
IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 10, OCTOBER 2000 1891

Efficient Monte Carlo Device Modeling
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Abstract—A single-particle approach to full-band Monte Carlo
device simulation is presented which allows an efficient compu-
tation of drain, substrate and gate currents in deep submicron
MOSFETs. In this approach, phase-space elements are visited
according to the distribution of real electrons. This scheme is
well adapted to a test-function evaluation of the drain current,
which emphasizes regions with large drift velocities (i.e., in the
inversion channel), a substrate current evaluation via the impact
ionization generation rate (i.e., in the LDD region with relatively
high electron temperature and density) and a computation of the
gate current in the dominant direct-tunneling regime caused by
relatively cold electrons (i.e., directly under the gate at the source
well of the inversion channel). Other important features are an
efficient treatment of impurity scattering, a phase-space steplike
propagation of the electron allowing to minimize self-scattering,
just-before-scattering gathering of statistics, and the use of a
frozen electric field obtained from a drift-diffusion simulation. As
an example an 0.1- m n-MOSFET is simulated where typically 30
minutes of CPU time are necessary per bias point for practically
sufficient accuracy.

Index Terms—Boltzmann equation, hot carriers, Monte Carlo
methods, MOSFETs, semiconductor device modeling.

I. INTRODUCTION

AS THE downscaling of MOSFET devices continues,
the number of scattering events suffered by electrons

while traveling through the channel is more and more reduced.
This leads to quasiballistic and nonlocal transport, where the
distribution function strongly deviates from its equilibrium
shape, and this effect will become even more pronounced when
channel lengths are scaled into the sub-0.1- m regime in the
next decade. Therefore knowledge of the distribution function,
which is obtained from a solution of the Boltzmann transport
equation (BTE), is of major importance for an accurate deter-
mination of drain, substrate, and gate currents in the nonlinear
operation regime of future MOSFETs.

An exact solution of the BTE can be obtained by the Monte
Carlo (MC) method [1], [2], where the acceleration of electrons
through the electric field as well as the scattering by phonons,
impurities, etc., are simulated, and quantities of interest result
from averaging over microscopic variables such as the particle
energy. The accuracy of the semiclassical transport description
is then given by the models used for the band structure and the
scattering mechanisms. In this respect, it has been found that the
consideration of the full band structure as obtained from the em-
pirical pseudopotential method [3], [4] is indispensable for a re-
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liable description of nonlocal transport phenomena and hot-car-
rier effects dominant in the submicron regime [5]–[7]. Explicit
comparisons between full-band and analytical band structure
descriptions have shown the in part strong limitations of the ana-
lytical approach in bulk material for the high-energy distribution
[8] and the drift velocity [9] in Si as well as on the device level
for the simulation of GaAs MESFETs [10].

However, many implementations of Monte Carlo simula-
tors involve large computation times which are usually not
affordable in technology development. Therefore, alternative
approaches to the solution of the BTE have been developed
which essentially aim at trading memory requirements for
computational speed. These alternatives are the concept of
cellular automata (CA) [11]–[15], where the distribution
function is stored in each real-space element of the device and
evolves in time by spatially local rules, the scattering matrix
approach (SMA) [16]–[19], where precomputed scattering
matrices relate incoming and outgoing fluxes of semiconductor
elements, and the spherical-harmonics expansion (SHE) of the
BTE [20]–[23], which transforms the BTE in a system of equa-
tions for the expansion coefficients. On the other hand, apart
from considerable memory requirements, device simulations
based on the above approaches mostly rely on analytical band
structure descriptions or take only reduced full-band aspects
into account neglecting, e.g., the anisotropy of the group
velocity. In contrast, full-band Monte Carlo (FBMC) device
simulations of Si MOSFETs are state-of-the-art [6], [24]–[29].

This suggests as another possibility for an efficient solution
of the BTE including full-band effects to retain the accuracy,
simplicity and flexibility of the Monte Carlo approach and to
improve the computational efficiency of FBMC device simula-
tion. Progress in this direction has been achieved by using the
frozen field from a drift-diffusion simulation [30], through the
reduction of self-scattering by propagating the electrons step-
like in phase-space [31] and by an efficient choice of the state-
after-scattering [29], but the most efficient applications have so
far been restricted to substrate current calculations [26].

