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The high-energy charge transport of electrons and holes in GaAs single photon avalanche diodes

with multiplication region widths of 55 nm to 500 nm is investigated by means of the full-band

Monte Carlo technique incorporating computationally efficient full-band phonon scattering rates.

Compared to previous works, the solution of the Boltzmann transport equation and the incorporation

of the full-band structure put the evaluation of the breakdown probability, the time to avalanche

breakdown, and the jitter on deeper theoretical grounds. As a main result, the breakdown probability

exhibits a steeper rise versus reverse bias for smaller multiplicator sizes. The time to avalanche

breakdown and jitter decrease for smaller multiplicator widths. VC 2011 American Institute of
Physics. [doi:10.1063/1.3652844]

I. INTRODUCTION

Single or few photon detection has become an important

feature in optoelectronic systems. The applications of single

photon avalanche diodes (SPADs) comprise quantum com-

puting,1 quantum cryptography,2 fundamental studies of

quantum physics,3 three-dimensional laser detection and

ranging imaging,4 free space optical communication,5 semi-

conductor circuit diagnostics,6 and fluorescence lifetime

imaging in molecular biology and medicine.7

SPADs are reverse biased diodes operated above the

breakdown voltage Vb in the Geiger-mode. The name

Geiger-mode stems from the similar breakdown process in

Geiger-Müller detectors for radioactive particles. For desired

near infrared (NIR) photon detection, a structure with sepa-

rated absorption and multiplication regions is utilized. The

absorber is made of a low bandgap semiconductor whereas

the multiplication layer consists of a semiconductor material

with a wider bandgap to limit tunneling to an acceptable

level.

A photogenerated carrier drifts into the multiplication

layer and causes impact ionization. The newly impact ion-

ized electron-hole pair can impact ionize additional pairs

leading to a self-sustaining avalanche. An active or passive

quenching circuit stops the avalanche feedback by regulating

the applied bias below the breakdown voltage. After a hold-

off time, the SPAD is biased above the breakdown voltage

again. Especially devices for NIR photon counting suffer

from carrier trapping and detrapping by thermal emission at

defects within the multiplication layer. If the SPAD is in its

armed state, a detrapped carrier can trigger a dark count

named afterpulsing. Remarkable progress has been achieved

for SPADs regarding their photon detection efficiency

(PDE), dark count rate, jitter, and afterpulsing.8,9

The PDE is the product of the quantum efficiency gq,

the probability that the photoexcited carrier survives into the

multiplier Pc, and the breakdown probability Pb that the car-

rier activates a self-sustaining avalanche:9

PDE ¼ gqPcPb: (1)

The PDE depends on the electric field mainly via Pb. Concern-

ing the PDE, a high electric field is favorable because Pb rises

with the field. On the other hand, for increasing electric fields

SPAD performance degrades owing to dark currents as a result

of band-to-band or trap-assisted tunneling in the multiplicator.

Hence, a steep rise of the breakdown probability with higher

electric fields is desirable. The timing jitter originates from the

different transit times of the carriers owing to the variation of

the location of photon absorption, from the delayed release of

trapped carriers at possible heterojunctions, and from fluctua-

tions of the avalanche build-up time. More precisely, the jitter

by virtue of the avalanche build-up originates from the random-

ness of the impact ionization process, the expansion of the ini-

tially point-like avalanche to the entire high field region, and

from local nonuniformities of the excess bias. The avalanche

build-up time is the main contribution to the timing jitter.9

There have been contradictory predictions concerning

the dependence of the breakdown probability on the multipli-

cation region width w. References 10 and 11 predict a rising

breakdown probability for thicker multiplication regions

using a history-dependent analytical impact ionization model

and the recursive dead-space multiplication theory, respec-

tively. On the other hand, Refs. 12–14 predict the opposite

behavior applying the hard dead-space impact ionization

model within McIntyre’s extended theory, the recurrence

equations by McIntyre, and the stochastic random path

length model, respectively. The models of Refs. 10–14 rely

on simplified impact ionization and charge transport model-

ing without taking scattering and the dispersion of chargea)Electronic mail: dolgos@iis.ee.ethz.ch.
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carriers on a microscopic level into account. Nonequilibrium

