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Abstract

This paper gives an overview of estab-
lished methods to describe quantum effects
in deep-submicron CMOS. Recent progress
in the integration of quantum models in
TCAD packages is illustrated by a number
of applications.

1. Introduction

Today’s challenges in the field of model-
ing and simulation of deep-submicron de-
vices (Leff ≤ 100 nm, tox ≤ 3 nm) are
closely linked to the goals and uncertain-
ties of the SIA Roadmap. They include
(i) effects of quasi-ballistic transport (pre-
diction of on-current, role of hot-carriers in
gate currents and interface-trap generation),
(ii) quantum effects (confinement, gate tun-
neling leakage, GIDL, channel mobility,
source-to-drain tunneling), (iii) generation
of interface-traps, (iv) spatial and temporal
fluctuations (discreteness of doping, RF and
1/f noise), (v) long-range electron-electron
interaction, and (vi) transport modeling for
new materials (strained silicon, SiGe). This
paper will focus on the simulation of quan-
tum effects in state-of-the-art TCAD. Vari-
ous quantization models are compared with
each other in terms of accuracy and feasibil-

ity. Whereas in CMOS quantum effects are
undesirable and TCAD is being used to min-
imize their impact on device performance,
the post-CMOS era could utilize quantum
effects for certain applications.

2. Quantization models

For the inclusion of quantization effects
in a classical device simulator, a straightfor-
ward approach is to introduce a “quantum
potential” Λ in the classical formula of the
electron density (expressions for holes sup-
pressed throughout):

n = Nc exp
[
β

(
EF,n − Ec − Λ

)]
, (1)

(β = 1/kT ). When Fermi statistics is re-
quired, the exponential function is replaced
by the Fermi integral of order 1/2. Obvi-
ously, only quantum effects related to den-
sity modifications can be described by Eq.
(1).

2.1. van Dort model
The van Dort quantum correction model

[1] computes Λ as a function of the
(local) electric field F⊥ normal to the
semiconductor-insulator interface:

Λ = afit h(d) (βε0εs/4)
1/3 |F⊥|2/3 , (2)



where afit is a fit factor and h(d) a turn-off
function which restricts the model to a near-
interface region. Inserted in Eq. (1), Λ acts
as an effective band gap widening. Depend-
ing on the sign of F⊥, it is either applied
to electrons (Ec shift) or to holes (Ev shift).
Since the model is based on the expression
for the lowest eigenenergy of a carrier in a
triangular potential well, it is suited for sim-
ulations of bulk MOSFETs and, to some ex-
tent, also of SOI and double-gate transis-
tors (provided the body thickness does not
reach quantum-mechanical length scales).
Although the channel density distribution in
bulk MOSFETs is not reproduced (see Fig.
1), important terminal characteristics are of-
ten well-described. The model is numeri-
cally robust and fast.

2.2. 1D Schrödinger-Poisson solver
The 1D Schrödinger equation is the phys-

ically most sound quantization model. Here,
the quantum potential Λ follows by equating
the density (1) with the expression

n(z) =
1

βπh̄2

∑
j,ν

∣∣∣∣Ψ(ν)
j (z)

∣∣∣∣2 m(ν)
xy (z) ×

× exp
[
β

(
EF,n(z) − E

(ν)
j

)]
, (3)

where Ψ
(ν)
j and E

(ν)
j are the j-th eigenfunc-

tion and eigenenergy for valley ν obtained
by numerical solution of the 1D (effective
mass) Schrödinger equation in z-direction
(typically, the direction perpendicular to the
Si-SiO2 interface) [2, 11, 4]. The boundary
conditions at the ends of the domain [z−, z+]
(defining the total ‘quantum box’)

Ψ
(ν)′
j /Ψ

(ν)
j = ±

√
2m

(ν)
z |E(ν)

j − Ec|/h̄ ,
(4)

based on a WKB argument, were found to
be superior over Dirichlet boundary con-
ditions [3, 4]. However, especially under

flat-band conditions, where many contin-
uum states are involved, results are sensitive
to the extension of the quantum box in non-
barrier regions.

The CPU time depends on the number
of grid lines in quantization direction (and
hence may be considerable), and conver-
gence problems occur at large drain cur-
rents. A tensor-product grid is needed in
the quantum boxes (typically, gate oxide
and channel). These drawbacks make the
method more suited for calibration and val-
idation purposes than for optimization.