It is the aim of this paper to present a full-band MC approach
that allows us to compute drain, substrate and gate currents with
similar efficiency and includes additional improvements of the
MC algorithm to further enhance the computational speed of
FBMC device simulation. On one hand, this is achieved by a
single-particle approach (SPARTA), where only a single elec-
tron is simulated at a time, which carries the charge of all charge
carriers in the device. It exploits the fact that in deep submicron
MOSFETs under normal bias conditions the concentration of
real electrons in phase-space is rather high in regions which are
relevant for the computation of drain, substrate and gate currents
when using appropriate current estimators. On the other hand,
the progress in efficiency is due to improvements of the MC al-
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gorithm based on the self-scattering scheme and the phase-space
steplike trajectory calculation including an efficient treatment of
impurity scattering.

II. MONTE CARLO MODEL

In this section, the underlying physical models as well as var-
ious parts of the Monte Carlo algorithm are explained. Emphasis
is laid on new aspects which are crucial for the computational
performance. Other points are only briefly addressed with ref-
erence to the literature. Since the example for device simulation
in this paper is an n-MOSFET, only the models for electrons are
described and those for the holes are left out.

A. Models for Band Structure and Scattering Mechanisms

The full band structure for Si is obtained by nonlocal pseu-
dopotential calculations [32], where, in addition, the spin-orbit
interaction is taken into account [33]. Four conduction bands
are stored on a mesh in momentum-space with an equidistant
grid-spacing of 1/64 , where denotes the lattice con-
stant. Within each cube the band energy is expanded to linear
order around the middle of the cube. Hence, the group velocity
is constant in each momentum-space element.

The scattering mechanisms comprise phonon scattering, im-
pact ionization, impurity scattering, and surface roughness scat-
tering. The phonon scattering model includes three -type and
three -type intervalley processes as well as intravalley scat-
tering in the elastic equipartition approximation [1]. The cou-
pling constants of [1] are only multiplied by a global factor of
0.98 to account for band structure differences [33]. The scat-
tering rate for impact ionization is taken from [34].

Impurity scattering is important in MOSFETs because of the
highly doped source and drain contacts [35]. Unfortunately, it
is also computationally intensive due to high scattering rates at
low energies while almost not changing the momentum. This
effect is particularly strong in the Brooks–Herring (BH) model,
which describes the screened two-body interaction with one
ionized impurity [36]. It is reduced in the statistical screening
model of Ridley (RI) considering the probability that there is
no nearer scattering center [37]. The most significant reduction
of the computational burden, however, is achieved by approx-
imating the scattering rate by the inverse microscopic relax-
ation time and selecting the state-after-scattering at random on
the equienergy surface. This can be seen in Fig. 1 where for
purposes of illustration density and doping concentration have
been chosen such that this effect is particularly pronounced.
Comprehensive investigations [38], [39] have shown that there
is also at high fields almost no difference between this ap-
proximation and the exact treatment. Since impurity scattering
is only important at low energies, an analytic isotropic and
nonparabolic band structure is used for the calculation of the
inverse microscopic relaxation time up to 0.5 eV neglecting
impurity scattering for higher electron energies. The inverse
relaxation time is given by

(1)

Fig. 1. Scattering rates and inverse microscopic relaxation times of impurity
scattering in the formulation of Brooks–Herring and Ridley. The phonon
scattering rate is shown for comparison.

where denotes the crystal volume, the transition
probability per unit time and . The result is

(2)

with the following abbreviations:

(3)

(4)

(5)

