potential for boundary and background scatterings.
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wire unit cell of ZB and one wire unit cell of WZ (Fig. 1) and
has the value lsf � 0:87 nm. The corresponding result for the
thermal conductivity is shown in Fig. 8 (black dashed-dotted
line). In the long-wavelength limit, all distributions result in
the same expression for the inverse RT

1
τsf (ω)

¼ α
lsfΔV2

�h2vx ωð Þ (8)

with a numerical pre-factor α which has the following values:
1 for exponential (Expo); 1/2 for super-lattice (SL), Poisson,
and sharp Gaussian (Gauss); and 2/3 for the uniform distribu-
tion. The general expressions for all lsf distributions can be
found in Appendix B. In the short-wavelength limit, the
inverse RT is

1
τsf (ω)

¼ α0 ΔV2

2�h2vx ωð Þlsf q2x
(9)

with α0 ¼ 1 for SL, sharp Gaussian, and uniform distributions,
as well as 1/2 for exponential distribution.

Figure 9 presents the calculated thermal conductivities
based on the inverse RT of different SF distributions.
In Fig. 9(a), ΔV was fixed to 0.21 meV. All lsf -distributions
such as SL, Gauss, and Expo result in equally good fits to
the experimental data. The inverse RT of grain-boundary
scattering according to the model provided by Serov et al.,
Eq. (5), was used with the fitted value of Tsf ¼ 0:72 for all T
and lsf . The corresponding thermal conductivity for this case
is shown by the black curve in Fig. 9. For small values of lsf ,

it falls short of the other distributions. The unphysical period-
icity of the thermal conductivity in the cases of SL and
Gauss for large lsf . 200 nm originates from the si-function.
However, the above-quoted limit N ! 1 excludes such long
distances between SFs. The pre-factor in the case of the
exponential distribution in Eq. (8) is larger than in the SL
and Gauss cases (by 2 in the long-wavelength limit). The
opposite behavior is found in the short-wavelength limit.
The numerical calculations take into account all possible
values between the short- and long-wavelength limits.
Interestingly, the integration over all wavelengths results in
very similar thermal conductivities. In Fig. 9(b), the calculated
difference between ZB and WZ band structures as a function
of phonon energy is used (see Fig. 5 for the VFF model).
The corresponding conductivity values then exceed the
experimental data by 5%–10%. It is possible that there are
some other unknown factors that further reduce the thermal
conductivity, thus explaining this difference. The value
ΔV ¼ 0:21 meV fitted to the experimental data will be kept
for the following analysis. Note that this value is exactly
the average difference between ZB and WZ phonon bands
obtained by the DFT approach.

B. Surface roughness scattering

First-order perturbation theory (Fermi’s golden rule) is
also employed to derive the RT of SR scattering. With two
parameters, the root-mean-square value of the roughness fluctu-
ations (Δ) and its autocorrelation length (L), the surface of

FIG. 8. Top panel: Calculated thermal conductivity of InAs NWs with SFs
(lb ¼ 125 nm), lsf ¼ 2:5 nm (black dotted line, SFs NW 1), and lsf ¼ 0:87 nm
(black dashed-dotted line, SFs NW 2) and of NWs with SR (Δ ¼ 4:4 nm, gray
dotted line, SR NW 1 and Δ ¼ 7:6 nm, gray dashed-dotted line, SR NW 2)
for L ¼ 6 nm. The symbols represent experimental data.5 Bottom panel: Ratio
of the thermal conductivity of an ideal NW (lb ¼ 125 nm) to the thermal con-
ductivity of corresponding NWs with SFs or SR (SFs NW 1 in the inset, SR
NW 1 in the inset, SFs NW 2, and SR NW 2).

FIG. 9. Thermal conductivity of SFs NWs with different lsf -distributions
(σ ¼ 0:5 nm for Gaussian distribution) as function of T and in comparison
to the grain-boundary model of Eq. (5) (Tsf ¼ 0:72) at lsf ¼ 2:5 nm (left)
and T = 300K (right). (a) With a fixed ΔV ¼ 0:21meV. (b) With ΔV from
the direct calculation of the energy difference between ZB and WZ structures,
as shown in Fig. 5 for the VFF model. The black thin dotted line indicates the
experimental value of the thermal conductivity at 300K. Experimental data
(red squares) are from Karg et al.5
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rough NWs can be fully characterized. The geometrical param-
eters of a rough InAs NW are illustrated in the bottom panel of
Fig. 3. The anharmonic potential related to a dilatation is chosen
as perturbation operator (see the derivation in Appendix C).
The total phonon scattering rate for a phonon branch p is the
sum of the phonon scattering rates over all branches p0. The
final expression for the SR scattering RT becomes

1
τq,psr

¼ ω2
q,pγ

2Δ2L2

4πd

�
X
p0

ð
ωq0 ,p0 ¼ωq,p

dS0

v ph ωq0,p0
� � e� q0�qj j2L2=4δq0z�qz,0, (10)

where γ is the Gr€uneisen parameter (0.57 for InAs)47 and dS0

is the surface element of the q-integration domain. Above
formula holds for a Gaussian autocorrelation (GA) function for
the SR. The case of an exponential autocorrelation (EA) func-
tion is presented in Appendix C.

A GA function will be considered in the following analysis.
For the results presented in Fig. 8, Δ was set to 4.4 nm at
L ¼ 6 nm in order to obtain the same reduction of the thermal
conductivity as predicted in the case where SFs dominate
(gray dotted line). A further 50% reduction of the thermal con-
ductivity in SR NWs could be obtained by setting Δ ¼ 7:6 nm
and L ¼ 6 nm (gray dashed-dotted line in Fig. 8). However, a
NW of 125 nm in diameter with this roughness configuration
could not be easily manufacturable. To achieve an ultra-low
thermal conductivity of � 1:4W/m/K, a narrower NW with
d ¼ 60 nm, Δ ¼ 4 nm, and L ¼ 5 nm would be needed. This
is because the SR scattering rate is inversely proportional to
the NW diameter as expressed in Eq. (10). Such NWs have
been already produced with Si by Lim et al.32