2.3. Density gradient model
In the density gradient (DG) model (or

‘quantum drift-diffusion’ (QDD)) [5, 6, 7,
3, 4] Λ is given by the PDE:

Λ = −γ
h̄2

12m

[
∇2 log n +

1

2
(∇ log n)2

]

= −γ
h̄2

6m

∇2√n√
n

, (5)

where γ is a fit factor. A number of approxi-
mations are necessary to obtain Eq. (5), e.g.
thermodynamic equilibrium and isotropy of
the effective mass m. The implementation
in [4] uses the DOS mass for m and gener-
alizes (5) for semiconductor regions to

Λ = −γ
h̄2

12m

{
∇2

(
βEF,n − βΦ̄

)
+

+
1

2

[
∇

(
βEF,n − βΦ̄

)]2}
, (6)

Here, Φ̄ is the smoothed potential Φ̄ =
Ec + Φm + Λ, containing the electrostatic
part Ec (which includes band edge disconti-
nuities), a mass driving term Φm (resulting
from DOS discontinuities), and the quantum
potential Λ, the addition of which does not
contribute in lowest-order quantum correc-
tion, as long as the Born approximation is
justified [8]. In practically relevant cases the



latter is strongly violated, and the form (6)
(or Eq. (5) with the quantum-mechanical
density n) represents a nonperturbative for-
mulation, which deserves further research.
The main effect of the quantum potential Λ
is to smooth out rapid changes of the poten-
tial on a length scale

√
γβh̄2/2m (≈ ther-

mal de Broglie wave length).
Discretization of Eq. (6) on unstructured

grids is mandatory for professional TCAD
and has been demonstrated in [8]. Instead
of inserting Λ into the current equation, it is
treated as new variable, which increases the
number of unknowns of the nonlinear sys-
tem, but conserves the sparsity structure of
the Jacobian. The extended system is solved
by a coupled Newton. Thus, the DG model
is numerically robust, but convergence is not
necessarily faster than for the Schrödinger
equation. Another obvious advantage of
the DG model is that it is per se multi-
dimensional, whereas the 1D-Schrödinger
method relies on the adiabatic decoupling
of the 3D Schrödinger equation. Extensive
simulations and comparisons with the more
accurate Schrödinger method have shown
that there is a “universal” fit parameter γ =
3.6 for silicon, a value close to theoretical
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Figure 1. Electron density in different quan-
tization models.

expectations. “Universal” means that γ does
not depend on oxide thickness, channel dop-
ing, or device temperature. Despite some
uncertainties concerning physical rigor, the
DG model is promising and worthwhile to
be investigated in more detail. Open ques-
tions include the boundary conditions, the
re-calibration of physical models, the appli-
cation to thermionic tunneling (e.g. Schott-
ky contacts) and band-to-band tunneling,
the mass anisotropy, and others.

3. Reduction of gate capacity
and VT shift

The most familiar quantization effects in
CMOS are the reduction of gate capacity
and the shift of the threshold voltage. In Fig.
1 the electron density in a MOS-diode with
5 × 1017 cm−3 channel doping, 4 nm ox-
ide thickness and 4 V gate voltage is shown
for the different quantization models dis-
cussed in the text. The agreement between
‘DG’ and ‘Schrödinger’ can be made per-
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Figure 2. CV curves for different substrate
doping.

fect, if γ = 1 is used in the oxide (in-
stead of 3.6 as for silicon). In the ‘sim-
plified density gradient’ model the second
term in Eq. (6) is neglected (γ = 0.3 in this



case). Fig. 2 presents CV curves for a MOS
diode with 1.5 nm oxide thickness, 1 μm2

area and different doping concentrations in
the substrate. The same good agreement be-
tween ‘Schrödinger’ and ‘DG’ is found for
an SOI MOSFET with 5 nm body thickness,
80 nm channel length, 1.5 nm oxide thick-
ness, and 50 mV drain voltage as shown in
Fig. 3. As the DG model is sensitive to rapid
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Figure 3. Transfer characteristics of an SOI
MOSFET.

changes of the potential everywhere in the
device, it also gives a quantum correction in
the proximity of the poly-insulator interface,
if the poly gate is included in the simula-
tion. The carriers are repelled from the po-
tential wall, and the electron density drops
towards the interface. Assuming a homo-
geneous background doping, a thin space-
charge layer will form and the (positive)
gate charge increases. For lowly doped poly
(< 1019 cm−3) the effect is negligible, how-
ever, for realistic doping concentrations it
might even over-compensate the threshold
voltage shift caused by quantization in the
channel (see Fig. 4). This effect has been
reported in Ref. [9] based on a solution of
the Schrödinger equation and has also been
observed using the DG model in Ref. [10].
Fig. 4 presents the low-frequency CV plot
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Figure 4. Effect of quantization in poly.