Here, is the elementary charge, the impurity concen-
tration, the static dielectric constant of Si, the den-
sity-of-states mass at the band edge, the nonparabolicity
factor, the inverse screening length ( de-
notes the electron density, the Boltzmann constant and
the lattice temperature), the mean distance
between impurities, and the exponential
integral. Because the velocity enters ad hoc the relation be-
tween the scattering rates of the BH and the RI model [40],
we have used the conductivity mass of the anisotropic
analytic band model [1] as the most plausible choice in (5).
Since the ohmic drift mobility with the above impurity scat-
tering model significantly deviates especially for high doping
concentrations from the experimental results, a doping-depen-
dent prefactor is introduced in (2) to reproduce the mobility
measurements of [41]. This approach to impurity scattering is
admittedly rather heuristic, but it correctly and efficiently ac-
counts for the two main effects, i.e., the mobility reduction in
the highly doped contact regions and the screening in the in-
version channel. Effects due to the finite number of dopants are
not included, because this paper aims primarily at the investi-
gation of the nonlinear and hot-electron regime under inversion
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Fig. 2. Influence of the �-space discretization on the velocity-field
characteristics in undoped Si.

conditions, whereas dopant fluctuations have their main conse-
quences near the threshold voltage. For random dopant-induced
problems and their suppression see the recent literature [42],
[43] and references therein.

Surface roughness scattering is treated phenomenologically
by randomly selecting either a reflective or a diffusive scattering
process when an electron hits the surface to the oxide. The prob-
ability for diffusive scattering is chosen such that the drain cur-
rent of the drift-diffusion simulation is reproduced in the linear
regime [27]. This is in order to ensure the consistency of the
underlying transport models since in practice the surface con-
tribution of the mobility of the drift-diffusion model must often
itself be adjusted for a given technology.

B. Trajectory Calculation

Along the lines developed in [31] the time during which the
electron is propagated according to Newton’s law is determined
as the minimum of four times: i) the flight time to reach the
border of the three-dimensional momentum-space element,
ii) the flight time to reach the border of the two-dimensional
real-space element, iii) the remaining time to the end of a
time interval into which the whole simulation time is divided
where, e.g., simulation results are stored and iv) the stochas-
tically selected time for a scattering event. Since momentum-
space changes occur rather often, the relatively coarse and
equidistant tensor grid in momentum space is very beneficial
for the calculation of the intersection with the border of a
momentum-space element. Fig. 2 compares the velocity-field
characteristic in bulk Si simulated with the present mesh of
cubes to the result of a finer mesh of tetrahedra with a spacing
of 1/80 using exactly the same physical model [33,
Fig. 5.25, p. 119]. It can be seen that the discretization error
is rather small. In addition, the comparison in Fig. 2 confirms
the validity of the present approach because a different MC
algorithm was employed in [33].

This kind of trajectory calculation involves several advan-
tages. Above all, it allows within the scheme of self-scattering
the use of different and rather small upper estimates of the real
scattering rates in each phase-space element. For the energy-de-
pendent scattering rates of phonon scattering and impact ion-

ization, an upper estimation is computed and stored for each
momentum-space element. The corresponding rate for impurity
scattering in (2) depends in addition on the impurity concen-
tration and the electron density . Therefore, an upper
estimation is determined and stored for each real-space ele-
ment using the density obtained by the drift-diffusion simula-
tion. An aspect critical for the CPU time within the self-scat-
tering scheme is the costly computation of the logarithm for the
free flight time. This can mostly be avoided by first considering
the probability that (real or fictitious) scattering occurs be-
fore the other three events

(6)

where is the upper estimate of the real scattering rate and the
minimum of the times for the electron to leave the momentum-
space element, to leave the real-space element and to reach the
end of the given time interval. Hence, the collisionless time-of-
flight needs only to be computed if an equally between zero
and one selected random number is smaller than and is then
given by

(7)

Another advantage is the simple integration of Newton’s
equations of motion since the group velocity is constant in a
momentum-space element and also a constant electric field,
taken from the drift-diffusion simulation, is assigned to a
real-space element. However, an additional action is required
for Newton’s equations because the channel in MOSFETs, i.e.,
the corresponding line from source to drain, is oriented along
the crystallographic 110 direction, but the crystal momentum
in the band structure calculation refers to a coordinate system
with the coordinate axes parallel to the principal axes of Si
(note that this discussion does not refer to the growth direction
of the wafer, which is in -direction, but to the direction within
the -plane parallel to the Si/SiO interface). Under the
orthogonal transformation , where refers to the
Cartesian frame aligned with the principal axes, the equations
of motion become

(8)

(9)

with the transformation matrix

(10)

where . This transformation must also be invoked
for the surface roughness scattering process.