The ratios of the thermal conductivity of ideal NWs
to those with SFs or SR are plotted in Fig. 8. At room

temperature, the thermal conductivity is reduced to about
25% at lsf , 2:5 nm for the SFs case or Δ ¼ 4:4 nm, L ¼ 6
nm for the SR case and by about 12.5% at Δ ¼ 7:6 nm,
L ¼ 6 nm. These ratios behave differently in that the ratio for
the SFs (SR) case is always larger than 1 (approaches 1) in
the limit T ! 0. The same behavior was also found in
previous calculations of the thermal conductivity of Si NWs
with SR.48

III. SCATTERING CONTRIBUTIONS

In this section, the significance of each scattering mecha-
nism contributing to the total thermal conductivity will be
presented and discussed in detail. In NWs with dominant SF
scattering, the phonon MFP and the thermal conductivity are
reduced at all temperatures, as seen in Figs. 10(a) and 10(b).
This is a reason why the ratio of ideal NW to SFs NW in
Fig. 8 is larger than 1 in the limit T ! 0. At very low temper-
atures (T , 20 K), boundary scattering has the strongest effect
on the nanowires with dominant SR scattering, whereas in
the high-temperature range for both cases a decaying trend
for the temperature dependence of MFP and thermal con-
ductivity caused by phonon-phonon Umklapp scattering
can be observed [see Figs. 10(a) and 10(b)]. Umklapp pro-
cesses are more dominant in bulk than in ideal NWs at high
temperatures, whereas the crystalline boundary scattering
becomes more important at low temperatures. The turning
point temperature of the ideal InAs NW with d ¼ 125 nm
where the dominant scattering process changes from crystal-
line boundary to phonon-phonon scattering is about 270 K.
The turning point temperature rises with decreasing diameter
which lowers the MFP of the crystalline boundary scattering.
Point-defect or impurity scattering has the least impact on total
MFP and lattice thermal conductivity.

FIG. 10. Contributions from different scattering processes for bulk, ideal NW, NW with SFs (lsf ¼ 2:5 nm), and NW with SR (Δ ¼ 4:4 nm, L ¼ 6 nm). For all
NWs, lb ¼ 125 nm. (a) Phonon MFP as a function of T. (b) Thermal conductivity as a function of T. The contribution from impurity scattering is far outside
the plotting range. Symbols refer to experimental data.5,41–44 (c) Scattering rates of ideal NW, NW with SFs, and NW with SR as a function of phonon energy
at room temperature.
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The scattering rates for an ideal NW at room temperature
in Fig. 10(c) reveal that crystalline boundary scattering is
the strongest mechanism at phonon energies below 6 meV.
Above this energy, Umklapp scattering dominates. For the
NW with SFs (lsf ¼ 2:5 nm), the SF scattering rate is larger
than all the others over most of the energy range. The sharp
peaks correspond to very small group velocities in the
transport direction according to Eq. (7). The slower the
phonons propagate in the transport direction, the more it is
scattered by the ZB/WZ potential barriers. For a SR with
Δ ¼ 4:4 nm and L ¼ 6 nm, SR scattering dominates almost
everywhere except at very low energies (LE) where crystal-
line boundary scattering is stronger.

Figure 11 illustrates the temperature-dependent contri-
bution of the different energy intervals to the total thermal
conductivity. Low energies (LE), intermediate energies
(IE), and high energies (HE) are defined here as the energy
channels ranging from 0 to 10 meV (mainly populated by
the transverse acoustic branches), from 10 to 20 meV, and
from 20 meV to the maximum phonon energy, respectively.
LE phonons have the biggest share over the whole temperature
range except for the SFs cases. The effect of geometrical con-
finement reduces the contribution by the LE phonons and
enhances the contribution of IE phonons.

A higher SF density (black dotted lines in Fig. 11) has the
effect that the contribution from SF scattering increases in the
IE and HE intervals. Its scattering rate dominates in the entire
energy range as seen in Fig. 10(c), and the rate becomes even
stronger when lsf decreases. This results in a smaller contribu-
tion in the LE region while the contributions in the IE and HE
intervals increase. The behavior is different in the SR case.
The SR scattering rate depends on the square of the phonon
energy. In the IE and HE intervals, the main contribution
comes from the SR scattering, while in the LE interval, the
contribution from boundary scattering becomes equally impor-
tant when ω ! 0 and cannot be neglected [see Fig. 10(c)].
When Δ increases, SR scattering in the LE interval has a
weaker influence on the increase of the scattering rate com-
pared to the IE and HE intervals. Thus, the LE region yields
the main contribution to the total thermal conductivity.

In the diffusive limit, the lattice thermal conductivity in
Eq. (1) can be written as37

k ph Tð Þ ¼ 1
A
Kbal Tð Þ λLdph Tð Þ

D E
(11)

with Kbal the ballistic thermal conductance

Kbal Tð Þ ¼ k2BTπ
2

3h

ð
Ξ ph ωð ÞWph ω, Tð Þd �hωð Þ (12)

and Wph the window function given by

Wph ω, Tð Þ ¼ � 3 �hωð Þ2
πkBTð Þ2

@n0
@ �hωð Þ : (13)

The quantum of the thermal conductance is the factor in front
of the integral of Eq. (12), and the average Landauer phonon
MFP for back scattering at a given T can be derived as37

λLdph Tð Þ
D E

¼
Ð
Ξ ωð ÞλLdph ω, Tð ÞWph ω, Tð Þd �hωð ÞÐ

Ξ ωð ÞWph ω, Tð Þ d �hωð Þ
¼ 4

3
λ ph Tð Þ� �

: (14)

The integral of the window function over all energies is
equal to 1. The phonon energies relevant for the thermal con-
duction can be described by Wph. At room temperature, Wph

is almost constant, i.e., the whole phonon energy range is
equally important. At lower temperature, LE phonons are
favored, whereas HE phonons of InAs have small group veloc-
ities (Fig. 4) and, therefore, their weight for the total phonon
RT becomes negligible. More details on the energy and tem-
perature dependence of Wph can be found in Appendix D.

At very low temperatures, the LE phonons are always
the major contributors to the thermal conductivity because
the window function is mostly confined in this LE channel.
HE phonons are always the least important. For NWs with
SR, the contribution from the HE interval can even be lower
than in the case of bulk InAs (Fig. 11). The design of ther-
moelectric nano-devices would greatly benefit from the sup-
pression of those energy channels that mainly contribute to
the thermal conductivity.