for a NMOS diode with 3 nm oxide thick-
ness, 5 × 1017cm−3 doping concentration,
and poly doping levels of 1019cm−3 and
1020cm−3, obtained by a classical simula-
tion, a calculation with the DG model every-
where in the device, and with the DG model
correction in silicon only (but not in poly)
[4]. Identical results for poly quantization
can be obtained using the self-consistent
Schrödinger model [4] (not shown), which
proves that this effect is not an artifact of
the DG model. In the simulation, poly was
treated as silicon, i.e. with the same m and γ
as for the channel. Is the effect of quantum-
mechanical depletion in the poly-gate real
or not? If a 1 nm wide layer is left undoped,
the effect almost vanishes [4]. The actual
doping level in this ultra-thin layer is not ac-
cessible by SIMS, thus it appears to be dif-
ficult (or impossible?) to separate doping
effects at the poly-insulator interface from
quantum-mechanical depletion effects.

4. Direct tunneling gate leakage

Direct tunneling is the most serious quan-
tum effect in MOS devices. A funda-
mental physical barrier to scaling is given
by band-to-band tunneling in the body-to-



drain diode, which limits the maximum
body doping and the minimum depletion
width. Physics-based modeling of direct
and defect-assisted band-to-band-tunneling
in pn-junctions (important for GIDL) has
been described elsewhere [12]. Gate tun-
neling leakage may be dominated by reso-
nant processes via defect levels in the ox-
ide [13], if tox ≥ 3 nm or, for thinner lay-
ers, if the gate bias is low. Direct tunnel-
ing determines the off-current (and hence
the stand-by power consumption) for SiO2
thinner than 2 nm in critical regions of the
gate. Therefore, alternative materials and
stacked dielectrics are considered as future
replacements for thermal oxides.

4.1. Analytical models

In the simplest approach, the elastic direct
tunnel current through a dielectric layer can
be evaluated as (e.g. [14]):

jn =
qm∗

c

2π2h̄3β

∫
dE T (E)F(E; EF,s, EF,g) ,

(7)
where F(E; EF,s, EF,g) is a driving force
term, which depends on the position of
the Fermi levels on the gate and substrate
sides (the only non-locality in this model),
and T (E) is the transmission coefficient of
the potential barrier produced by the insu-
lating layer. Eq. (7) is for one valley,
hence m∗

c can serve as a fit factor. T (E)
has to be expressed by an analytical func-
tion, which is only possible for simple po-
tential shapes like trapezoids [15]. In the
self-consistent implementation of Ref. [16],
Eq. (7) is treated as surface recombination
current and solved together with the drift-
diffusion equations. In this way the tunnel
current is automatically linked to the supply
from source/drain (MOSFET) or to the ther-
mal generation in the depletion region of the

substrate (MOS capacitor). Model (7) is fast
and numerically robust.
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Figure 5. Profiles of gate tunneling current.
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Figure 6. Gate current vs increment of tox.

In MOSFETs, the Ig-Vgs characteristics
are determined by the balance between in-
tunneling at the drain (at high drain bias)
and out-tunneling at the source side. A
small increase of the gate oxide thickness
(e.g. due to poly re-oxidation) in the
overlap regions, where the maximum field
strength occurs, significantly reduces the
direct-tunneling gate current without having
a visible influence on the drive current. This
is demonstrated in Fig. 6, where a gradually
increasing oxide thickness at both gate cor-
ners over a distance of 26 nm was assumed



(starting from tox = 1.5 nm). The corre-
sponding gate current profiles are shown in
Fig. 5. The bell shape is result of the in-
creasing oxide thickness (tox = 2 nm at the
gate corners). An increment of 5 Å over
26 nm drops the leakage current by one or-
der of magnitude.

4.2. Bardeen’s method
More complicated potential shapes (e.g.

as generated by stacked dielectrics) demand
for a numerical solution of the Schrödinger
equation. The decay rate from quasi-bound
(real) states in the channel to unbound states
in the gate can be computed by Bardeen’s
perturbative method [17] (which is equiva-
lent to ordinary first-order perturbation the-
ory [3]). The tunnel current then reads [13]:

jn =
q
√

2mgL

8πm2
ox

∑
i,ν

m(ν)
xy

∫
dE δ(E, E

(ν)
i ) ×

×
∣∣∣∣ΨẼ∂zΨ

(ν)
i − Ψ

(ν)
i ∂zΨẼ

∣∣∣∣2
z=z0

, (8)