effects like the dead-space, the velocity overshoot, and the

nonlocal impact ionization gain importance for shrinking

multiplication region sizes. The dead-space is the distance

before a carrier gains enough energy for impact ionization

by means of the electric field. In a velocity overshoot, the

carrier velocity exceeds its stationary value substantially in a

short transition region due to a rapidly changing electric

field. In local impact ionization models, the rate is a function

of the local electric field in contrast to nonlocal models

where the ionization rate depends on the carrier energy. In

simplified models, the dead-space effect is estimated analyti-

cally or taken from full-band Monte Carlo (FBMC) simula-

tions, and the velocity overshoot and the nonlocal impact

ionization are neglected. The simulation of high-energy

(approximately 5 eV) carrier dynamics and kinetics renders

the incorporation of the full-band structure necessary. The

Boltzmann transport equation (BTE) governs the dynamics

of the particles in the semiclassical transport regime. The

Monte Carlo (MC) technique allows the solution of the BTE

with the most comprehensive band structure description and

scattering models. At present, the full-band Monte Carlo

method is the most accurate device simulation method within

the physics of semiclassical charge transport.15,16 The

FBMC approach for the solution of the BTE serves as bench-

mark for approximate methods. FBMC simulations involve a

high computational burden, which forced previous research

to compute SPAD breakdown characteristics to apply simpli-

fied charge transport models. However, with nowadays par-

allel CPU power on standard computer clusters combined

with computationally efficient approaches15 it has become

feasible to gain sufficient statistics with FBMC simulations

for the evaluation of breakdown probabilities and standard

deviations of variables of interest. For an introduction into

the MC method consult, for instance, Refs. 17 and 18.

This work concentrates on the investigation of the high-

energy charge transport and multiplication process in the

SPAD multiplicator. The effect of tunneling is not considered.

We aim to clarify the contradictory predictions of the break-

down probability versus the electric field with changing multi-

plication region widths by solving the semiclassical

Boltzmann transport equation by means of the ensemble

FBMC method. This work examines the breakdown probabil-

ity, which is the main contribution to the PDE, the time to av-

alanche breakdown tb, its standard deviation and main

contribution to the timing jitter r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ht2

bi � htbi2
q

. The

objects of investigation are GaAs PIN diodes with multiplica-

tion (intrinsic) region widths between 55 nm and 500 nm

operated in the Geiger-mode at 300 K (compare with Ref. 14).

II. FULL-BAND MONTE CARLO MODEL

Surely, the ultimate goal in the simulation of carrier

transport in semiconductors would be the usage of the ion

potential as the only input. However, as a result of the huge

computational effort, approximations have to be made while

keeping the main physical features.19 In the case of a full-

band computation of breakdown characteristics of SPADs

efficient modeling renders the computation feasible.

A. Full-band structure

Due to the 48-fold symmetry of the face-centered cubic

lattice, it is sufficient to compute the dispersion relation and its

derivatives on the 1/48th part of the first Brillouin zone, namely

the irreducible wedge. We use a three-dimensional equidistant

tensor grid to mesh the irreducible wedge.20 The length of a

cubic box is l ¼ 0:01 � 2p=a leading to a total number of

87125 cubes discretizing the irreducible wedge. The one-

dimensional tensor grid for the real-space discretization has a

spacing of 1 nm. We compute the GaAs full-band structure on

the k-space grid by means of the empirical pseudopotential

method using parameters from Ref. 21. Figure 1 displays the

dispersion relation along a special path through the Brillouin

zone. The energy is expanded linearly around a grid point kc:

EðkÞ ¼ EðkcÞ þ rkEðkcÞðk� kcÞ (2)

meaning that the gradient, and hence the velocity

v ¼ rkEðkÞ=�h, are constant within a reciprocal space discre-

tization box. The dispersion relation has to be inverted for

the selection of a final k-state after scattering. For a speed-up

in the final box search, we use precomputed energy interval

lists described in Ref. 15.

