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Single-Electron Device Simulation
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Abstract—A three-dimensional (3-D) simulator is presented
which uses a linear-response approach to simulate the conduc-
tance of semiconductor single-electron transistors at the solid-state
level. The many-particle groundstate of the quantum dot, weakly
connected to the drain and the source reservoir, is evaluated in a
self-consistent manner including quantum-mechanical many-body
interactions. A transfer-Hamiltonian approach is used to compute
the tunneling rates for the coupling of the quantum dot levels to the
macroscopic reservoirs on the basis of realistic barrier potentials.
The simulator was applied to a GaAs/AlGaAs example structure.
We discuss the conductance characteristic and the capacitances as
well as the microscopic structure of the quantum dot.

Index Terms—Coulomb blockade, numerical modeling, single-
charge tunneling, single-electron transistors, transfer-Hamil-
tonian formalism.

I. INTRODUCTION

S INCE the 1980s, developments in both semiconductor tech-
nology and theory have led to a completely new field of de-

vice research focusing on structures whose operation is based
on the discrete nature of electrons tunneling through thin po-
tential barriers. These devices are referred to as single-electron
devices. The potential of the single-electron concept is rather
breathtaking. In principle, it should be possible to operate in
the limit of one transferred carrier per bit, the ultimate limit
of semiconductor based logic. However, it was not before the
mid-1980s that lithography technology reached the deep sub-
micron range making structuring of 100 nm features possible.
In the meantime, single-electronics has much matured and a va-
riety of concepts and device architectures are explored.

From the very beginning of semiconductor technology, it was
thought that numerical, physics-based analysis of devices could
help a great deal in their understanding. Nowadays, simulation
and modeling of semiconductor devices both at the process and
the device level has become one of the most important develop-
ment methodologies in industry and research alike. Simulation
of single-electron devices, however, is a field still in its infancy.
Most of the approaches used today are based on circuit anal-
ysis of equivalence circuits containing tunneling junctions and
islands characterized by capacitances. All these methods use
the results of the phenomenological orthodox theory (see for
instance, [1]) which treats single-electron transitions between
purely capacitively coupled islands (metallic grains) [2], [3].
The advantage of these methods is the possibility to evaluate
complex circuits containing a multitude of islands and tunneling
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junctions. Most of the time, analytical capacitance results are
used which retain the simplicity needed for the numerical eval-
uation of large circuits.

For semiconductor structures, however, the above-mentioned
methods are not accurate enough, especially if a discrete energy
spectrum is present at the island. An accurate description of
the island potential is only possible employing self-consistent
methods based on density-functional theory (DFT). Here, the
device is modeled and simulated at the solid-state level, i.e.,
the screening of the carriers is included by solving a nonlinear
(Schrödinger–) Poisson equation for a realistic geometry. This
method allows for a detailed analysis of single-electron charging
as for instance the calculation of the exact peak heights of the
Coulomb-blockade peaks and of possible envelope modulations.

In this paper, we present a device simulator especially de-
vised for the simulation of single-electron transistors (SETs).
It solves the equations relevant for the many-particle ground-
state in a quantum dot weakly coupled to two reservoirs by
thin tunneling barriers. Quantum-mechanical many-body inter-
actions for the quantum-dot electrons are considered as well as
the tunneling from the localized states in the reservoir to the lead
contacts. The simulator can handle devices of almost arbitrary
shape based on Si and GaAs/AlGaAs. A new numerical scheme
has been developed that allows the inclusion of quantum-well,
quantum-wire, and quantum-dot-like confinement at the same
time and in different regions of the device. The linear-response
conductance is calculated on the basis of a free-energy mini-
mization algorithm especially suitable for small quantum dots
with strong electron-electron interaction. The simulation results
are used to extract macroscopic parameters of the device such as
the gate-capacitance and the dot self-capacitance. At the same
time, it is possible to study the device on the microscopic level
of the wavefunctions and the discrete eigenenergy spectrum.

