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Pseudopotential calculations of strained-GeSn/SiGeSn hetero-structures
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We have obtained empirical pseudopotential parameters for α-Sn and employed the pseudopotential method
along with the virtual crystal approximation to model GeSn and SiGeSn alloys. The calculated direct and
indirect band gaps of GeSn and SiGeSn show good agreement with experimental data at 300K available
till date. The derived pseudopotential parameter set was used to extract various band structure quantities
required to model band-to-band tunneling in simulating GeSn/SiGeSn hetero-junction Tunnel Field Effect
Transistors (TFET). All the required band structure quantities have been extracted as a function of biaxial
strain, Si content, and Sn content and have been fitted to a quadratic expression. An attempt to simulate
Si0.5Ge0.5/Si hetero-junction TFETs based on the extracted band structure quantities yields ID-VG plots that
are in good agreement with the experimental ones - an indication for the reliability of the extracted band
structure quantities. Thus, the calculated pseudopotential and extracted band structure parameters provide
a complete data base for the modeling of GeSn/SiGeSn hetero-junction TFETs.
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GermaniumTin (GeSn) alloys have recently attracted
attention due to their capability to achieve direct band
gap for certain compositions1,2 allowing their use in op-
toelectronic applications3. Additionally, the small direct
gap of these materials significantly enhances band-to-
band tunneling (BTBT) in the presence of an external
electric field. This makes them a candidate for Tun-
nel Field Effect Transistors (TFETs) which are based on
BTBT in semiconductors and which are considered as
low-power alternatives for Metal-Oxide-Semiconductor
Field Effect Transistors (MOSFET)4. However, the use
of narrow gap materials in the channel and drain region
gives rise to ambipolarity in TFETs. This drawback can
be overcome by a wide band gap material such as SiGeSn
for these parts of the device5. Thus, the GeSn/SiGeSn al-
loy system is suitable for hetero-junction TFETs. More-
over, the GeSn/SiGeSn hetero structure exhibits tun-
able conduction and valence band offsets which can be
useful for waveguide-based optoelectronic applications3.
In principle, there are three degrees of freedom in se-
lecting the optimum alloy compositions for any of the
aforementioned applications, viz, Sn content in GeSn, Si
content and Sn content in SiGeSn. The optimal com-
positions need to be determined by device simulations
which require reliable values of the band structure quan-
tities such as direct and indirect band gaps, band off-
sets, effective masses, etc. In this letter, we present the
results of band structure calculations of strained-GeSn
and relaxed SiGeSn alloys using the nonlocal Empirical
Pseudopotential Method (EPM) which show good agree-
ment with experimental data at 300K. The reliability of
the EPM calculations has been asserted by comparing
experimental device characteristics of a SiGe/Si hetero-
junction nanowire TFET with the simulated characteris-
tics in which the band structure quantities were obtained
from the EPM calculations.
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FIG. 1. Comparison of experimental and calculated values of
(a) direct band gap in GeSn (magnified view in the inset),
(b) indirect band gap in GeSn (magnified view in the inset).
The solid line plots the results of pseudopotential calculations
while the dotted line plots the bowing expression given by
Eq. (1).

The nonlocal EPM parameters used for the band struc-
ture calculations are shown in Table I. The nonlocal
corrections and the spin-orbit coupling were included
in the band structure calculations along with the lo-
cal pseudopotentials. Pseudopotential parameters of Sn
were extracted with S-Band6 by fitting the calculated
band energies at symmetry points to the experimen-
tal data. The values of the local pseudopotential at
|q|2 = (3.0, 8.0, 11.0) ∗ ( 2πa0

)2 were obtained from the fit-
ting and were interpolated using spline interpolation for
intermediate values of the reciprocal vector q. A com-
parison of the calculated and experimental band energies
and effective mass values is given in Table II. The ener-
gies calculated in this work are similar to those given in
Ref. 7. The calculated energies associated with the direct
and indirect band gaps (Γ7c and L6c1) agree well with
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FIG. 2. Comparison of experimental and calculated values of
(a) direct and indirect band gaps in Ge1−x(Si0.8Sn0.2)x, and
(b) direct and indirect band gaps in Si0.04Ge0.96−xSnx.