A further advantage is the possibility to restrict computational
actions to the necessary cases only, e.g., updating the group ve-
locity of a particle only when the momentum-space element is
left or accessing the table with the real scattering rates only
when a scattering process is to be performed.
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Finally, the selection of the state-after-scattering is modeled
with linked lists in the spirit of [29]. All cubes of the irreducible
wedge of the Brillouin zone are stored in a list of energy in-
tervals when having a common energy range. The energy after
scattering determines a corresponding energy interval of the list
and a cube is selected according to its partial density of states
by the acceptance-rejection technique [1] with a constant upper
estimation of the partial densities of states of all cubes in this en-
ergy interval. The momentum-after-scattering is then stochasti-
cally chosen on the equienergy plane in this cube.

C. Single-Particle Approach and Boundary Conditions

In SPARTA, a single electron is simulated in the frozen elec-
tric field as obtained for each bias point from the classical drift-
diffusion simulation. The frozen-field approach [30] relies on
the plausible assumption that the details of the distribution func-
tion arising from nonlocal and hot-electron effects do not sig-
nificantly influence the electric field. While the ultimate limit
of this approach remains to be explored, explicit investigations
of deep submicron n-MOSFETs [26] have shown that the dif-
ferences in the electrostatic potential profiles as obtained from
self-consistent MC simulations and classical device simulations
are in fact negligible. We have therefore adopted this approach
extending it to a frozen-total-charge approach where the single
electron is assigned the charge of all electrons in the device as
given by the solution of the drift-diffusion simulation allowing,
of course, still a different spatial dependence of the electron den-
sity. All phase-space elements are visited by the single electron
according to the distribution of the real electrons and as a con-
sequence unimportant regions such as the bulk region are not
simulated at all. The computational burden of the highly doped
contact regions is no longer a problem due to the efficient treat-
ment of impurity scattering as described above.

The ohmic boundary conditions at the contacts are addressed
by an ensemble MC simulation as introduced by Peifer [44].
Equally weighted particles are distributed to the contact ele-
ments according to the equilibrium density. During the simu-
lation a particle in a contact element cannot leave the contact el-
ement. When it hits a border, it is put at the opposite side of the
element and, if the border is with the active device, a single-par-
ticle is injected. This single-particle is simulated until it hits a
contact element where it is absorbed and a new ensemble simu-
lation in all contact elements is started. Secondary particles gen-
erated by impact ionization are neglected in this approach. Situ-
ations such as occurring in SOI MOSFETs, where the generated
particles influence the device behavior significantly, can there-
fore not be treated by SPARTA, but require an ensemble Monte
Carlo simulation instead.

D. Gathering of Statistics

During the simulation, cumulative expectation values of mi-
croscopic quantities, such as the group velocity, the energy, or
the impact ionization scattering rate, are collected in each real-
space element. Usually, this is done at equidistant time steps

of the simulation, but this is rather CPU time consuming if the
time step is small. We therefore gather statistics at times just-be-
fore-scattering [1]. Within the scheme of phase-space-element
depending upper estimations of the real scattering rate, the ex-
pectation value of a microscopic quantity is given by

(11)

where the sum runs over the times of scattering events in the
real-space element . denotes the momentum-space element
occupied before and is the inverse upper estimation in the
phase-space element . In addition, since a single-particle
simulation is performed, gathering of statistics can begin with
the start of the simulation without the need to reach a stationary
state before as is necessary in an ensemble simulation.

III. ESTIMATORS FOR CURRENTS

This section briefly explains how estimations for drain, sub-
strate, and gate currents are obtained and addresses the associ-
ated advantages within the single-particle approach. Note that
they consist not only of the relatively high population of the
relevant phase-space, but also of the simple general algorithm
which especially does not require the computational effort of
statistical enhancement techniques.