IV. THERMAL CONDUCTIVITY PREDICTION

The phonon band structure, lattice thermal conductivity,
phonon MFP, and phonon lifetime in bulk InAs and NWs
calculated and discussed in Secs. II and III are in good
agreement with available experimental data. This now

FIG. 11. Contribution of different energy intervals to the total thermal conductivity (0-10 meV, 10-20 meV, and .20 meV) for bulk, ideal NW, NW with SFs
1 (2) with lsf ¼ 2:5 nm (lsf ¼ 10 nm), and NW with SR 1 (2) with Δ ¼ 4:4 nm and L ¼ 6 nm (Δ ¼ 7:6 nm and L ¼ 6 nm). For all NWs, lb ¼ 125 nm.
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allows us to make predictions where experimental studies
have not yet been conducted.

Temperature and NW diameter variations are shown
in Fig. 12. They have a decreasing impact on the thermal
conductivity when the SFs are denser packed, because
scattering at SFs becomes the dominant process. A distance
lsf . 1 μm is sufficient to prevent a large reduction of the
NW thermal conductivity and, therefore, suppresses self-
heating and the eventual degradation of InAs-based logic
switches. Experimentally observed, the most frequent distance
is lsf � 10 nm, which can decrease the thermal conductivity
by about 70% at room temperature, even more at low tem-
peratures. It halves itself compared to an ideal NW at
lsf � 100 nm. Here, the non-diagonal terms � ΔVnΔVn0 were
neglected. Diameter scaling slightly reduces the contribution
of SF scattering to the total thermal conductivity [Fig. 12(a)],
i.e., transistors with very narrow InAs channels would be
least affected.

With decreasing temperature, the proportionate reduction
of the thermal conductivity increases in all cases, as shown in
Fig. 12(b). The temperature dependence of the thermal con-
ductivity almost disappears when lsf decreases, Δ increases at
fixed L, and L decreases at fixed Δ, respectively. With increas-
ing surface-to-volume ratio, the proportionate reduction of the
thermal conductivity in an ideal NW becomes larger. Unlike
in the case of dominant SF scattering, acoustic phonons in the
LE interval are only influenced by the confinement perpendic-
ular to the x-direction. The RT of SR scattering [see Eq. (10)]
is inversely proportional to the diameter of the NW which
offers the possibility to reduce the thermal conductivity signifi-
cantly by reducing the cross section. Aspects of self-heating
and thermal degradation of InAs-NW-based switches are
the same as in the case of SF scattering. Independent of

temperature and diameter, the thermal conductivity increases
when L exceeds �5 nm and becomes constant when L � 30 nm
as shown in Fig. 12. The same increase can be observed in the
measured thermal conductivity of the Si NWs with SR.32

Decreasing temperature and increasing diameter accelerate
the rise of the thermal conductivity when L increases. NWs
with small L are difficult to fabricate. A minimum value of
L � 5 nm can be observed in Lim et al.32

V. CONCLUSION

In summary, the presented simulations of the thermal
conductivity of InAs NWs agree well with all existing experi-
mental data. In order to prevent a reduction of the thermal
conductivity by at least 80%, the distance lsf between SFs
must be greater than 1 μm, the roughness amplitude Δ must
be very small, and the autocorrelation length L large.
The highest possible density of SFs in a NW with 125 nm
in diameter gives rise to a 75% decrease of the thermal con-
ductivity compared to an ideal NW at room temperature and
a 50% reduction at lsf � 100 nm. At low temperatures, the
decrease can be >75%. A 70% reduction would occur in
125 nm NWs with engineered rough surface when Δ ¼ 3 nm
at L ¼ 6 nm. In order to achieve a very low thermal conduc-
tivity of a realistic NW (�1.4W/m/K), parameters should be
similar to Δ ¼ 4 nm, L ¼ 5 nm, and d ¼ 60 nm which were
already demonstrated by Lim et al. for Si NWs.32 The SR
has a stronger effect when the NW diameter is scaled down,
in contrast to scattering at SFs. The simulations also prove
the principal possibility of engineering an ultra-low lattice
thermal conductivity of InAs NWs to achieve a high ZT pro-
vided the power factor term in ZT is not altered as much as
the thermal conductivity.

FIG. 12. Thermal conductivity (solid lines) and its relative reduction (dashed-dotted lines) with respect to ideal NWs as a function of the model parameters
lsf , L, and Δ. (a) NW diameter variation at 300 K. Numbers in figures are the values of lb. (b) Temperature variation for a diameter of 50 nm. Numbers in
figures are the temperature.
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APPENDIX A: PHONON BAND STRUCTURE OF INAS

InAs phonon dispersions of ZB, WZ, and SFs structures
will be first analyzed in this section. Two methods of phonon
band calculations are used and compared here.

(i) First-principles calculations based on projector
augmented-wave (PAW) pseudopotentials49 for the electron-
ion interactions from Blöchl50 and the local-density approxi-
mation (LDA) as implemented in VASP33,34 were performed.
The PAW pseudopotentials were chosen such that the [Kr]
4d10 ([Ar] 3d10) electrons of In (As) are considered according
to a frozen core approximation. A 2� 2� 2 Monkhorst-Pack
k-point grid according to 1 k-point in the irreducible wedge
of the BZ was used.51 The partial occupancies for each wave
function were set by the Gaussian smearing method with
50 meV smearing width of an energy cutoff of 400 eV. For
the electronic self-consistency loop, the convergence criteria
of 10�8 eV/ �A force acting on each ion and a total energy dif-
ference of 10�8 eV between two subsequent iterations were
employed to assure highly converged forces. The eight-atom
cubic cell of InAs was located at (0, 0, 0), (0, 0.5, 0.5),
(0.5, 0, 0.5), and (0.5, 0.5, 0) for In and (0.25, 0.25, 0.25),
(0.25, 0.75, 0.75), (0.75, 0.25, 0.75), and (0.75, 0.75, 0.25)
for As. Supercells of 216 atoms (3� 3� 3 conventional cells)
were used to evaluate the harmonic interatomic force-constants
(IFCs) (Hessian) matrix via density functional perturbation
theory (DFPT). Phonon bands were then computed by
employing the Hessian matrix.