As a result of the high curvature of the C6-valley, the

utilized discretization is not sufficient to resolve the disper-

sion for low-energy transport. Therefore, we use a threshold

energy of 0.4 eV for analytical nonparabolic treatment of the

C6-valley22 with parameters taken from Ref. 23.

B. Particle propagation

The carriers propagate according to Newton’s law24

with a simple time-step propagation scheme.25 A particle

propagates for the minimum of the four times Dt¼min(ts, tk,
tr, tT) (Ref. 24), where ts is the stochastically selected time

for a scattering event with a random number r between 0 and

1 (Ref. 18), tk is the flight time to reach the boundary of a

cubic k-space box, tr is the time till the boarder of the real

space grid, and tT is the time until the time step of the syn-

chronous ensemble. If ts is the minimum time, a scattering

FIG. 1. Full-band structure of GaAs along special path through the Brillouin

zone computed with the empirical pseudopotential method.
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event and a final k-state are selected randomly. Otherwise, it

is allowed to stop the propagation at tk, tr, tT< ts and to start

the algorithm again.25 The electric field profile for the PIN

structure is precomputed with a drift-diffusion model.26 As a

result of the constant electric field during the propagation,

the integrated equation of motion is

kðtÞ ¼ kðt0Þ þ
q

�h
EDt: (3)

Owing to the small propagation time, which allows the disre-

gard of the acceleration term,24 and the constant velocity

during the propagation time, the real space position is

updated corresponding to

rðtÞ ¼ rðt0Þ þ vDt: (4)

If the particle leaves the first Brillouin zone, the carrier is

transformed back by means of an Umklapp process

kBZ¼ kþG with the Umklapp vector G.

C. Scattering rates

All scattering rate computations are based on Fermi’s

golden rule.15,17,22 One has to be aware that in the derivation

of Fermi’s golden rule an assumption is made that limits its

usage for high electric fields. The energy conserving delta

function appears for t� �h=E, which depicts Heisenberg’s

uncertainty principle. Rigorous energy conservation is not ful-

filled giving rise to collision broadening.27 The intracollisional

field effect accounts for the issue of the influence of the elec-

tric field during the scattering process.28 Works exist that

include the intracollisional field effect and collision broaden-

ing into the semiclassical transport theory.29–31 For high car-

rier energies, the picture of semiclassical charge transport is

pushed to its limits (e.g. see Ref. 28 for assumptions made in

the Boltzmann equation). On the other hand, the range of va-

lidity of the Boltzmann transport equation may have been

underestimated.22 Nevertheless, it is common practice in the

community of semiclassical high-field transport to use Fermi’s

golden rule for scattering rate computations.16,32,33

The full-band Monte Carlo simulators described in litera-

ture differ mainly in the usage of the implemented scattering

model. For phonon scattering the differences lie in the treatment

of the deformation potential, the overlap integral, and the pho-

non dispersion relation. Commonly, phonons are treated to be

in a thermodynamic heat bath in equilibrium. On the most basic

side of the hierarchy, starting from Fermi’s golden rule, the full

transition rate Wnn 0(k, k0) has to be computed from every initial

(n, k) to any final state (n0, k0) with the band index n. The defor-

mation potentials are not fit parameters but are computed based

on the full-band structure. This means that there is less freedom

for calibration and the quality of the transition rates depends on

the complexity of the underlying theory.19 The full phonon dis-

persion is included. References 16, 34, and 35 contributed to

this research-intensive and computationally heavy approach.