TABLE I. EPM parameter values for Si, Ge and Sn. The
parameter values of Si and Ge are taken from Ref. 8

Parameter Unit Si Ge Sn

Vloc(
√
3) Ry -0.2307 -0.2378 -0.21

Vloc(
√
8) Ry 0.0518 0.02852 0.02359

Vloc(
√
11) Ry 0.06878 0.0469 0.01737

α0 Ry 0.02815 0.0 0.0

β0 1 0.0 0.0 0.365

R0 Å 1.0599 0.0 1.0

α2 Ry 0.0 0.309 0.71

R2 Å 0.0 1.2788 1.453

µ Ry 0.00018 0.000965 0.00239

ζ 1
rBohr

4.6 5.34 3.97

q2 cutoff ( 2π
a0

)2 11.5 12.44 15.25

nonLocalWell Square Square Square

the experimental data. The spin-orbit splitting calcu-
lated in this work is smaller than the experimental value.
The band structures of GeSn and SiGeSn were calculated
by employing the Virtual Crystal Approximation (VCA).
The local pseudopotential parameters of the alloy of any
given composition were obtained by linearly interpolating
the local pseudopotential parameters of the individual
atoms. The parameters for Si and Ge were taken from
Ref. 8. The variation of lattice constants of GeSn and
SiGeSn with the alloy composition was modeled using
quadratic expressions fitted to the experimental lattice
constants9.

The calculated direct and indirect band energies for
GeSn are shown in Figs. 1(a) and 1(b), respectively. They
are in excellent agreement with the experimental values
at 300K. The experimental values of the indirect band
gap of GeSn have been extracted at 10K in Ref. 15. Here,

TABLE II. Comparison of the band energies at symme-
try points calculated by EPM with the experimental band
energies10 as well as the band energies calculated in Ref. 7.
The energies are calculated relative to the valence band edge
(Γ8c,v) of Sn.

Symmetry point Units This work Ref. 7 Exp.10

Γ6c eV 1.83 2.15 –

Γ8c,v eV 0.0 0.0 0.0

Γ7c(Eg) eV -0.448 -0.41 -0.42

Γ6v(SO) eV -0.66 -0.8 -0.8

L6c1 eV 0.096 1.4 0.094

L6c2 eV 3.22 3.48 –

L4,5v eV -1.34 -1.2 –

L6v eV -1.75 -1.68 –

X5c eV 1.04 0.9 –

mLH⟨100⟩ m0 0.04 – –

mHH⟨100⟩ m0 -0.151 – -0.19

they are interpolated to 300K by using Varshni’s law for
the temperature dependence of the indirect band gap18.
The values of α and β for elemental Ge are used for the
interpolation. Fitting the expression in Eq. (1) to the di-
rect band gap calculated by EPM gives us bDir

g = 2.5 eV
which is consistent with the previously reported experi-
mental values - 1.94 eV19, 2.3 eV20, and 2.42 eV21. The
same fitting procedure yields bIndirg = 1.7 eV for indirect
band gap calculated by EPM. The calculations suggest
that the indirect-to-direct crossover of the band gaps of
GeSn alloy occurs at a Sn content of ≈ 10%. A zero band
gap of the GeSn alloy is found at the Sn content of≈ 25%.
The direct and indirect band gaps of (Si0.8Sn0.2)xGe1−x

are plotted vs. x in Fig. 2(a) along with the experimental
data. The experimental band gap values are somewhat
scattered at intermediate x. With the exception of a
couple of data points, the experimental data show rea-
sonable agreement with the calculations. A comparison
between the experimental and calculated band gap val-
ues in Si0.04Ge0.96−xSnx shows fair agreement between
the two (see Fig. 2(b)). A constant offset of unknown ori-
gin is present between the experimental and calculated
values of the direct band gap in Si0.04Ge0.96−xSnx.