(ii) A modified VFF model was used to compute the
short-range interaction potential of InAs, which depends solely
on atomic positions.52 Five types of short-range interactions
can accurately capture the bulk InAs phonon dispersions. The
total short-range interaction potential is then given by

U ¼
X
i

X
j[NN ið Þ

αij

b2ij
r2ij � b2ij

� 	2

þ
X
i

X
j[NN ið Þ

X
k[NN ið Þ
k=j

β jik

bijbik
rij � rik � bij � bik
� �2

þ
X
i

X
j[NN ið Þ

X
k[NN ið Þ
k=j

ζ jik

bijbik
r2ij � b2ij

� 	

� rij � rik � bij � bik
� �

þ
X
i

X
j[NN ið Þ

X
k[NN ið Þ
k=j

χ jik

bijbik
r2ij � b2ij

� 	
r2ik � b2ik
� �

þ
X
i

X
j[NN ið Þ

X
k[NN ið Þ
k=j

XCOP
l[NN kð Þ

l=i

κ jiklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bijbikbkibkl

p
� rij � rik � bij � bik
� �

rki � rkl � bki � bklð Þ, (A1)

where rij ¼ r j � ri is the bond vector from atom i to j and bij
is the equilibrium bond vector connecting atoms i and j. The
variables NN ið Þ and COP denote the nearest neighbors of atom
i and the plane formed by the coplanar atoms i, j, k, and l,
respectively. The potential parameters (α, β, ζ, χ, and κ) are
short-range force constants corresponding to bond stretching,
bond bending, stretch-bend interactions, cross-stretch interac-
tions, and coplanar bend-bend interactions, respectively. To
obtain the phonon band structure, the stationary phonon equa-
tion of motion must be solved. This equation can be written as
an eigenvalue problem

X
σ,η0

Dρ,σ ηη0jqð Þwnσ η0jqð Þ ¼ ω2
n qð Þwnρ ηjqð Þ, (A2)

where η and η0 are atom indices inside the structure unit cell,
while ρ and σ refer to Cartesian coordinates. The quantities ωn

and wnρ represent the phonon frequencies and eigenvectors,
respectively, for phonon branch n and phonon wave vector q.
The dynamical matrix of the considered atomic structure (D) is
the summation of the short-range (sr) and long-range (lr) inter-
action components, where the contribution from the short-range
interaction potential is defined as

Dsr
ρ,σ ηη0jqð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

MηMη0
p
�

X
l0,l¼0

Φρ,σ lηjl0η0ð Þe�iq� r lηð Þ�r l0η0ð Þ½ �: (A3)

Here, M is the atom mass and l0 is the unit cell index of the
whole atomic structure. The atomic matrix of the force con-
stants (Φ) at the atomic equilibrium positions (R) is calcu-
lated as

Φρ,σ ij jð Þ ¼ @2U

@riρ@r jσ

����
R

, (A4)

with the potential U given in Eq. (A1).
Coulomb interactions build the long-range potential.

This effect must be properly accounted for in the phonon
band calculation in order to correctly model the splitting of
the TO and LO branches at the Γ-point and its vicinity, as
observed experimentally (Fig. 2). The background dielectric
screening of the Coulomb interaction is integrated into the
effective point charge (Qi) of atom i.53 The Coulomb interac-
tions between the ions can be written as

UCoul ¼ 1
4πε0

X
i,j

QiQj

ri � rj
�� ��: (A5)

The most popular method to include the Coulomb
interactions while simulating the phonon band structure is
through Ewald summation.54 However, this approach is
computationally very demanding since the summation over
a large number of reciprocal lattice vectors must be per-
formed to ensure a converged phonon band structure.
Hence, more efficient methods have been developed to
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include Coulomb interactions. A rough sketch of one of the
methods is given in the following paragraph.

A faster evaluation of the Coulomb potential can be done
by avoiding the summation over the reciprocal lattice vectors
as suggested by Parlinski et al.55 The main idea here consists
in modifying the expression from Parlinski et al. and adding it
directly to the long-range component of the dynamical matrix,
which then can be rewritten as

Dlr
ρ,σ ηη0jqð Þ ¼ 4πq2e

Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MηMη0

p q � Z�
η

h i
ρ
q � Z�

η0

h i
σ

q � ε � qt e� qj j2=Ψ2
, (A6)

where qe is the elementary charge, qt is the transpose of the
phonon wave vector, Z� is the Born effective charge tensor,
ε is the high-frequency static dielectric tensor, Ω is the volume
of the primitive unit cell, and Ψ is a free parameter that sup-
presses the influences of this long-range dynamical matrix and
includes the effect of the phase-factor difference in atomic
positions.

Figure 2 shows the bulk InAs phonon dispersions of
ZB and WZ structures calculated by a DFT approach and
a VFF model. The atomic Coulomb long-range potential
which splits the TO and LO branches at the Γ-point and its

vicinity is included in the calculation. The VFF parameters
are summarized in Table I. Phonon bands calculated with the
VFF model match the experimental data very well, whereas
DFT calculations result in some deviations from both the
measured acoustic and optical branches. To avoid inaccurate
predictions of the thermal conductivity, the VFF model was
chosen to produce the results in the other sections.

To be able to compare the band structures of bulk ZB,
super-lattice of ZB and WZ (ZBWZ), and WZ lattices, the
number of atoms in the unit cells of all structures must be
equal. The corresponding unit cells are shown in Fig. 13(a).
These structures are fully relaxed with LDA. Figure 13(b)
presents the corresponding band structures based on the VFF
and DFT calculations, respectively.

Figure 14 shows the shifted band energies (ΔV) among
these 3 different structures [presented in Fig. 13(a)] and their
band counting. A q-sampling with 401 points along the
x-axis and 101 points in the other two directions of the recip-
rocal lattice was chosen. The energy differences ZBWZ-ZB
and WZ-ZBWZ computed by the VFF method are similar to
those from the DFT method. The ZBWZ band energy is about
in the middle of the other two, but all band counts are very
similar. A strong shift in the band energy appears at �20meV
[see Fig. 14(b)], where the maximum values are �1.4 meV for
WZ-ZBWZ and �1.7meV for WZ-ZB.

APPENDIX B: SCATTERING OF PHONONS AT
STACKING FAULTS

Perturbation theory is employed to calculate the per-
turbing Hamiltonian caused by lattice distortions. To derive
RT for scattering at SFs, the general case of imperfect boun-
dary scattering with varying potential heights (ΔVn) and
widths (wn) of N boundaries along the NW x-axis will be
considered first (see Fig. 7). The perturbing potential with

TABLE I. Five VFF potential parameters (α, β, ζ, χ, and κ) in units of N/m,
Born effective charge tensor (Z�), and a free parameter (Ψ) of 8.79 nm�1 for
VFF and 2.59 nm�1 for DFT. The dielectric tensor (ε) is equal to 12:3� I3,
where I3 is the identity matrix with size 3.