However, the feasibility and the efficiency of device simulation

ask for approximations of the full transition matrix elements. It

is possible to define volumes or valleys in the reciprocal space

where the deformation potentials and the matrix elements are

approximately constant.18,32–34,36 Thus, the main contribution

to the variation of the phonon scattering rates with energy is

due to the density of states (DOS). This allows a computation-

ally very efficient grouping of the phonon transition rates into

packages of phonon scattering mechanisms depending on the

initial and final valleys.15 Appendix A introduces the valley

allocation algorithm. The first four conduction valleys are C6,

L6, X6, for the first conduction band, and X7 for the second con-

duction band. All other conduction valleys within the irreduci-

ble wedge are named cxy where x is the conduction band

number and where y is the valley number within x.

1. Carrier-phonon scattering

Elastic acoustic phonon scattering, nonpolar optical pho-

non scattering, and intervalley phonon scattering may be

written as15,17,22

Wm
��0 ðEÞ ¼

X
k0

Km
��0

V
d E�0 ðk0Þ � E�ðkÞ � Etransð Þ

¼ Km
vv0Dv0 ðE6EtransÞ (5)

being proportional to the final density of states Dv0 ðEÞ0 with the

particle energy E before and E0 ¼E 6 Etrans after scattering. The

transition energy is Etrans¼ 0 for acoustic phonons, Etrans ¼ �hxop

for optical phonons in the Einstein approximation, the optical

phonon angular frequency xop, Etrans ¼ �hx��0 þ DE��0 for inter-

valley phonons with the intervalley transition phonon angular

frequency xvv0 and the energy separation DEvv0 between the

valleys. The prefactor of scattering mechanism type m is Km
��0

(see Table I), where v and v0 are the initial and final valley,

respectively. We utilize the method by Gilat and Rauben-

heimer37 to integrate d-functions. The full-band DOS, including

spin degeneracy, is evaluated by means of a surface integral

D�0 ðEÞ ¼
1

4p3

ð
V�

dðE� E�0 ðk0ÞÞd3k0

¼ 1

4p3

ð
EvðkÞ¼EðkÞ

dA

rkEvðkÞj j �
X

i

Dv;iðEÞ (6)

with the box density of states

TABLE I. Scattering rate prefactors K. The quantities are: Boltzmann con-

stant kB, lattice temperature T, longitudinal sound velocity ul, mass density

of the semiconductor material q, optical and intervalley phonon occupation

number nop and n��0, polar coupling constant in Fröhlich expression F,
impact ionization matrix element Mii, and number of unit cells N.

Scattering mechanism K

Elastic acoustic phonon scattering
pkBTN2

v

�hu2
l q

Nonpolar optical phonon scattering
pD2

v

2qxop

ðnop þ
1

2
� 1

2
Þ

Intervalley phonon scattering
pD2

vv0

2qxvv0
ðnvv0 þ

1

2
� 1

2
Þ

Polar optical phonon scattering
2p
�h

e2F2ðnop þ
1

2
� 1

2
Þ

Impact ionization
2p
�h

Miij j2V3

N
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D�;iðEÞ ¼
1

4p3

A�;iðEÞwi

�hjv�;ij
(7)

of the ith discretization cube. Here, Av,i(E) is the area of the

equi-energy surface cut with the cubic box.37 If the energy E
is not within the cube, the area is zero. Furthermore, wi is a

weighting function for the treatment of the contribution of

boundary boxes in the irreducible wedge (see Appendix B).

Figures 2 and 3 present the single contributions of the

defined valleys to the total DOS.

The electron intervalley deformation potentials Dvv0

result from the acoustic N� and the nonpolar optical Dv de-

formation potentials22

D��0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�q��0j j2þ D�ð Þ2

q
(8)

with the phonon wave vectors qvv0 connecting the valley

minima. For the first conduction band, the intervalley pho-

non energies are taken from Ref. 38, and 23 meV for higher

conduction bands.

Compared to group IV semiconductors, in III-V materi-

als additionally polar optical phonon scattering appears.

