

InAs/Si heterojunction nanowire tunnel FETs monolithically integrated on silicon

K. Moselund¹, D. Cutaia¹. M. Borg¹, H. Schmid¹, S. Sant², A. Schenk² and H. Riel¹

¹IBM Research – Zurich, Switzerland

² ETH Zurich, Integrated Systems Laboratory

Outline

- Motivation & background
 - Low power electronics
 - SOA Tunnel FETs
- InAs/Si NW tunnel FETs
 - Functionality
 - Template Assisted Selective Epitaxy
 - Device fabrication & characterization
- Analysing the results
 - TFET simulations
 - Optimizing the device
- Outlook & Summary

The power challenge

State of The Art Tunnel FETs

- IBM
- Many different implementations (geometry, materials etc.) reported so far
- Varying potential for: High I_{on}, low SS, integration potential (Complementary C-TFET), scalability.

IBMs approach to TFETs

IBN

Develop a III-V device platform on Si

- **Complementary TFET technology** based on III-V NW heterostructures
- Goal: high I_{on} & low I_{off} & steep slope in one device
- Scalable device dimensions and density

Outline

- Motivation & background
 - Low power electronics
 - SOA Tunnel FETs
- InAs/Si NW tunnel FETs
 - Functionality
 - Template Assisted Selective Epitaxy
 - Device fabrication & characterization
- Analysing the results
 - TFET simulations
 - Optimizing the device
- Outlook & Summary

Tunnel FET functionality

- Steep slope \rightarrow V_{dd} scaling and low I_{off}
- Potential to achieve ultra-low power operation

Band-to-band-tunneling (BTBT) acts as bandpass filter cutting off the tails of the Fermi distribution → SS < 60 mV/dec possible

How to make a good tunnel switch

$$I_{on} \sim T_{tunneling}^{WKB} = \exp\left(-\frac{4\lambda\sqrt{2m^*}E_G^{3/2}}{3qh(\Delta\Phi + E_G)}\right)$$

Increasing Ion

 λ : Electrostatics \rightarrow <u>NW</u>, high-k, doping profiles

 E_q , m*: materials based \rightarrow Ge/InAs source on Si, III-V heterostructures

heterostructures

IBM Research – Zurich Kirsten Moselund, ICONN Canberra, 09.02.2016

Template Assisted Selective Epitaxy (TASE)

Growth on any crystalline orientation

✓ Enables VLSI integration

Abrupt junctions Chemical Analysis: EELS, EDX

InAs

 Requirement for Steep slope

Courtesy of L. Gignac, IBM Yorktown.

Stacked nanowires

✓ Scalable Technology

Large arrays

P. D. Kanungo et al. Nanotechnology, 2013, M. Borg et al. Nanoletters, 2014. H. Schmid et al. APL 2015,

Vertical Implementation of TASE

11

Developing our InAs/Si TFET process

K. Moselund, EDL 2012. H. Riel IEDM 2012. D. Cutaia, et al. J-EDS 2015, D. Cutaia, et al. ULIS 2015

IBM Research – Zurich Kirsten Moselund, ICONN Canberra, 09.02.2016

TFET transfer performance

- **TASE** \rightarrow Improved device yield & reduced variability
- **EOT scaling** (2.7nm to 1.5nm)
 - I_{on} boosted by ~50x to 50 μ A/ μ m
 - I_{on}/I_{off} ≈ 10⁶
 - SS_{ave}: 150–200 mV/dec

D. Cutaia, ULIS & J-EDS2015

Output and diode characteristics

I_D(V_{DS}): Current saturation

 Good electrostatic control of i-Si/InAs heterojunction

Outline

- Motivation & background
 - Low power electronics
 - SOA Tunnel FETs
- InAs/Si NW tunnel FETs
 - Functionality
 - Template Assisted Selective Epitaxy
 - Device fabrication & characterization
- Analysing the results
 - TFET simulations
 - Optimizing the device
- Summary

- I_{on} maintained with decreasing temperature \rightarrow expected TFET behaviour
- Activation energy analysis \rightarrow BTBT dominates for V_{GS} < -0.6 V.
- SS reduced at low temperature
 - \rightarrow SS limited by traps: D_{it} at the dielectric interface & TAT heterojunction

Effect of generation centers ("traps")

- IBM
- Trap-assisted tunneling (TAT) can be seen as multi-phonon-assisted trap-band tunneling or as field-enhanced multi-phonon generation.
- Contribution from 3 kinds of traps: bulk, hetero interface, gate oxide interface

Trap simulation – temperature dependence

- Two types of traps impact tunnel FETs
 - Oxide interface (like MOSFET) → D_{it}
 - Hetero interface, lattice mismatch → TAT
- Oxide interface traps dominant at $300K \rightarrow$ need better gate stack
- Hetero interface traps dominant at 130K \rightarrow likely ultimate limitation

Predicting optimized TFET performance

Reproducing T-dependence:

- Oxide: $D_{it} = 1e13 \text{ cm}^{-2}\text{eV}^{-1}$
- Junction: $D_{it} = 7e12 \text{ cm}^{-2}eV^{-1}$
- Surface SRH generation + zero-phonon tunneling.

Without the contribution of traps a steep slope is achieved.

A. Schenk et al. ULIS 2015

-0.5

10⁻⁶

10⁻⁷

10⁻⁸

10⁻⁹

10⁻¹⁰

10⁻¹¹

10⁻¹²

10⁻¹³

10⁻¹⁴

-0.75

Current (A)

© 2016 IBM Corporation

Fukui, APL 98, 2011.

Implementing changes – lateral TASE TFET

IBM

lateral - Template Assisted Selective Epitaxy

1) Etch Si device layer 2) Oxide template & Si etch 3) III-V growth in template

Advantages:

- Lateral \rightarrow first step towards VLSI TFET
- Device parameters (L_G, L_i, W) may be varied freely in design.
- Scalability more easily achieved

Results:

 Substantial improvement achieved in SS_{ave} (~70mV/dec) due to scaled geometry (~30nm) & improved gate stack.

Benchmarking - comparing experimental data

- Trade-off between high I_{on} and low SS.
- Minimum SS = meaningless number

Benchmarking zoom

- Fixes I_{off} to 1e-4 μ A/ μ m \rightarrow steep slope at very low I_{on} not useful
- 0.5V overdrive measured from I_{off}
- CMOS has two order of magnitude higher current level \rightarrow cannot compare
- Values of V_{DS} differs slightly: 0.2V(Alian), 0.3 or 0.5V

Summary

- Introduced tunnel FETs and low-power electronics
- Demonstrated TASE growth for TFETs and device fabrication.
- Traps at the oxide and hetero interface are currently limiting perfromance.

IBM Outlook

- Optimized InAs/Si p-TFETs fabricated using lateral TASE
- Working on the InAs/GaSb n-TFET
- Applications of TASE to new fields: photonics, sensors,...

-0.75 -0.5 -0.25

Gate Voltage (V)

Gate ()

Si (i)

Drain

0 -

Si (P⁺)

© 2016 IBM Corporation

InAs (N⁺) –• 1

Source

Thank you for your attention

Acknowledgement: MIND group at IBM Research Zurich

TEM images: L. Gignac, J. Bruley, C. Breslin, IBM Research Yorktown

Support from colleagues at S&T and staff at Binnig- Rohrer Nanotechnol. Center