α β ζ χ κ Z�

In 34.01 3.04 �0:79 3.02 0.47 2.50�I3
As 34.01 3.04 �0:79 3.02 0.47 �2:50� I3

FIG. 13. Comparison of bulk ZB, ZBWZ, and WZ lattices. (a) Hexagonal structures along the h111i direction of ZB and the h0001i direction of WZ. The blue
solid lines are unit cells used for the computation of bulk band structures with the same number of atoms in each cell. (b) Corresponding bulk band structures
of ZB, ZBWZ, and WZ.
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height (ΔVn) represents the energy shifted between phonon
band structures of the two phases (ZB and WZ) present
in segments wn, whereas the segments with width ln are
those of the ideal (unperturbed) NW (either ZB or WZ).
Using rectangular functions rect uð Þ of variable u, the whole
potential profile can be modeled as sum of the individual
perturbation potentials

V xð Þ ¼
XN
n

ΔVnrect
x� xn
wn

� �
: (B1)

Fermi’s golden rule is used to determine the transition
probability from the initial state with momentum q and
energy �hω to the final state with momentum q0 and energy
�hω0 per unit time t due to a perturbing Hamiltonian H0. It is
given by

‘ q, p; q0, p0ð Þ ¼ 2π

�h2
q, ph jH0 q0, p0j ij j2δ ωq,p � ωq0,p0

� �
: (B2)

In order to obtain the total transition rate, summation
over all modes q0 is required. The volume q-space summation
can be transformed to a surface integral over dS0. Total
phonon scattering rate of a phonon branch p is the sum of the
phonon scattering rates over all branches p0

1
τ
¼ 2π

�h2
X
p0

V

2πð Þ3
ð

dS0

v ph ωq0,p0
� � dωq0,p0

� q, ph jH0 q0, p0j ij j2δ ωq0,p0 � ωq,p
� �

, (B3)

where V is the volume of the simulated device and v ph ωð Þ is
the phonon group velocity for a given phonon energy. Using

the plane wave expansion, the phonon wave function can be
written as

hr q0, p0j i ¼ 1
V
eiq

0 �r: (B4)

The square of the transition matrix element can be
decomposed as

q, ph jH0 q0, p0j ij j2 ¼ H2
ind þ H2

int, (B5)

where the diagonal term (Hind) is given by

H2
ind ¼

1
L2x

XN
n¼n0

ΔV2
nw

2
n

� si2 q0x � qx
� � � wn=2
� 

δ q0ρ � qρ
� 	

: (B6)

Here, Lx is the length of the NW, δ(q0ρ � qρ) is the
Kronecker delta of the component of q in the yz-plane,
and si xð Þ ¼ sin xð Þ=x is the si-function The off-diagonal term
(Hint), describing scattering by two different potential barri-
ers, reads

H2
int ¼

1
L2x

XN
n=n0

ΔVnwnsi q0x � qx
� � � wn=2
� 

� ΔVn0wn0si q0x � qx
� � � wn0=2
� 

� e�i q0x�qxð Þ� xn0�xnð Þδ q0ρ � qρ
� 	

: (B7)

The inverse RT in Eq. (B3) can then be obtained as
the sum

1
τ
¼ 1

τ ind
þ 1
τ int

, (B8)

where the diagonal part τ�1
ind from all boundaries (i.e.,

barriers) is given by

1
τ ind

¼ 1

N ln þ wnh ivx�h2
XN
n¼1

ΔV2
nw

2
nsi

2 qxwnð Þ (B9)

and the off-diagonal part τ�1
int from the interaction with two

different boundaries (barriers) by

1
τ int

¼ 1

N ln þ wnh ivx�h2

�
XN
n,n0=n

ΔVnwnΔVn0wn0

� si qxwnð Þsi qxwn0ð Þe2iqx xn0�xnð Þ: (B10)

In Eqs. (B9) and (B10), vx is the x-component of the
phonon group velocity, and the angular brackets denote the
average fnh i ¼ 1

N

PN
1 fn. As the off-diagonal term vanishes

in the limit N ! 1 and for a random distribution of wn, it
will be skipped. Therefore, Eq. (B9) is the final form for the
rate τbs of phonon scattering at imperfect boundaries

1
τbs(ω)

¼ 1

N ln þ wnh ivx�h2
XN
n¼1

ΔV2
nw

2
nsi

2 qxwnð Þ: (B11)

This expression is general and can be applied to grain,
line, and dislocation scattering as well as scattering at SFs.

FIG. 14. Band energy differences among ZB, WZ, and ZBWZ structures
and their band counts. (a) VFF calculation. (b) DFT calculation. Band
energy of WZ (ZBWZ, WZ) differs from ZB (ZB, ZBWZ) represented by
WZ-ZB (ZBWZ-ZB, WZ-ZBWZ), respectively.
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The RT for SR scattering will be derived in a different way
in Appendix C. In the case of grain boundary (GB) scatter-
ing, the limit wn ¼ w ! 0 leads to

1
τGB(ω)

¼ vx ωð Þ
lGB

1� TGB
TGB

(B12)

(lGB denotes the average grain size). This equation having the
same form as in Serov et al.46 immediately follows from
Eq. (B11) under the assumption

ΔV2w2
GB ¼ v2x�h

2 1� TGB
TGB

� �
, (B13)

which can be derived from the textbook formula for the
transmission T of a plane wave through a thin (qxwn � 1)
rectangular barrier. Equation (5) is the same as Eq. (B12),
with GB replaced by sf .