Approximating the overlap integral as unity, the polar optical

phonon scattering rate22 is given by

Wpop
�0 ðkÞ ¼

X
q

Kpop

Vq2
dðEn0 ðk0Þ � EnðkÞ � �hxopÞ

¼ KpopDq�2;v0 ðkÞ
(9)

being proportional to the direction-weighted density of states

Dq�2;�0 ðkÞ ¼
1

4p3

ð
1

jqj2
dðEðkÞ � E�0 ðk0Þ � �hxopÞd3k0

�
X

i

Dq�2;iðkÞ (10)

with the direction-weighted box density of states

Dq�2;�;iðkÞ ¼
D�;iðEðkÞ6�hxopÞ
ðk� kcÞ2

(11)

of the ith box. Here, q¼ k – k0 is the phonon wave vector.

The anisotropic polar optical phonon scattering rate is aver-

aged according to22

WðEÞ ¼ 1

DðEÞ
X

k

WðkÞdðEðkÞ � EÞ (12)

with the initial density of states D(E). Figure 4 depicts the polar

optical phonon scattering rates for intraband transitions.

FIG. 2. (Color online) Full-band density of states of valleys of conduction bands 1 (a), 2 (b), 3 (c), and 4 (d).

084507-4 Dolgos et al. J. Appl. Phys. 110, 084507 (2011)

Downloaded 24 Oct 2011 to 129.132.4.22. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions



2. Impact ionization

Models for the calculation of the impact ionization rates,

starting from Fermi’s golden rule, vary widely in literature.

For example, Kane,39 Jung et al.,40 and Kuligk et al.41 com-

puted the impact ionization rate evaluating the detailed ma-

trix elements, the dielectric function, and took momentum

conservation into account. Kane introduced the random-k

approximation (RKA),39 which neglects momentum conser-

vation. Sano et al.42 additionally introduced an approxima-

tion that assumes mean secondary carrier energies. Some

FBMC works utilized a modified Keldysh formula, which is

a fit to the impact ionization rate of fundamental approaches.

In the past, several groups used the Keldysh formula, which

provides bad scattering rates being derived for parabolic

bands.

The inclusion of the momentum conservation and the

computation of the Coulomb transition matrix elements

render the fundamental approaches of Kane, Jung et al., and

Kuligk et al. computationally expensive and their numerical

implementation laborious. The transition matrix elements are

approximately insensitive to changes of the primary electron

energies. Momentum conservation allows a large number of

possible final k-states due to the 48-fold symmetry of the

cubic lattice. Practically, the large set of final k-states will

scatter randomly throughout the Brillouin zone. Addition-

ally, the three integrals over k-space considerably average

the details of the band structure.39 The RKA and the constant

matrix approximation (CMA) take advantage of the two

properties and highly reduce the complexity of the impact

ionization rate computation. The RKA and CMA reduce the

nine-dimensional integration over the d-function in recipro-

cal space to a two-dimensional integral over one-particle

density of states in energy space. The costly computation of

the Coulomb transition matrix elements is bypassed by tun-

ing it to experimental data.33 The application of the RKA

and the CMA is an appealing possibility to compute the

impact ionization rate with a manageable effort and keeping

agreement with fundamental methods.33,39,43 Compared to

the approach of Sano et al. Kane’s RKA provides informa-

tion about the secondary carrier energies without taking

another fit parameter into account. The additional implemen-

tation work for the RKA and CMA based rate calculation

compared to the implementation of the approach of Sano et
al. is low. The use of the modified Keldysh formula is a via-

ble option especially for GaAs because the secondary carrier

energies are provided in literature. However, we prefer

Kane’s RKA and CMA to compute all our scattering rates

based on the same full-band structure, and therefore, keep

FIG. 3. (Color online) Full-band density of states of valence bands (a) and

total density of states of conduction and valence bands (b). FIG. 4. (Color online) Intraband polar optical phonon scattering rates for

the valleys of the first conduction band (a) and valence bands (b).
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band structure consistency. The importance of the impact