EGe1−xSnx
g (x) = x ·ESn

g +(1−x) ·EGe
g −bg ·x ·(1−x) (1)

It is interesting to note that a good reproduction of the
experimental data is achieved without employing bow-
ing of the EPM parameters. This markedly differs from
the previous work on the pseudopotential calculations of
GeSn by Gupta et. al.1 in which the authors used nonlin-
ear interpolation of local pseudopotentials to reproduce
bowing of the energy gap in GeSn. This difference seems
to arise from the shape of the local pseudopotentials used
in the two works which are plotted in Fig. 3 versus the
magnitude of normalized reciprocal vector. The pseu-
dopotential employed in Ref. 1 spans over only the first
nearest neighbour while that used in this work spans over
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FIG. 3. Comparison of the local pseudopotential of Sn used in
this work with that used in Ref. 1. The square of the distances
of the first three nearest neighbours in reciprocal lattice space
of a diamond crystal are marked by dotted vertical lines.

the first three nearest neighbours. The local pseudopo-
tentials for Ge used in the two works show the same dif-
ference as for Sn. This difference in the choice of local
pseudopotentials results in significant bowing of the band
gap of GeSn in our calculations and its absence in the
calculations reported in Ref. 1. The ab-initio Density
Functional Theory (DFT) band structure calculations of
GeSn reported in Ref. 22 also resulted in a strong bowing
of both the direct and indirect band gap when the con-
ventional VCA is employed. This further confirms that
by a proper choice of the pseudopotentials it is possible to
obtain the bowing of the band gap without introducing
nonlinear interpolation of the EPM parameters.
The derived pseudopotential parameter set was used to

extract the band-structure quantities required to model
BTBT in these semiconductors. The Kane model29 of
BTBT requires the direct band gap, the minima of the
∆- and L-valley indirect band gaps, the effective masses
in the respective valleys along with the Light Hole (LH)
effective mass. The heavy hole bands are usually neg-
ligible for BTBT. Therefore, the effective direct tunnel
gap can be different from Eg, but equal to the difference
between the energies of Γ-valley Conduction Band (CB)

and LH band (EΓ
Tun = EΓ

CB − EΓ
LH). This becomes rel-

evant if the LH band falls below the Heavy Hole (HH)
band in energy, such as in the case of strain. Since the
GeSn active layer with a certain composition is pseu-
domorphically grown over a GeSn buffer layer, biaxial
strain is generated in the active layer. This strain can
be used as an additional mean of altering the material
band structure. The variation of the band gap in GeSn
with Sn content and strain is shown in Fig. 4(a). The
LH band is the Valence Band (VB) maximum in the left
half whereas the HH band is the VB maximum in the
right half. The inclined dashed line in the picture sepa-
rates the regions where GeSn exhibits direct and indirect
band gaps. It is seen that for any strain the band gap be-
comes direct for large Sn content and that an increasing

TABLE III. The coefficients a1 to a6 in Eq. (2) fitted to
different band structure quantities in GeSn. The variable
x1 in Eq. (2) represents biaxial strain in the GeSn layer
while x2 in Eq. (2) is the Sn content in GeSn. The values
of the band structure quantities at 0.0 < xSn < 0.12 and
−0.025 < ϵGeSn < 0.025 have been included in regression
analysis.

Legends a1 a2 a3 a4 a5 a6

Band energies (eV)

EΓ
CB - EΓ

LH 0.81 -3.97 -4.0 11.7 -57.3 2.88

EL
CB - EΓ

CB -0.15 5.23 1.696 -6.7 -30.9 -1.41

EΓ
HH - EΓ

LH 0 8.5 0.02 2.99 79.41 -0.336

∆EΓ
LH(Strain) 0 -5.06 -0.034 -5.15 36.5 0.266

Effective masses (m0)

mΓ
e ⟨100⟩ 0.042 -0.19 -0.21 0.9 -1.08 0.29

mL
e,l 1.646 -0.76 0.289 -0.496 -104.5 -0.187

mL
e,t 0.091 -0.305 -0.056 0.61 0.775 0.029

mΓ
LH⟨100⟩a 0.064 -0.071 -0.226 -1.75 -6.73 -0.342

mΓ
HH⟨100⟩a 0.126 1.911 -0.3456 -16.135 -28.1 -1.019

a The plots of the LH and HH effective masses vs. strain show
spike-like behavior near zero strain24 (−0.02 < ϵGeSn < 0.02).
Therefore, the LH and HH masses at zero strain are not
included in their respective regression analyses. It is advisable
to use the LH and HH masses obtained using the regression
coefficients in Table IV in the case of relaxed GeSn.