In the case of SF scattering, the potential barrier is caused
by the phonon band structures of two different phases of the
same material. Therefore, all potential heights ΔVn have the
same value ΔV . The actual distribution of the wn after growth
is not known; hence, all standard models are considered for
completeness in the following. We compute the RT for a
super-lattice [δðwn � lsf Þ], exponential [expð�wn=lsf Þ=lsf ],
Gaussian {1=

ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
exp[�(wn � lsf )

2=2σ2]}, uniform (1=Lx),
and Poisson [ðlsf =aÞnexpð�lsf =aÞ=n!] distribution, respec-
tively, where a is the lattice constant and lsf � lsf ,min

�� �� 	 σ is
assumed. The summary of the resulting inverse RTs τ�1

sf is

1
τsf (ω)

¼

lsfΔV2

2�h2vx ωð Þ si
2 qxlsf
� �

,

lsfΔV2

�h2vx ωð Þ 1þ4q2x l
2
sf½ �,

lsfΔV2

4�h2vx ωð Þ si
2 qxlsf
� �

1þ erf lsfffiffiffiffiffiffi
2σ2

p
� 	h i

,

ΔV2

4�h2vx ωð Þlsf q2x
1� si 2qxLxð Þ½ �,

ΔV2e�lsf =a

2�h2vx ωð Þlsf
PN

n¼0 a
2n2si2 qxanð Þ lsf

a

� 	n
1
n!,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(B14)

respectively. Here, lsf is the average distance between two con-
secutive SFs and erf uð Þ is the error function of variable u.

APPENDIX C: SURFACE ROUGHNESS SCATTERING

A RT for phonon SR scattering has been given by
Martin et al.48 and in our previous study.36 Below, an
improved derivation will be presented in detail, which is
similar to that of Klemens for the perturbation energy matrix
element due to a static strain field.56 However, our calculation
of the RT due to a dilatation explicitly treats the exact anhar-
monic potential caused by this dilatation as perturbing
Hamiltonian. The NW geometry is then applied to surface
profiles of Gaussian and exponential autocorrelations (GA
and EA) for the SR. The SR profiles are described in the
common way by Δ and L.

The dynamics of an elastic continuum is considered
here instead of the lattice dynamics because it allows to link

macroscopic quantities like the Gr€uneisen parameter (γ) asso-
ciated with the thermal expansion phenomenon to the inter-
atomic force constants and anharmonicity. Ziman38 presented
this theory in a formalism that parallels, as completely as
possible, the dynamics of a lattice. The total energy consists
of the potential energy density as quadratic function of the
local strain (@η=@r), the kinetic energy of the motion
described by a momentum variable p rð Þ, and the anharmonic
potential energy

H ¼ 1
2

ð
dr

X
αβγδ

@ηα
@rβ

@ηγ
@rδ

Gβδ
αγ þ

1
2

ð
drD�1

0 p rð Þ � p rð Þ

þ 1
3!

ð
dr

X
αβγδρσ

@ηα
@rβ

@ηγ
@rδ

@ηρ
@rσ

Aβδσ
αγρ

α, β, γ, δ, ρ, σ ¼ 1, 2, 3ð Þ: (C1)

Here η is the atomic displacement from its equilibrium
(different from index η in previous uses), G is the fourth rank
tensor in Cartesian components representing the elastic
moduli, D0 is the equilibrium mass density of the material,
and A is the sixth rank tensor of the third derivatives of the
potential energy (anharmonic term). p and η are canonically
conjugate if they refer to the same point in the medium, just
as they would be if they referred to the same particle in the
lattice.38 Ziman assumes the commutation relations in the
language of field theory as

η rð Þ, p r0ð Þ½ � ¼ i�hδ r0 � rð ÞI, (C2)

where δ r0 � rð Þ is the three-dimensional Dirac delta function.
One can expand the operators p rð Þ and η rð Þ in Fourier series
taking new operators Pq and Qq as coefficients, i.e.,

η rð Þ ¼ 1ffiffiffiffi
V

p
X
q

Qqe
�iq�r, p rð Þ ¼ 1ffiffiffiffi

V
p

X
q

Pqe
iq�r: (C3)

Then, Eq. (C1) can be transformed to

H ¼ 1
2

X
q

X
αγ

Qα
qQ

γ
�q

X
βδ

qβqδG
βδ
αγ þD�1

0 Pq � P�q

( )

� i

3!
ffiffiffiffi
V

p
X
q,q0,q00

δg,qþq0þq00
X
αγρ

Qα
qQ

γ
q0Q

ρ
q00

�
X
βδσ

qβq
0
δq

00
σA

βδσ
αγρ : (C4)

To complete the quantum-mechanical description, some
information about the eigenstates is needed. For this, Ziman
returned to the operator formulation of Eq. (C4) and trans-
formed to normal coordinate operators

Qq ¼
1ffiffiffiffiffiffi
D0

p
X
p

eq,pQq,p, Pq ¼
ffiffiffiffiffiffi
D0

p X
p

e�q,pPq,p, (C5)

where eq,p are the polarization vectors. One obtains the
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Hamiltonian of an elastic continuum in the second quantiza-
tion formalism as38

H ¼ 1
2

X
q,p

Pq,pP
�
q,p þ ω2

q,pQq,pQ
�
q,p

n o

� i

3!
ffiffiffiffiffiffiffiffiffiffi
VD3

0

q X
q,p;q0,p0;q00 ,p00

δg,qþq0þq00Qq,pQq0,p0Qq00 ,p00

�
X

αβγδρσ

eαq,pe
γ
q0,p0e

ρ
q00 ,p00qβq

0
δq

00
σA

βδσ
αγρ ,

Pq,p ¼
ffiffiffiffiffiffiffiffiffiffi
�hωq,p

2

r
aq,p þ a��q,p

� 	
,

Qq,p ¼ �i

ffiffiffiffiffiffiffiffiffiffi
�h

2ωq,p

s
a�q,p � a�q,p

� 	
, (C6)

where ωq,p is the phonon frequency at q and branch p, aq,p is
the phonon annihilation operator, a�q,p is the phonon creation
operator, and g is the reciprocal lattice vector. One can now
easily derive the relation between elastic moduli, anharmo-
nicity, and Gr€uneisen parameter as

γq,p ¼ � 1
6

P
αβγδρ e

α
q,pe

γ
q,pqβqδA

βδρ
αγρP

αβγδ e
α
q,pe

γ
q,pqβqδG

βδ
αγ

, (C7)

where the denominator of Eq. (C7) is written as38

X
αβγδ

eαq,pe
γ
q,pqβqδG

βδ
αγ ¼ D0ω

2
q,p: (C8)

Finally, from Eqs. (C7) and (C8), the relation

X
αβγδρ

eαq,pe
γ
q,pqβqδA

βδρ
αγρ ¼ �6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γq,pγ�q,p

p
D0ω

2
q,p, (C9)

can be found. Here, γq,p was replaced by ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γq,pγ�q,p

p for later
convenient use.