A. Drain Current

The drain current is estimated with the test-function
method proposed by Yoder [45], [46]. Densities and drift
velocities entering the optimization of the test functions [46]
are initially taken from the drift-diffusion solution and replaced
by Monte Carlo results when the real-space element has been
visited by the particle. This methods emphasizes regions with
high drift velocities, i.e., at the drain side of the inversion
channel [46]. This is also a region with high density, i.e.,
often visited within the single-particle approach, and with high
electron temperature, which involves high scattering rates and
hence many scattering events for gathering statistics within the
just-before-scattering method.

B. Substrate Current

The substrate current is calculated via the expectation
value of the impact ionization scattering rate according to

(12)

where the integration is over the whole two-dimensional (2-D)
device. Note that this formula only holds when all generated
holes can be assumed to leave the device via the substrate con-
tact. Impact ionization occurs mainly in the lowly-doped-drain
(LDD) region near the channel where again electron density and
electron temperature are rather high leading to enhanced scat-
tering and hence improved statistics.
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Fig. 3. Full-band Monte Carlo simulation of drain current characteristics in an
0.1 �m n-MOSFET with 3 nm oxide thickness for three gate voltages.

C. Gate Current

The gate current is given by

(13)

where the one-dimensional (1-D) integration is along the gate
oxide. Here, is the unit vector normal to the gate oxide and

denotes the tunneling probability obtained via the WKB ap-
proximation for a trapezoidal shape of the barrier. For the low
supply voltages of deep submicron MOSFETs, gate currents are
dominantly due to direct tunneling of relatively cold electrons
near the source side of the inversion channel [47], where the
electron density is high. This is again advantageous for the cur-
rent estimation.

IV. SIMULATION RESULTS

The performance of the MC algorithm presented is investi-
gated by a simulation of an LDD n-MOSFET with an effective
gate length of 0.1 m and an oxide thickness of 3 nm. The
real-space mesh consists of triangles and rectangles and com-
prises 1987 elements. Typically, sufficient accuracy is achieved
after 0.6- s simulation time per bias point which corresponds
to 30 min CPU time on a 500 MHz DEC AlphaServer 21 264.
In order to illustrate the accuracy obtained after 30 min CPU
time in a simple and comprehensive overview for all currents,
the results are compared to long MC simulations of 30- s
simulation time with negligible variance. The corresponding
characteristics at room temperature for drain, substrate and
gate currents are displayed in Figs. 3–5, respectively. It can
be seen that indeed sufficient accuracy is reached after 30 min
CPU time in all cases except for the substrate current at the
lowest drain voltage. Most remarkable is the fact that similar
accuracy is obtained for all three currents after the same sim-
ulation time. This will enable important consistency checks in
practical applications.

V. CONCLUSIONS

A single-particle approach to full-band MC device simu-
lation based on the frozen-field approximation has been pre-

Fig. 4. Full-band Monte Carlo simulation of substrate current characteristics
in an 0.1 �m n-MOSFET with 3-nm oxide thickness for three drain voltages.

Fig. 5. Full-band Monte Carlo simulation of gate current characteristics in an
0.1 �m n-MOSFET with 3-nm oxide thickness for three gate voltages.

sented. Its efficiency was demonstrated by the simulation of
an 0.1- m n-MOSFET where 30 min of CPU time per bias
point were sufficient for the calculation of drain, substrate and
gate current. The approach takes advantage of the relatively
high distribution of carriers in phase-space regions, which are
relevant for the current estimators, and includes several im-
provements of a phase-space steplike MC algorithm and the
treatment of impurity scattering. Due to the capability to incor-
porate ballistic and hot-carrier effects and with the efficiency
achieved, full-band MC simulation can be expected to become
an integral part of the device simulation techniques for sub
0.1- m MOSFETs.

ACKNOWLEDGMENT

The authors would like to thank P. D. Yoder (Bell Laborato-
ries, Murray Hill, NJ) for fruitful discussions.

REFERENCES

[1] C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution
of charge transport in semiconductors with application to covalent ma-
terials,” Rev. Mod. Phys., vol. 55, pp. 645–705, 1983.

[2] C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor
Device Simulation. Berlin, Germany: Springer, 1989.

[3] J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseudopotential calcu-
lations for the electronic structure of eleven diamond and zinc-blende
semiconductors,” Phys. Rev. B, vol. 14, pp. 556–582, 1976.