This paper is organized as follows. In Section II, an extensive
discussion of the simulation method is presented. Section III
shows the simulation results for a GaAs/AlGaAs based example
structure. A comparison with the measured data available for
the simulated structure is given. Some conclusions are drawn in
Section IV.

II. SIMULATION METHOD

A. Linear-Response Model

The model for a single-electron transistor consists of a con-
finement region (island, quantum dot) with a discrete level spec-
trum . The occupation of the levels is described
by an integer number and the occupation of the
level system, i.e., a specific occupation number configuration is
given by the set . The number of electrons is integer and

. The confined region is weakly coupled to two elec-
tron reservoirs via tunneling barriers (junctions). The reservoirs
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which are named source and drain are taken to be in thermal
equilibrium at temperature and Fermi energy . The device
is considered to be driven in linear-response, i.e., the conduc-
tance is defined as in the limit . At K
a current flows if the Fermi energy in the reservoirs aligns with
one of the chemical potentials of the quantum dot. The
set of chemical potentials is given as the change in the
free energies of the system when adding or removing an elec-
tron, i.e., . The tunneling through the
two barriers is described by sets of tunneling rates for all states

in the quantum dot to the left (drain-) and the right (source-)
reservoir, and . The intrinsic width of the transmis-
sion resonance is . It is assumed that for all
levels in the dot , i.e., the finite width of the trans-
mission resonance through the quantum dot can be disregarded.
It is further assumed that the junction resistances are above the
quasiclassical limit, k . This en-
sures that the tunneling events are well separated in time and
the current flow does not disturb the equilibrium. It is therefore
possible to use a master equation to describe the transport [4].
Linearization of this master equation leads to an equation for
the linear response conductance [5]:

(1)

where
. The free energy of the system with the quantum dot in a

particular occupation configuration and electron number
is denoted . We use the following notation for the

free energies in (1): denotes the free
energy of the system with a set of occupation numbers ,
electron number , and the th level filled, i.e.,

(2)

The th level is assumed empty before the transition from the
-electron system to the -electron system, and con-

sequently, the free energy associated with the system before
charging the quantum dot, , is defined ac-
cording to

(3)

The equilibrium distribution function of the grand canonical en-
semble, , is given by

(4)

with , the inverse of the thermal energy.

B. Free Energy Minimization

To calculate the total (Helmholtz) free energy of a charged
system consisting of distinct elements with the

total equilibrium charges and the voltages the following
semi-classical expression is used

(5)

where denotes the currents provided by the external circuitry
(voltage sources). The first term in (5) is the capacitive (poten-
tial-) energy stored in the device. Separating the device into
elements that contain a continuous space charge (dot, leads,
donor layer) and metal plates which are equipotential regions
(gates, contacts) the electrostatic energy can be separated into

(6)

The potential is the electrostatic potential, i.e., the solution
of the Poisson equation with the charge density subject to
boundary conditions at the gates and contacts. The integral over
the space charges replaces the summation over the charged
elements in (5). The energy contribution from the gates, which
are kept at constant voltages , is calculated with the surface
charges . The second term in (5) is the work which is
needed to charge all elements that are connected to external cir-
cuitry (such as the gates and the source and drain region) when
electrons are transferred to the quantum dot region. It is assumed
that the charging is fast compared with the internal relaxation
times, i.e., the tunneling time . Voltage sources are consid-
ered to be ideal with zero internal resistances (low-impedance
environment). Therefore, it is reasonable to assume that the
voltages are kept at constant level before and after the charging

. Using the current integral in (5), i.e.,
the work for the charging of the th element, is written

(7)

where the number of electrons in the dot at time zero is arbi-
trarily set to zero. At time the dot contains electrons. The
final form of the semiclassical Helmholtz free energy is there-
fore given as

(8)