ionization rate around the threshold energy depends on the

high energy tail of the carrier distribution and the ratio of the

impact ionization rate to the phonon scattering rates. A car-

rier, being able to impact ionize, has to survive to energies

above threshold emitting less phonons than the bulk of par-

ticles. The carrier distribution above the threshold energy

therefore strongly depends on phonon scattering below the

threshold. If the carrier has survived to impact ionization en-

abling energies, the occurrence of impact ionization has to

be relevant compared to phonon scattering. Practically,

impact ionization takes place for energies where the ratio of

the impact ionization rate and the total phonon scattering

rate exceeds about 10�2. The energy before impact ioniza-

tion is between 3 and 5 eV for electrons, i.e., high above the

threshold energy. For holes the impact ionization rate seems

to be important near the threshold33 where the RKA and

CMA are expected to be less applicable.39

The impact ionization scattering rate in the RKA and

CMA is given by39

WiiðEÞ ¼ KiiDiiðEÞ (13)

for an impacting electron with

DiiðEcÞ ¼
X

v0;c0;c00

c00�c0

ðÊc0

0

dEc0

ðÊv0

0

dEv0Dv0 ðEv0 ÞDc0 ðEc0 Þ

� Dc00 ðEc � Ec0 � Ev0 � EgÞ:

(14)

Here, it is Ec/v¼E(kc/v) and so on. The integration boundaries

are Êc0 ¼ Ec � Eg and Êv0 ¼ Ec � Ec0 � Eg. Furthermore, Eg

is the bandgap energy. Swapping the indices for the conduction

band c and valence band v leads to the expression for a primary

impacting hole. Table I summarizes the scattering mechanism

prefactors K.17,22 Figure 5 demonstrates the total phonon and

impact ionization scattering rates for electrons and holes.

We compute the secondary carrier energies according to

the secondary distribution function in the RKA. For a pri-

mary electron having the energy Ec and a secondary electron

with the energy E
0
c the secondary distribution function Wee is

given by39

WeeðEc;E
0
cÞ ¼

2

DiiðEcÞ
X

v0;c0;c00

c00�c0

Dc0 ðEc0 Þ

�
ðEc�Ec0 �Eg

0

dEv0Dv0 ðEv0 ÞDc00 ðEc � Ec0 � Ev0 � EgÞ:

(15)

The factor of 2 appears as a result of the indistinguishable sec-

ondary electrons. Due to computational efficiency, we use the

mean value of the secondary energy distribution function:

hE0ciðEcÞ ¼
X

E0c

WeeðEc;E
0
cÞE0c: (16)

Figure 6 illustrates the evaluated mean secondary energies

hE0ci(Ec) for an impacting electron and the secondary elec-

trons, and hE0vi(Ev) for a primary hole and secondary holes.

For a primary impacting electron the secondary carrier ener-

gies for the two electrons E
0
e1, E

0
e2 and the single hole E

0
h are

chosen according to

E
0

e1 ¼ hE0ciðEcÞr; (17a)

E
0

e2 ¼ hE0ciðEcÞ � E
0

e1; (17b)

E
0

h ¼ Ec � hE0ciðEcÞ � Eg (17c)

with a random number r between 0 and 1. The selection of

the secondary carrier energies for a primary impacting hole

is treated accordingly.

The final state after scattering is chosen corresponding

to Ref. 15.

D. Calibration

As a result of the empirical deformation potential and

impact ionization ansatz, the unknowns (deformation poten-

tials and impact ionization prefactors) have to be calibrated

to experimental data.22,33 Figures 7(a) and 7(b) show a com-

parison of the velocity versus electric field dependence

between our FBMC simulator named CarloS, other FBMC

programs, and experimental data. Figures 8(a) and 8(b) com-

pare the impact ionization coefficients of electrons a and

holes b simulated with CarloS and experiments. The bars of

FIG. 5. Full-band scattering rates for electrons (a) and holes (b).
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length 2r indicate the 68% confidence interval. The impact

ionization prefactor Kii depends exponentially on the defor-

mation potentials. A strong carrier-phonon interaction causes

a distribution function with exponentially lower high-energy

tail. Therefore, to adjust the impact ionization coefficient, an

exponentially higher impact ionization rate has to be chosen.