1896 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 47, NO. 10, OCTOBER 2000

[4] M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical
Properties of Semiconductors, 2nd ed. Berlin, Germany: Springer,
1989.

[5] H. Shichijo and K. Hess, “Band-structure-dependent transport and
impact ionization in GaAs,” Phys. Rev. B, vol. 23, pp. 4197–4207,
1991.

[6] M. V. Fischetti and S. E. Laux, “Monte Carlo analysis of electron trans-
port in small semiconductor devices including band-structure and space-
charge effects,” Phys. Rev. B, vol. 38, pp. 9721–9745, 1988.

[7] K. Hess, Ed., Monte Carlo Device Simulation: Full Band and Be-
yond. Boston, MA: Kluwer, 1991.

[8] C. Jungemann, S. Keith, F. M. Bufler, and B. Meinerzhagen, “Effects of
band structure and phonon models on hot electron transport in silicon,”
Elec. Eng., vol. 79, pp. 99–101, 1996.

[9] F. M. Bufler, P. Graf, S. Keith, and B. Meinerzhagen, “Full band
Monte Carlo investigation of electron transport in strained Si grown
on Si Ge substrates,” Appl. Phys. Lett., vol. 70, pp. 2144–2146,
1997.

[10] Y. Ando, W. Contrata, Y. Hori, and N. Samoto, “Monte Carlo simulation
for electron transport in MESFET’s including realistic band structure of
GaAs,” IEEE Electron Device Lett., vol. 20, pp. 454–456, 1999.

[11] K. Kometer, G. Zandler, and P. Vogl, “Lattice-gas cellular-automaton
method for semiclassical transport in semiconductors,” Phys. Rev. B, vol.
46, pp. 1382–1394, 1992.

[12] G. Zandler et al., “A comparison of Monte Carlo and cellular automata
approaches for semiconductor device simulation,” IEEE Electron De-
vice Lett., vol. 14, pp. 77–79, 1993.

[13] M. Saraniti et al., “Cellular automata simulation of nanometer-scale
MOSFETs,” Semicond. Sci. Technol., vol. 13, pp. A177–A179, 1998.

[14] K. Fukuda and K. Nishi, “An interpolated flux scheme for cellular au-
tomaton device simulation,” IEEE Trans. Computer-Aided Design, vol.
17, pp. 553–560, 1998.

[15] M. Saraniti and S. M. Goodnick, “A full-band cellular automaton for
charge transport simulation in semiconductors,” in Proc. IWCE, Osaka,
Japan, Oct. 1998, pp. 88–91.

[16] A. Das and M. S. Lundstrom, “A scattering matrix approach to device
simulation,” Solid-State Electron., vol. 33, pp. 1299–1307, 1990.

[17] M. A. Alam, M. A. Stettler, and M. S. Lundstrom, “Formulation of the
Boltzmann equation in terms of scattering matrices,” Solid-State Elec-
tron., vol. 36, pp. 263–271, 1993.

[18] A. Das and M. S. Lundstrom, “Scattering matrix simulation of electron
transport in model bipolar devices,” IEEE Trans. Electron Devices, vol.
39, pp. 1157–1163, 1992.

[19] Z. Han, N. Goldsman, and M. A. Stettler, “The realization of scattering
matrix approach to transport modeling through spherical harmonics,”
Solid-State Electron., vol. 43, pp. 493–501, 1999.

[20] K. A. Hennacy, Y.-J. Wu, N. Goldsman, and I. D. Mayergoyz, “Deter-
ministic MOSFET simulation using a generalized spherical harmonic
expansion of the Boltzmann equation,” Solid-State Electron., vol. 38,
pp. 1485–1495, 1995.

[21] M. C. Vecchi, J. Mohring, and M. Rudan, “An efficient solution scheme
for the spherical-harmonics expansion of the Boltzmann transport equa-
tion,” IEEE Trans. Computer-Aided Design, vol. 16, pp. 353–361, 1997.

[22] M. C. Vecchi and M. Rudan, “Modeling electron and hole transport with
full-band structure effects by means of the spherical-harmonics expan-
sion of the BTE,” IEEE Trans. Electron Devices, vol. 45, pp. 230–238,
1998.