tensile strain reduces the direct band gap. However, ten-
sile strain also lowers the LH band in energy. As a result,
the strain dependence of the effective direct tunnel gap
is relatively weak as demonstrated in Fig. 4(b). Hence,
the strain in the active GeSn layer might not significantly
change the performance of the TFETs. Indirect BTBT is
disregarded here as quantum transport simulations have
revealed that direct tunneling dominates in small direct-
gap semiconductors23. All the required band energies
and effective mass values in GeSn have been fitted to a
quadratic polynomial of the form

y = a1 + a2 · ϵGeSn + a3 · xSn + a4 · ϵGeSn · ϵGeSn

+ a5 · xSn · xSn + a6 · ϵGeSn · xSn (2)

where y is the required quantity, xSn is the Sn mole frac-
tion in GeSn and ϵGeSn is the biaxial strain in GeSn layer
given by

ϵGeSn =
aGeSn
|| − aGeSn

0

aGeSn
0

. (3)

The coefficients a1 to a6 are listed in Table III for all
the required band structure quantities. The band energy
“EΓ

LH(Strain)” in the table refers to the energy level of
the LH band in strained GeSn for a given Sn content with
respect to its energy level in relaxed GeSn for the same
Sn content. This information can be used to obtain the
band offsets which will be explained below.
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FIG. 4. Contour diagrams showing the variation of (a) band gap (b) effective direct tunnel gap in GeSn with Sn content and
strain. The diagrams suggest that the effective direct tunnel gap will be less sensitive to the strain in the GeSn layer. (c)
Variation of SiGeSn band gap with Si and Sn content.

TABLE IV. The coefficients a1 to a6 in Eq. (2) fitted to differ-
ent band structure quantities in relaxed SiGeSn. In this case,
x1 in Eq. (2) represents the Si content while x2 in Eq. (2) is
the Sn content in SiGeSn.

Legends a1 a2 a3 a4 a5 a6

Band energies (eV)

EΓ
g 0.79 3.13 -4.07 -2.85 -0.14 2.96

EL
g 0.659 1.41 -2.39 -1.378 0.041 1.92

E∆
g 0.86 0.238 -1.19 -0.479 0.0127 1.26

Effective masses (m0)

mΓ
e ⟨100⟩a 0.04 0.112 -0.123 -0.336 0.042 0.284

mL
e,l 1.645 -0.051 0.278 -0.046 0.05 -0.074

mL
e,t 0.0905 0.037 -0.058 -0.034 0.0 0.049

mΓ
LH⟨100⟩ 0.0526 0.159 -0.237 -0.041 -0.024 0.107

mΓ
HH⟨100⟩ 0.216 0.034 -0.178 -0.069 0.019 0.142

a The values of mΓ
e ⟨100⟩ for Eg < 0.0 and for xSi > 0.9 have been

ignored in the regression analysis.

SiGeSn may be used as a channel and drain material
for GeSn/SiGeSn hetero-junction TFETs to reduce am-
bipolarity and improve TFET performance. Simulation
of hetero-junction TFETs requires the band structure
quantities of SiGeSn. The EPM was used to calculate
these quantities. Relaxed SiGeSn was assumed in the
calculations. The variation of the band gap of SiGeSn
with Si and Sn content is shown in Fig. 4(c). The con-
tour diagram reveals three distinct regions depending on
the position of the conduction band minimum. The CB
minimum lies in the ∆-valley for large Si content, in the
Γ-valley for large Sn content and in the L-valley for inter-
mediate values. For larger Sn content, the alloy becomes
metallic (negative direct band gap). Since SiGeSn is re-
laxed, LH and HH bands are degenerate. Hence, the
effective direct and indirect tunnel gaps are equal to the
direct and indirect band gaps, respectively. The band

gaps of the Γ-, L- and ∆-valley minima as well as the
effective mass values were fitted to the quadratic polyno-
mial in Eq. (4).

y = a1 + a2 · xSi + a3 · xSn + a4 · xSi · xSi

+ a5 · xSn · xSn + a6 · xSi · xSn (4)

Here, xSi is the Si content in SiGeSn and xSn is the Sn
content in SiGeSn. The values of the fitted coefficients
for each band and effective mass are listed in Table IV.