The cubic crystals with four-fold axes have only six
types of independent coefficients A which are38

A111
111, A112

112, A123
123, A133

122, A122
111, A312

231: (C10)

If the central forces are used to derive the elastic energy,
there are, in addition, the Cauchy relations38

A123
123 ¼ A312

231 ¼ A133
122, A

112
112 ¼ A122

111: (C11)

In an isotropic solid, there are only three second-order
elastic constants

A111
111, A112

112, A123
123 (C12)

[the first three terms in Eq. (C10)], which enter Eq. (C9). In
our model of the perturbation operator, (i) the local strain in
x-direction (NW axis) is assumed to cancel out, (ii) the total
volume of the NW with rough surface is assumed to be the

same as that of the ideal NW, and (iii) the roughness in
y-direction is indistinguishable from that in z-direction. Then,
the following anharmonic terms survive

Ayyz
yyz, Ayzy

yzy, Azyy
zyy, Azzy

zzy, Azyz
zyz, Ayzz

yzz: (C13)

Therefore, Eq. (C9) can be written as

X
α,ρ¼y,z
α=ρ

eαq,pe
α
q,pqαqαA

ααρ
ααρ þ 2

X
α,ρ¼y,z
α=ρ

eαq,pe
ρ
q,pqαqρA

αρα
αρα

¼ �6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γq,pγ�q,p

p
D0ω

2
q,p: (C14)

The factor 2 comes from the symmetry relation
Aαρα
αρα ¼ Aραα

ραα. Finally, Eq. (C14) is generalized to

X
α,ρ¼y,z
α=ρ

eαq,pe
α
q,p0qαqαA

ααρ
ααρ þ 2

X
α,ρ¼y,z
α=ρ

eαq,pe
ρ
q,p0qαqρA

αρα
αρα

¼ �6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γq,pγ�q,p0

p
D0ω

2
q,p,

(C15)

which implies that the Gr€uneisen parameter also comprises
transitions between different branches. Only the anharmonic-
ity parameters appearing in Eq. (C15) are kept in the anhar-
monic potential of Eq. (C6). This results in the perturbing
Hamiltonian

Vanh ¼� i

3!
ffiffiffiffiffiffiffiffiffiffi
VD3

0

q X
q,p;q0,p0;q00 ,p00

δg,qþq0þq00Qq,pQq0,p0Qq00,p00

�
X

α,ρ¼y,z
α=ρ

eαq,pe
α
q0,p0qαq

0
αA

ααρ
ααρe

ρ
q00,p00q

00
ρ

0
B@

þ2
X

α,ρ¼y,z
α=ρ

eαq,pe
ρ
q0,p0qαq

0
ρA

αρα
αραe

α
q00,p00q

00
α

1
CA: (C16)

Umklapp processes are neglected, i.e., g ¼ 0, in accor-
dance with the theory of an elastic continuum (limit of small
qj j). In Eq. (C16), one can change q0 to �q0 under the sum
which gives

Vanh ¼ i

3!
ffiffiffiffiffiffiffiffiffiffi
VD3

0

q X
q,p;q0,p0;p00

Qq,pQ�q0,p0Qq0�q,p00

�
X

α,ρ¼y,z
α=ρ

eαq,pe
α
�q0,p0qαq

0
αA

ααρ
ααρe

ρ
q0�q,p00 q0ρ�qρ

� 	2
64

þ2
X

α,ρ¼y,z
α=ρ

eαq,pe
ρ
�q0,p0qαq

0
ρA

αρα
αραe

α
q0�q,p00 q

0
α�qα

� �375: (C17)
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From Eq. (C17), with

Q�
q,p ¼Q�q,p,

X
p00

eρq00,p00q
00
ρQq00 ,p00 ¼�i

ffiffiffiffiffiffi
D0

p ffiffiffiffi
V

p Λρ
q00 ,

Λρ
q00 ¼

ð
dr

@ηρ
@rρ

eiq
00�r,

(C18)

one finds

Vanh ¼ 1
3!VD0

X
q,p;q0,p0

Qq,pQ
�
q0,p0

�
X

α,ρ¼y,z
α=ρ

eαq,pe
α
�q0,p0qαq

0
αA

ααρ
ααρΛ

ρ
q0�q

0
B@

þ2
X

α,ρ¼y,z
α=ρ

eαq,pe
ρ
�q0,p0qαq

0
ρA

αρα
αραΛ

α
q0�q

1
CA: (C19)

The roughness profiles in y- and z-direction are equivalent,
and Ly ¼ Lz ¼ d, where d is the diameter of the NW. With the
assumption of a uniform dilatation (

@ηy
@y ¼ 2Δ x, zð Þ

d ¼ @ηz
@z ¼ 2Δ x, yð Þ

d ),
it follows that Λy

q ¼ Λz
q. The factor 2 arises because for a

given Cartesian direction, the dilatation has its starting point
at the center of the NW. Let us first consider the (x,y)-plane
only in which a dilatation is oriented in z-direction

(@ηz@z ¼ 2Δ x, yð Þ
d ¼ 2Δ r==,xyð Þ

d , r==,xy ¼ xþ y, and r ¼ zþ r==,xy).
One can then write Eqs. (C15), (C18), and (C19) in the form

ezq,pe
z
q,p0qzqzA

zzy
zzy þ 2eyq,pe

z
q,p0qyqzA

yzy
yzy

¼ �3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γq,pγ�q,p0

p
D0ω

2
q,p, (C20)

Λy
q00¼ Λz

q00 ¼ 2
ð
d2r==,xyΔ r==,xy

� �
eiq

00
==
�r==,xyδq00z ,0, (C21)

Vanh,xy ¼ 1
3!VD0

X
q,p;q0,p0

Qq,pQ
�
q0,p0

� ezq,pe
z
�q0,p0qzq

0
zA

zzy
zzy

�
þ2eyq,pe

z
�q0,p0qyq

0
zA

yzy
yzy

	
Λy
q0�q:

(C22)

Inserting Eq. (C21) to Eq. (C22), the expression for the
perturbing potential becomes