[23] S. Reggiani, M. C. Vecchi, and M. Rudan, “Investigation on electron and
hole transport properties using the full-band spherical-harmonics expan-
sion method,” IEEE Trans. Electron Devices, vol. 45, pp. 2010–2017,
1998.

[24] J. D. Bude and M. Mastrapasqua, “Impact ionization and distribution
functions in sub-micron nMOSFET technologies,” IEEE Electron De-
vice Lett., vol. 16, pp. 439–441, 1995.

[25] N. Sano, M. Tomizawa, and A. Yoshii, “Temperature dependence of hot
carrier effects in short-channel Si-MOSFET’s,” IEEE Trans. Electron
Devices, vol. 42, pp. 2211–2116, 1995.

[26] C. Jungemann, S. Yamaguchi, and H. Goto, “On the accuracy and ef-
ficiency of substrate current calculations for sub-�m n-MOSFET’s,”
IEEE Electron Device Lett., vol. 17, pp. 464–466, 1996.

[27] S. E. Laux and M. V. Fischetti, “Monte Carlo study of velocity overshoot
in switching a 0.1-micron CMOS inverter,” in IEDM Tech. Dig., 1997,
pp. 877–880.

[28] A. Duncan, U. Ravaioli, and J. Jakumeit, “Full-band Monte Carlo in-
vestigation of hot carrier trends in the scaling of metal-oxide-semicon-
ductor field-effect transistors,” IEEE Trans. Electron Devices, vol. 45,
pp. 867–876, 1998.

[29] C. Jungemann, S. Keith, M. Bartels, and B. Meinerzhagen, “Efficient
full-band Monte Carlo simulation of silicon devices,” IEICE Trans.
Electron., vol. E82-C, pp. 870–879, 1999.

[30] J. M. Higman, K. Hess, C. G. Hwang, and R. W. Dutton, “Cou-
pled Monte Carlo-drift diffusion analysis of hot-electron effects in
MOSFET’s,” IEEE Trans. Electron Devices, vol. 36, pp. 930–937,
1989.

[31] J. Bude and R. K. Smith, “Phase-space simplex Monte Carlo for semi-
conductor transport,” Semicond. Sci. Technol., vol. 9, pp. 840–843, 1994.

[32] M. M. Rieger and P. Vogl, “Electronic-band parameters in strained
Si Ge alloys on Si Ge substrates,” Phys. Rev. B, vol. 48, pp.
14 276–14287, 1993.

[33] F. M. Bufler, Full-Band Monte Carlo Simulation of Electrons and Holes
in Strained Si and SiGe. Munich, Germany: Herbert Utz Verlag, 1998.

[34] E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely, “Impact
ionization in silicon,” Appl. Phys. Lett., vol. 62, pp. 3339–3341, 1993.

[35] F. M. Bufler, P. D. Yoder, and W. Fichtner, “Simple phase-space trajec-
tory calculation for Monte Carlo device simulation including screened
impurity scattering,” in Proc. SISPAD, Kyoto, Japan, Sept. 1999, pp.
31–34.

[36] H. Brooks, “Scattering by ionized impurities in semiconductors,” Phys.
Rev., vol. 83, p. 879, 1951.

[37] B. K. Ridley, “Reconciliation of the Conwell–Weisskopf and
Brooks–Herring formulae for charged-impurity scattering in semicon-
ductors: Third-body interference,” J. Phys. C, vol. 10, pp. 1589–1593,
1977.

[38] P. Graf, Entwicklung eines Monte-Carlo-Bauelementsimulators für
Si/SiGe-Heterobipolartransistoren. Munich, Germany: Herbert Utz
Verlag, 1999.

[39] H. Kosina, “A method to reduce small-angle scattering in Monte Carlo
device analysis,” IEEE Trans. Electron Devices, vol. 46, pp. 1196–1200,
1999.

[40] T. G. V. de Roer and F. P. Widdershoven, “Ionized impurity scattering in
Monte Carlo calculations,” J. Appl. Phys., vol. 59, pp. 813–815, 1986.