In the case of bound states in a zero-dimensional electron gas,
the free energy has to be modified including the influence of the
confined states on the total energy of the quantum dot [7], [8].
The Helmholtz free energy, (5), is extended by two terms, i.e.,

(9)
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The first sum over the bare (noninteracting) dot levels with a
particular occupation configuration is the interaction-free
kinetic energy of the quantum dot . We use a parameterized
form of the exchange-correlation energy of the electrons, ,
which corresponds to a local exchange-correlation potential
[6]. The total energy contribution of the quantum dot electrons
to the Helmholtz free energy in (9) is

(10)

The self-consistent single-particle energies are calculated
solving a three-dimensional (3-D) Kohn–Sham equation with
the effective potential
where is the conduction-band offset. This leads to the
following form for the :

(11)

Small thermal variations in the level occupancies have a neg-
ligible effect on the self-consistent results ( , and )
which are implicit functions of the electron number and the ap-
plied voltages. This is especially true at low temperatures where
the level spacing is hardly affected by the temperature. There-
fore, the occupation configuration dependence of the last two
terms is ignored and the discrete occupation numbers are re-
placed by the noninteger occupation numbers according to the
Fermi–Dirac distribution [7]. With this approximation, the in-
teraction-free kinetic energy is obtained as

(12)

The above result is inserted into (10), where the electrostatic
energy is replaced according to

(13)

The final expression for becomes

(14)

The integration is over the quantum dot area only and the
electron density is always positive. The total energy of the
quantum dot, , is included in the Helmholtz free energy
given by (9). This leads to the final form of the free energy

.
In the following, the method used in the simulator to mini-

mize the free energy is discussed. The chemical potential of
the quantum dot is ramped and the self-consistent ground states

Fig. 1. (a) Schematic drawing of a SET. (b) Potential cut through the structure.
Electrons in the island occupy discrete levels (long dashed lines). The chemical
potentials ���� according to discrete numbers of electrons are indicated by
straight lines.

and the free energies are calculated using the equations from the
previous section for sample points of . The free energies
form a parabola if plotted as a function of the chemical poten-
tial. The number of electrons in the quantum dot is noninteger
in general, since we use arbitrary values for . However, as al-
ready stated in Section II.A, the chemical potentials
form a discrete set and are only allowed for integer numbers of

(c.f. Fig. 1). Therefore, the free energies (for in-
teger values of ) are determined by spline interpolation using
the free energy values already calculated at the sample points.
These free energy values are used in the Gibbs distribution, (4),
to calculate the equilibrium number of electrons in the dot and
the conductance according to (1).

C. Tunneling Theory

We use the transfer Hamiltonian formalism introduced by
Bardeen [9] to calculate the tunneling rates between a reser-
voir and the quantum dot. The quantum dot is separated from
the reservoir by a narrow quasi-one-dimensional (qwasi–1-D)
channel. By applying a voltage to an electrostatic gate above
the channel a narrow constriction is created (see Fig. 2). Since
the constriction is formed electrostatically, its boundaries are
smooth and electron scattering can be neglected. An ideal
quantum point contact (QPC) is formed.

The wavefunction inside the constriction is one-dimensional.
The width of the constriction can not be considered constant,
however. The simplest theory for this case is based on the adi-
abatic approximation, which assumes that the cross section of
the channel changes so slowly that there is only negligible scat-
tering between the subbands. Transport is possible only in the

-direction and confinement of carriers occurs in the -plane.
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Fig. 2. (a) Schematic view of the constriction. (b) The barrier potential, the
energies of the lowest subband and the quantum dot spectrum. � is the classical
turning point in the reservoir.