Vanh,xy ¼ 2
3!VD0

X
q,p;q0 ,p0
q0z¼qz

Qq,pQ
�
q0,p0

� ezq,pe
z
�q,p0qzqzA

zzy
zzy þ 2eyq,pe

z
�q,p0qyqzA

yzy
yzy

� 	

�
ð
d2r==,xyΔ r==,xy

� �
e
i q0

==
�q==

� 	
�r==,xy

: (C23)

Replacing here the brace by Eq. (C20), one obtains

Vanh,xy ¼ � 1
V

X
q,p;q0,p0

Qq,pQ
�
q0,p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γq,pγ�q,p0

p
ω2
q,p

�
ð
d2r==,xyΔ r==,xy

� �
e
i q0

==
�q==

� 	
�r==,xy

δq0z�qz,0: (C24)

Since q0z ¼ qz, one can replace q0== � q== by q0 � q in the
exponent. Therefore, Eq. (C24) can be written in the form

Vanh,xy ¼ � 1
V

X
q,p;q0,p0

Qq,pQ
�
q0,p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γq,pγ�q,p0

p
ω2
q,p

�
ð
d2r==,xyΔ r==,xy

� �
ei q

0�qð Þ�r==,xyδq0z�qz,0: (C25)

Considering now a constant dilatation perpendicular to
the (x,z)-plane, the same derivation leads to the contribution

Vanh,xz ¼ � 1
V

X
q,p;q0,p0

Qq,pQ
�
q0,p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γq,pγ�q,p0

p
ω2
q,p

�
ð
d2r==,xzΔ r==,xz

� �
ei q

0�qð Þ�r==,xzδq0y�qy ,0 , (C26)

to the total perturbation. Here, the integral extends over the
(x,z)-plane.

The Gr€uneisen parameter is assumed to be a constant
number, γ. Since both planes must be included and their con-
tributions are equal by symmetry, the perturbing potential
finally becomes

Vanh ¼ � 2γ
V

X
q,p;q0,p0

Qq,pQ
�
q0,p0ω

2
q,p

�
ð
d2r==,xyΔ r==,xy

� �
ei q

0�qð Þ�r==,xyδq0z�qz,0: (C27)

In the form of second quantization, one can write

Qq,pQ
�
q0,p0 ¼ � �h

2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωq,pωq0,p0
p

� a�q,pa
�
�q0,p0 �a�q,paq0,p0

�
�a�q,pa

�
�q0,p0 þa�q,paq0,p0

	
:

(C28)

The average rate of change of the phonon occupation
number (nq,p) is

56

dnq,p
dt

�
¼ � nq,p � hnq,pi

τ ph
, hnq,pi ¼ 1

e�hωq,p=kBT � 1
, (C29)

where hnq,pi is the Bose-Einstein distribution function and
τ ph is the phonon RT. The left-hand side of Eq. (C29) is
equal to the sum over energy of the transition rate

dnq,p
dt

�
¼

X
f

‘ Ei; Ef

� �
,

‘ Ei; Ef

� � ¼ 2π
�h

hEijH0 Ef i
�� ��2δ Ef � Ei

� �
,

��� (C30)

where Ei ðjnq,p, nq0,p0 iÞ is the energy of state i and H0 is the
perturbing Hamiltonian. Ef can be the energy of a phonon
removed from mode q, pð Þ and created in mode q0, p0ð Þ
ðjEf i ¼ jnq,p � 1, nq0,p0 þ 1iÞ or vice versa ðjEf i ¼ jnq,p þ 1,
nq0,p0 � 1iÞ. Using this, Eqs. (C29) and (C30), and the
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perturbing Hamiltonian derived in Eq. (C27) lead to the RT

1
τq,p

¼ ω2
q,pγ

2

4π2V

X
p0

ð
ωq0 ,p0¼ωq,p

dS0

v ph ωq0,p0
� �

�
ð
d2r==,xyΔ r==,xy

� �
ei q

0�qð Þ�r==,xy
����

����
2

� nq,p � nq0,p0

nq,p � nq,p
� � δq0z�qz,0, (C31)

where dS0 is the area element of the energy surface integra-
tion, v ph is the phonon group velocity, and nq0,p0 is a suitable
average of nq0,p0 which is equal to nq,p

� �
for an isotropy solid.

The latter will be used here.
The absolute square term in Eq. (C31) can be written as

ð
d2r==,xyΔ r==,xy

� �
ei q

0�qð Þ�r==,xy
����

����
2

¼ Lxd

ð
d2r==,xy

� Δ r0==,xy
� �

Δ r0==,xy � r==,xy
� �� �

e�i q0�qð Þ�r==,xy ,
1
Lxd

ð
d2r0==,xyΔ r0==,xy

� �
Δ r0==,xy � r==,xy
� �

¼ Δ r0==,xy
� �

Δ r0==,xy � r==,xy
� �� �

: (C32)

GA and EA functions are used in Eq. (C32) leading to

Δ r0==,xy
� �

Δ r0==,xy � r==,xy
� �� �

¼ Δ2e�r2
==,xy

=L2 GA

Δ2e� r==,xyj j=L EA

(
: (C33)

The Fourier transform in Eq. (C33) with GA and EA
functions takes the form

ð
d2r==,xyΔ r==,xy

� �
ei q

0�qð Þ�r==,xy
����

����
2

¼ 2LxdπΔ
2L2

1
2 e

� q0�qj j2L2=4 GA

1þ q0 � qj j2L2
� 	�3=2

EA
:

8<
: (C34)

Inserting Eq. (C34) into Eq. (C31), the RTs for SR

scattering become

1
τq,psr

¼ ω2
q,pγ

2Δ2L2

2πd

X
p0

ð
ωq0 ,p0¼ωq,p

dS0

v ph ωq0,p0
� �

1
2 e

� q0�qj j2L2=4δq0z�qz,0 GA

1þ q0 � qj j2L2
� 	�3=2

δq0z�qz,0 EA

8<
: : (C35)

APPENDIX D: SIGNIFICANCE OF THE WINDOW
FUNCTION

The phonon energies contributing to the thermal
conduction can be described by the window function Wph.
At room temperature, Wph is almost constant (�10 eV�1)
with a slightly decaying slope (Fig. 15). Therefore, the
high-energy phonons cannot be ignored at T = 300 K, but
their importance reduces at lower temperatures. Below 50 K, a
peak at zero energy develops. The integral over Wph Eð Þ is
always equal to 1.
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