where δ(E, E
(ν)
i ) contains the difference of

the Fermi functions, ψẼ is the wave function

in the gate (Ẽ = E
(ν)
i + (1 − m

(ν)
xy /mg)E),

and z0 denotes the interface location.
Fig. 7 shows IV -characteristics of MOS

capacitors with different oxide thicknesses
obtained with the analytical model (7) and
the full quantum-mechanical treatment (8),
respectively. A p-substrate with 〈100〉-
orientation, NA = 1018 cm−3, and mox =
0.42m0 have been used. In Eq. (7) m∗

c had
been adjusted once only. Since (8) is solved
together with the drift-diffusion equations,

emptied states Ψ
(ν)
i are refilled by SRH gen-

eration, which leads to the behavior of a
reversed-biased pn-diode at positive volt-
ages in Fig. 7. Self-consistency is at the
expense of numerical robustness; the same
items as discussed in Subsection 2.2 apply
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Figure 7. Direct tunnel currents of MOS
capacitors.

to model (8). Moreover, at strong negative
gate bias the necessary number of eigenso-
lutions can be very large (up to about 300
for the curves presented in Fig. 7), because
most of the electrons injected from the gate
arrive on the silicon side with a high energy.

4.3. Gamow’s method
An alternative approach is based on

Gamow’s picture of nuclear decay [18].
The electron tunnel current density is calcu-
lated as [19]

jn =
q

πh̄2β

∑
i,ν

m
(ν)
xy

τ
(ν)
i

F
(
E

(ν)
i ; EF,s, EF,g

)
,

(9)
where symbols have the same meaning as
before. The new quantity is the resonance
lifetime τ

(ν)
i = h̄/2Γ

(ν)
i of a quasi-bound

state in the channel leaking into the gate.

The resonance width Γ
(ν)
i is found numer-

ically by solving the Schrödinger equation
in a domain that covers substrate, insulator,
and gate. Eq. (9) relies on the assump-
tion that the resonance widths of the quasi-
bound states are much smaller than their en-



ergies: Γ
(ν)
i � E

(ν)
i , which restricts the

method to the range of deep inversion. In
practice, the case of in-tunneling from the
gate (near the drain, see Fig. 5) is more
relevant. This, and the numerical expense
to trace the resonance peaks and spectral
widths, make the method less suited for in-
tegration into TCAD packages. A careful
comparison between Bardeen’s method and
the resonance method in a range, where the
latter was meaningful, yielded a slight dis-
agreement only (≈ factor 2-3, see Fig. 8).
For this comparison, identical MOS struc-
tures and parameters were used, as well as a
data interface between the simulator [4] and
the program described in Ref. [19] in or-
der to ensure identical potential profiles. For
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Fig. 8 a capacitor with NA = 1015 cm−3,
A= 2 × 105μm2, tox = 3 nm was used.

4.4. Density gradient method
The DG method describes tunneling by

a normal drift-diffusion current. This cur-
rent flows through the barriers, which are
strongly reduced by the quantum potential
Λ (see Fig. 9). If tunneling is not de-
scribed as surface recombination (as done in
[20]), the current equation has to be solved
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Figure 9. Density and potential profiles.

in the barriers, too, which requires that the
oxide is treated as a wide band gap semi-
conductor. Quasi-Fermi levels are then also
defined in the barriers and they drop ac-
cording to the local ‘tunnel’ current. Fig.
9 illustrates the potential and density pro-
files across an NMOSFET with 3 nm oxide
thickness at 2 V gate voltage [21, 4]. It is
striking that the density decays into the bar-
rier from both sides, although the tunnel cur-
rent flows from channel to gate. Since the
‘tunnel’ current is determined by the lowest
value of the density in the barrier, the tun-
neling length appears to be roughly one half
of the actual tunneling length. This point
has been addressed in the literature [20] by
introducing different carrier types according
to their tunneling direction. Such an exten-
sion of the DG model is bound to 1D prob-
lems, since the concept of ‘forward’ and
‘backward’ has no obvious generalization to
multi-dimensional device simulation.

Fig. 10 shows that the DG method is
able to reproduce gate leakage currents in
MOSFETs. NMOSFETs with a gate length
of 300 nm, a gate width of 1 μm and oxide
thicknesses of 2 nm and 3 nm, respectively,
were simulated with both the self-consistent
Schrödinger method and the DG model. To
fit the latter to the former, the mobility in the



oxide was adjusted to μn = 0.05 cm2/Vs
using the case tox =2 nm [21, 4]. The agree-
ment is within one order of magnitude.
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Figure 10. Gate tunneling currents in
NMOSFETs.

The predictibility of gate currents is cer-
tainly worse than one order of magnitude,
despite the similar results obtained by rather
different methods. In reality, insulating
layers are never defect-free and parameters
(like mox, εox, Eg,ox) proven for bulk, be-
come uncertain in the case of tox ≈ 10Å.
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