At each value of along the channel a two-dimensional (2-D)
Schrödinger equation

(15)

for the transverse eigenfunctions and the subband
energies is solved where is the electron effective mass
perpendicular to the transport direction. The full wave function

satisfying the three-dimensional (3-D) Schrödinger equation
factorizes as

(16)

where the are the solutions to the coupled-mode equation

(17)

The total energy is

(18)

Now, the case of an electron moving from a reservoir state la-
beled to a zero-dimensional quantum-dot state is consid-
ered. Energy conservation in the tunneling process requires that

. It is convenient to assume that is constant out-
side a larger range to the left-hand side of the barrier ,
i.e., const for (see Fig. 2).
Since the constriction is formed electrostatically, its boundaries
are smooth and scattered components of the wave-
function can be neglected. The classical turning point in the
reservoir is the point in where , i.e., where the
energies of the electron before and after the tunneling process
are matched and the classically forbidden region starts. Classi-
cally, the wave is reflected at this point. Quantum mechanically,

it can tunnel through the barrier. The WKB approximation is
used in the forbidden region . The wave function compo-
nent in is

with

(19)

and is the positive root

(20)

with the assumption of . The constriction is as-
sumed narrow enough that only a single transverse state is below
the Fermi level. As the electron moves away from the constric-
tion, the channel becomes wider and the number of transverse
states grows. However, within the constriction a single mode is
present, i.e., the matrix element is calculated only for the tran-
sition from the ground state . Both the channel region
and the quantum dot region overlap and the matrix element is
calculated by integrating over a surface in the -plane at
some point (usually taken as the mid-point of the barrier).
This leads to

(21)

where is defined by (20) with . The transition
rate for the tunneling from the lowest reservoir subband to the
th quantum dot state, , is obtained from Fermi’s golden rule,

i.e.,

(22)

III. SIMULATION EXAMPLES

The example device investigated here is shown in Fig. 3. The
3-D structure is mapped onto a three dimensional nonuniform
tensor-product grid with grid points along
comprising a total of 173 880 vertex nodes. The total area simu-
lated is a bricklike region of nm nm nm. The
substrate, which is extending 2.8 m in the negative -direction
is effectively cut-off at 290nm imposingvonNeumann boundary
conditions at this surface as well as at the surfaces in the lateral

-directions where the electric field vanishes at distances far
enough from the active device region. The Fermi level in the sub-
strate is set assuming an electrode outside the simulated region.
Part of the top surface of the device is covered by metal gates for
which Dirichlet boundary conditions for Schottky contacts are
employed. The Schottky barrier is set to meV. The
rest is exposedGaAs.Since the exposed surface covers a substan-
tial portion of the surface, the choice of the appropriate boundary
condition is crucial for the determination of the electrostatic po-
tential in the whole device. The properties of exposed GaAs sur-
faces are dominated by a band of surface states near the middle of
the band gap. While the states underneath the metal gate can be
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Fig. 3. Schematic of the horizontal structure of the GaAs/AlGaAs heterostructure. The dashed line marks the 2-DEG.

Fig. 4. Conduction-band edge and electron densities along the �-direction at 1
K. The circles at the conduction-band curve show the position of the grid planes
in ��-direction. The inset displays the wavefunctions of the first two subbands
corresponding to the 2-DEG model.

assumed to be pinned to the metal Fermi level, those at the ex-
posed surface are assumed to be pinned at the substrate Fermi
level. Fermi-level pinning is modeled using Dirichlet boundary
conditions for the electrostatic potential at the surface and a pin-
ning value of meV.

Fig. 4 shows the conduction-band edge and the electron den-
sities along the -direction. Displayed are the densities for a par-
abolic-band model (Bulk), a 2-D electron-gas model (2-DEG),
and a zero-dimensional electron-gas model (0-DEG). Only the
lowest subband is occupied in the 2DEG model. The subband
energies and are 31 meV and 55 meV above the con-
duction-band edge at the GaAs/AlGaAs heterojunction and the
difference of the Fermi energy to the lowest subband is 6 meV.
The conduction-band edge and the electron-charge density in
the lateral -plane is shown in Fig. 5. The electron density in
the center (quantum dot) was calculated using a 0DEG model,
i.e., solving a 3-D-Schrödinger equation. The distorted shape of
the quantum dot potential is reflected in the shape of the indi-
vidual wavefunctions (Fig. 6). One observes a tendency to form