The ionization coefficient depends weakly on the ionization

rate but strongly on the deformation potentials.33 Relatively

small variations in the deformation potentials do not change

vðEÞ appreciably but change the impact ionization coefficient

strongly while keeping Kii unchanged. Table II summarizes

the calibrated acoustic phonon deformation potential, the

nonpolar optical deformation potential, and the impact ioni-

zation prefactor for electrons and holes.

III. SIMULATION RESULTS AND DISCUSSION

We simulate a GaAs PIN diode with multiplication

(intrinsic) region widths between 55 nm and 500 nm. The de-

vice operates in the Geiger-mode at 300 K. The simulation

procedure consists of a single electron injection on the p-side

with a kinetic energy of 10 meV in the C6-valley at the time

t¼ 0 ps into the GaAs PIN diode. GaAs is an electron multi-

plication material. Breakdown occurs when the total number

of charged carriers, being generated by impact ionization,

exceeds 30 within the depletion region. If a breakdown has

not taken place within 500 ps, the simulation stops. The

FIG. 6. Mean energy of secondary carriers of the same type as impacting

ones after impact ionization.

FIG. 7. (Color online) Calibration results for (a) electron and (b) hole

velocities.

FIG. 8. (Color online) Calibration results for (a) electron and (b) hole

impact ionization coefficients.

TABLE II. Calibrated fit parameters.

Particle N (eV) D (eV/nm) Kii (nm9eV ps�1)

Electrons 5.0 19.0 0.03

Holes 5.0 50.0 1000
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numerical experiments are repeated 104 times to gain suffi-

cient statistical data. Using Ramo’s theorem44 for the 55 nm

device and the saturation velocities of Ref. 14, our break-

down criterion corresponds to a current of approximately 5.4

mA. For this small amount of charge and high electric fields,

we do not expect space-charge effects to be important.

Figure 9 presents the breakdown probability versus the

reverse bias Vr and the excess bias Vex¼Vr�Vb for different

multiplication region sizes. Three regions characterize the

curves. The breakdown probability slowly ascends in a small

voltage interval immediately after the breakdown voltage.

We define the breakdown voltage as Pb(Vb)¼ 10�3 (compare

with Ref. 45). With higher reverse bias, the breakdown prob-

ability increases linearly before it saturates toward unity.

The smaller the multiplication region, the steeper is the rise

of Pb with higher reverse bias. A steep rise is advantageous

for SPADs, because it increases the photon detection effi-

ciency for a constant excess bias. However, for the same

excess bias, the electric fields are higher in thinner structures

leading to an increased tunneling probability. The region of

saturation is larger for increasing multiplicator widths. Com-

pared with the simpler models of Refs. 10–14, the FBMC

simulations predict a less steep rise of the breakdown proba-

bility with reverse bias and a longer bias region of saturation.

For decreasing multiplication width, the balance between

positive feedback of the avalanche and the effective length

of the gain material governs the behavior of the breakdown

probability steepness.12 For smaller w, and thus, for higher

electric fields, the impact ionization coefficients for electrons

and holes approach each other (compare Figs. 8(a) and 8(b)).

This leads to a more pronounced positive feedback of impact

ionization enforcing the avalanche. On the other hand, the

smaller the multiplicator, the higher is the ratio between the

dead-space d and w. A higher d/w corresponds to a reduction

of the effective multiplication region thickness, and thus, has

a negative implication on the avalanche. FBMC simulations

of the high-energy charge transport reveal a dominance of

the positive feedback for smaller multiplication sizes at con-

stant excess bias. Figure 10 shows the mean time to ava-

lanche breakdown and the jitter versus the reverse bias for

different multiplication region sizes. Both, htbi and r
decrease for higher reverse bias. For higher electric fields,

impact ionization processes take place more often, and the

distribution of the time to avalanche breakdown narrows.