[41] G. Masetti, M. Severi, and S. Solmi, “Modeling of carrier mobility
against carrier concentration in arsenic-, phosphorus-, and boron-doped
silicon,” IEEE Trans. Electron Devices, vol. 30, pp. 764–769, 1983.

[42] A. Asenov, A. R. Brown, J. H. Davies, and S. Saini, “Hierarchical ap-
proach to “atomistic” 3-D MOSFET simulation,” IEEE Trans. Com-
puter-Aided Design, vol. 18, pp. 1558–1565, 1999.

[43] A. Asenov and S. Saini, “Suppression of random dopant-induced
threshold voltage fluctuations in sub-0.1 �m MOSFET’s with epitaxial
and �-doped channels,” IEEE Trans. Electron Devices, vol. 46, pp.
1718–1724, 1999.

[44] H.-J. Peifer, “Monte-Carlo-Simulation des Hochenergietransportes
von Elektronen,” in MOS-Strukturen. Aachen, Germany: Au-
gustinus-Buchhandlung, 1992.

[45] P. D. Yoder, K. Gärtner, and W. Fichtner, “A generalized
Ramo–Shockley theorem for classical to quantum transport at ar-
bitrary frequencies,” J. Appl. Phys., vol. 79, pp. 1951–1954, 1996.

[46] P. D. Yoder, K. Gärtner, U. Krumbein, and W. Fichtner, “Optimized
terminal current calculation for Monte Carlo device simulation,” IEEE
Trans. Computer-Aided Design, vol. 16, pp. 1082–1087, 1997.

[47] E. Cassan, S. Galdin, P. Dollfus, and P. Hesto, “Study of direct tunneling
through ultrathin gate oxide of field effect transistors using Monte Carlo
simulation,” J. Appl. Phys., vol. 86, pp. 3804–3811, 1999.

F. M. Bufler studied physics at the Technical
University Braunschweig, Germany, and RWTH
Aachen, Germany, including an academic year at the
Université de Grenoble I (France) with a scholarship
of the Studienstiftung des deutschen Volkes, and
received the Dipl.-Phys. degree in 1992 and the
Ph.D. degree in 1997.

He joined the Institut für Theoretische Elek-
trotechnik, RWTH Aachen, and in 1995, moved with
the group of Prof. B. Meinerzhagen to the Institut für
Theoretische Elektrotechnik und Mikroelektronik,

Universität Bremen, Germany. Since receiving the Ph.D. degree, he has been
with the Institut für Integrierte Systeme, ETH Zürich, Switzerland, working in
the field of TCAD on Monte Carlo device modeling and transport theory.



BUFLER et al.: MONTE CARLO DEVICE MODELING 1897

A. Schenk was born in Berlin, Germany, in 1957. He
received the Dipl. degree in physics and the Ph.D.
in theoretical physics from the Humboldt University
Berlin (HUB), in 1981 and 1987, respectively.

In 1987, he became a Research Assistant at the
Department of Semiconductor Theory, HUB, and
in 1988 he joined the R&D division of WF Berlin.
From 1987 to 1991, he worked on various aspects
of the physics and simulation of optoelectronic
devices, especially infrared detector arrays, and
the development and implementation of physical

models for modeling infrared sensors. He is now with the Integrated Systems
Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland, as a
Senior Lecturer. His main activities are in the development of physics-based
models for simulation of submicron silicon devices.

Dr. Schenk is a member of the German Physical Society.

Wolfgang Fichtner (M’79–SM’84–F’90) received
the Dipl.Ing. degree in physics and the Ph.D.
degree in electrical engineering from the Technical
University (TU) of Vienna, Austria, in 1974 and
1978, respectively.

From 1975 to 1978, he was an Assistant Professor
in the Department of Electrical Engineering, TU Vi-
enna. From 1979 to 1985, he was with AT&T Bell
Laboratories, Murray Hill, NJ. Since 1985, he has
been Professor and Head of the Integrated Systems
Laboratory , Swiss Federal Institute of Technology,

Zurich. In 1993, he founded ISE Integrated Systems Engineering AG, a com-
pany in the field of technology CAD.

Dr. Fichtner is a member of the Swiss National Academy of Engineering.