Fig. 5. Split-gate structure (top), electron density (middle) and conduction-
band edge (bottom) in a lateral ��-plane. The density and band-edge cuts are
taken 8 nm below the GaAs/AlGaAs heterojunction in the 0-DEG/2-DEG. The
control-gate voltage � is applied at the gate asterisked C.

quasi-1-D wavefunction-scars. These scars are related to the
classical trajectories of particles entering the dot, then bouncing
within, and finally exiting. The occurrence of scars is an indi-
cation that the quantum dot is already acquiring properties of
a disordered ballistic structure in which conductance fluctua-
tions can be understood as interference of phase-coherent elec-
trons traversing the dot via a number of distinct classical paths.
Two pronounced families of scars are visible in Fig. 6. The first
family (S1) is related to the wavefunctions labeled 4, 6, 9, 12,
15, 19, 23, 28, 33 and the second (S2) to 5, 8, 11, 16, 20, 26, 31.

Fig. 7 shows the tunneling rates versus the eigenenergies
at a particular value of the gate voltage ( 400 meV)
calculated using the wavefunctions in Fig. 6. The tunneling
rates belonging to one particular scar family are linked by
dotted lines. It can be seen that especially the rates related to
S1 have almost the same value which can be explained by the
similar shape of the wavefunctions, leading to similar values
for the overlap integral between the lead and the quantum dot
wavefunction. The highest values, however, are related to the
wavefunctions which are more uniformly distributed over the
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Fig. 6. Single-particle levels (�� � � � � � � � � ��; spin-degenerate). The cut
has been taken in the ��-plane 8 nm below the GaAs/AlGaAs interface in the
0-DEG. The lead channels are situated to the left and the right of each individual
plot.

quantum dot area, showing some alignment along the -axis
(see for example states 24, 29, and 35 in Fig. 6).

We use the doping density in the doping sheet as a param-
eter to adjust the number of electrons in the quantum dot to
a particular range. The lower panel of Fig. 8 shows the con-
ductance characteristics for the low-filling regime where the
number of electrons increases from 49 to 66, whereas the upper
panel shows the conductance in the high-filling regime where
the number of electrons increases from 88 to 110. The overall
values of the conductance become larger with increasing elec-
tron number. The reason for this is the lateral extension of the
0-DEG and the consequently smaller barrier thicknesses when
the dot is filled with more and more electrons. The electron-
wavefunction coupling to the leads is stronger and this results in
higher tunneling rates. In fact, the peak values in the upper panel
almost exceed the maximal allowed value of , i.e.,
the limit for the applicability of (1) is clearly reached.

The envelopes of the conductance peaks exhibit some modu-
lations that are more pronounced for lower temperatures. These
modulations are due to coherent-resonant transport through the
quantum dot rather than due to shell-filling effects. The quantum
dot is acting as a resonator, and the electrons are reflected by
the quantum point contacts similar to a Fabry–Perot interferom-
eter. A quantum-mechanical interpretation can be given: those
states which are more situated in the center of the quantum
dot, showing some alignment with the -direction, contribute
the most to the transport by being related to the highest tun-
neling rates. Strong coupling can be observed, for example, for
the states labeled 24, 29, and 35 (Fig. 7). If one takes the twofold

Fig. 7. Tunneling rates, i.e., elastic couplings of the dot wavefunctions to the
leads versus the single-particle eigenenergies. The dotted lines link the rates that
belong to one of the scar families (S1 and S2).

Fig. 8. Electron charging � and conductance � in units of the conductance
quantum � 	
 versus the gate voltage � at different temperatures. The lower
panel shows the low-filling regime �� � �� � � � ��	 and the upper panel the
high-filling regime �� � 

 � � � ���	.

spin-degeneracy of the states into account, the maximum of the
envelope of the K conductance curve (Fig. 8), for
instance, can be attributed to the filling of state 29, i.e., the
charging of the quantum dot from 59 to 60 electrons.