In addition to the band structure quantities provided
above, the band alignment at the GeSn/SiGeSn hetero-
junction is also required to model a GeSn/SiGeSn TFET.
The energy difference between the VB edges of relaxed
GeSn and relaxed SiGeSn can be calculated by employing
the expressions given in Ref. 25 that use Jaros’ analyti-
cal model26. This energy difference can be approximated
as a VB-offset at the GeSn/SiGeSn interface, given that

both layers are fully relaxed (E
r-GeSn/r-SiGeSn
VBoffset ). The com-

pressive (tensile) strain pushes the LH (HH) band above
its energy in the relaxed layer. This effect must be added
to the relaxed VB-offset to obtain the strained VB-offset.
The strained VB-offset between s-GeSn and r-SiGeSn can
be calculated as follows,

E
s-GeSn/r-SiGeSn
VBoffset = E

r-GeSn/r-SiGeSn
VBoffset +

max(∆Es-GeSn
LH ,∆Es-GeSn

HH )
(5a)

∆Es-GeSn
LH/HH = Es-GeSn

LH/HH − Er-GeSn
LH/HH. (5b)

The ∆Es-GeSn
LH , defined by Eq. (5b), is given in Ta-

ble III. The ∆Es-GeSn
HH can be calculated from ∆Es-GeSn

LH

and EΓ
HH − EΓ

LH in Table III. The band alignments of
the remaining bands and CB-valleys can be obtained by
adding the band energies calculated using the regression
coefficients in Tables III and IV.

The EPM was used to obtain the band structure quan-
tities for the BTBT model for the 3D simulation of a
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FIG. 5. (a) Device structure and vertical cross-section of
the Si0.5Ge0.5/Si heterojunction nanowire-TFET simulated in
3D. (b) Comparison of simulated and experimental IDS-VGS

characteristics. The parameters for fully relaxed SiGe layer
on Si are used in the simulations (The figure is reprinted from
Ref. 32 with permission. ©2014, IEEE publisher).

Si0.5Ge0.5/Si hetero-structure TFET27 with the device
simulator S-Device28. The TFET has the form of a
lateral nanowire etched from Si-cap/p++Si0.5Ge0.5/n-
Si hetero-structures grown over SiO2. Etching the
nanowires down to Si at one end results in a step-like
structure as shown in Fig. 5(a). The gate-stack con-
tains a 4 nm thick HfO2 layer in addition to a ∼ 7 Å
native oxide (total Effective Oxide Thickness (EOT)
= ∼ 1.4 nm). The “dynamic non-local path BTBT
model” and the Shockley-Read-Hall (SRH) generation-
recombination model were employed in the simulations.
The major contribution to the BTBT current comes from
under-the-gate tunneling (“line tunneling”) in the SiGe
layer along the vertical side-walls which necessitates 3D
simulations. The simulated ID-VG characteristics of the
device are in good agreement with the experimental ID-
VG curves32 (Fig. 5(b)) after adjusting the gate work
function (i.e. increasing it from 4.25 eV to 5.1 eV). A
large shift in the work function suggests quantization in
the channel region which results in delayed turn-on. The
slight underestimation of ID at low VG in the simulation
is attributed to trap-assisted tunneling due to the defects
present both at the SiGe/Si as well as the HfO2/SiGe in-
terface (not modeled). In this way, the device simulations
yield a reasonable match with the experiments when the
band structure quantities obtained from the EPM calcu-
lations described above are used as inputs to the BTBT
model.
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