The gate capacitance , i.e., the capacitive coupling of the
control gate to the quantum dot may be defined as

(23)

where is the quantum dot charge. Therefore, the gate capaci-
tance is calculated by numerically differentiating the Coulomb-
staircase (Fig. 9). Another method to evaluate the gate capac-
itance is via the spacing of the Coulomb-blockade peaks. The
difference between the th and the th peak is used
and the gate capacitance is calculated as

(24)
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The capacitance is now a function of (Fig. 10). Both methods
give similar results for the gate capacitance which increases
from 5 aF to a value of around 7 aF over the range of the con-
ductance calculations.

The concept of self-capacitance for a semiconductor quantum
dot is difficult since the dimensions of the dot are comparable
with the screening length and the voltage is not specified by
a single number. One possible definition, which is still mean-
ingful, is based on differential capacitances [10]. A self-capac-
itance is defined as the amount of work, , to bring
fixed amount of charge, , to the quantum dot, i.e.,

and is the chemical potential of the
-particle system. The capacitance can be written as

(25)

The quantum dot self-capacitance (Fig. 11) was cal-
culated using the self-consistent structure results. The quantum
dot chemical potential was extracted from the free energy min-
imization. The zig-zag shape of the capacitance curve is due
to even-odd level filling of the spin-degenerate single-particle
levels in the quantum dot.

Conductance measurements for a similar structure to the one
used here can be found in [11]. The main difference to the ex-
perimental results is the much larger period of the conductance
oscillations. This corresponds to a much higher measured gate
capacitance of 32 aF. A possible reason for this discrepancy is
the assumption of Fermi-level pinning for the exposed parts of
the GaAs surface. This means that only the potential at the con-
trol gate C moves with the changing gate voltage. However, cal-
culations by Laux et al.[12] for a similar GaAs/AlGaAs het-
erostructure using a drift-diffusion simulator and allowing the
surface states to equilibrate with the gate show that the exposed
surface immediately surrounding the gate would effectively be-
come part of it. The increased effective size of the gate leads
to an increased capacitance. This allows us to conclude that the
equilibrium approach proposed here is always bound to under-
estimate the coupling capacitances between the gates and the
quantum dot, even though it is difficult at this point to give a
more quantitative argument.

IV. DISCUSSION

We showed simulations for a realistic single-electron tran-
sistor based on a GaAs/AlGaAs split-gate structure. Main
features as the conductance and the capacitances have been
computed and the interplay of the microscopic structure of the
0-DEG in the quantum dot and the macroscopic environment
has been discussed. Remaining discrepancies as the underesti-
mation of the capacitive coupling of the gates to the quantum
dot are probably due to the physical model for the exposed
GaAs surface. Additional uncertainty arises from the treatment
of the doping sheet. The doping density in the sheet has to be
reduced from that grown in the structure since deep levels are
neglected. This is reasonable since half of the electrons occupy
deep levels. These levels are usually found well below the
Fermi-level and the associated charge can be assumed to be
frozen out. Furthermore, little is known about the cross section

Fig. 9. Gate capacitance � from numerically differentiating the Coulomb
staircase ��� � at � � ��� K in Fig. 8 (upper panel).

Fig. 10. Gate capacitance� as a function of the electron charge� at the dot
at � � ��� K.

Fig. 11. Quantum dot self-capacitance � as a function of the electron
number � at the dot at � � ��� K.

of the doping sheet. Consequently, the exact doping-density
distribution is not known. We assume a doping sheet of 2 nm
thickness and a constant density of cm . The
remaining uncertainty is used to adjust the number of electrons
in the quantum dot within a reasonable range. An improved
method, however, should include a more sophisticated treat-
ment of both the exposed surface and the doping sheet in order
to get a better description of the electrostatic environment of
the quantum dot.
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