The mean time to avalanche breakdown and jitter feature a

fast decline over reverse bias in a region after the breakdown

voltage before the quantities evolve into an area of small

change with reverse bias. htbi and r decrease with smaller

multiplication region widths. Furthermore, the mean time to

avalanche breakdown and jitter descend faster with a smaller

multiplication region size. In Fig. 10, we attribute the peaks

in the vicinity around the breakdown voltage to the small

number of avalanche breakdowns leading to low statistics.

IV. CONCLUSION

In summary, we modeled the charge multiplication pro-

cess in GaAs single photon avalanche diodes by means of

the currently most accurate device simulation method within

the physics of semiclassical charge transport and improved

the computation of SPAD properties with the state-of-the-art

treatment of high-energy carrier dynamics. Highly nonequili-

brium effects like the dead-space, the nonlocal impact ioni-

zation, and the velocity overshoot are incorporated with the

full-band Monte Carlo technique for the investigation of the

FIG. 9. (Color online) Breakdown probability vs. reverse bias (a) and break-

down probability vs. excess bias (b) for multiplication region widths of 55

nm, 250 nm, and 500 nm.

FIG. 10. (Color online) Mean time to avalanche breakdown htbi and jitter r
vs. reverse bias for multiplication region widths of 55 nm, 250 nm, and

500 nm.
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contradictory results presented in literature regarding the

trend of the breakdown probability versus the reverse bias

with changing multiplicator widths. We have analyzed the

behavior of the breakdown probability, the time to avalanche

breakdown, and the jitter for different multiplication region

widths. The breakdown probability exhibits a steeper rise

with reverse bias for smaller multiplicator sizes. The mean

time to avalanche breakdown and jitter decrease for shorter

multiplication regions. Provided that tunneling processes in

smaller multiplicators are at an acceptable level, FBMC sim-

ulations suggest smaller multiplication region widths in

SPADs for a given excess bias to improve the photon detec-

tion efficiency, the photon detection speed due to avalanche

breakdown, and the noise owing to avalanching impact ioni-

zation processes.

APPENDIX A: VALLEY ALLOCATION

The deformation potentials are approximately constant

within a valley. Therefore, the utilized scattering model asks

for a partition of the k-space into valleys for each band.

References 18 and 24 allocate the valleys according to sym-

metry considerations in the reciprocal space. For example in

Ref. 24, the k-points are grouped to valleys lying within a

sphere around their minima. We make use of a customized

steepest descent method to allocate the k-space grid cubes to

particular valleys. This allocation method divides the recip-

rocal space into groups of k-points according to the follow-

ing algorithm. The starting point kstart is a center point of the

tensor grid. The next point knext lies in the next cubic box in

the direction of the negative gradient of the current cube. If

knext leaves the irreducible wedge during the iteration loop,

it is transformed back again into the irreducible wedge. After

a number of iterations, the end point kend is reached. All kend

gather around the local energy minimum of the particular

valley. We allocate a cubic box to the particular valley per

conduction band where the customized steepest descend

method converges to its valley minimum energy. Holes pos-

sess only one local minimum per valence band rendering the

valley allocation trivial. We do not expect relevant changes

due to the different valley allocation approaches used in

literature.

APPENDIX B: WEIGHTS OF BOUNDARY BOXES

The method of Gilat and Raubenheimer asks for the

computation of the area A0 of a cubic box cut by an equi-

energy plane. Therefore, cubes lying partly outside the irre-

ducible wedge have a different contribution compared to

boxes lying completely inside the irreducible wedge. Sym-

metry considerations are very useful to compute the contri-

bution of boundary boxes.20 Consider the case where a cubic

box lies completely inside the irreducible wedge. Then, the

contribution to the whole Brillouin zone is ABZ¼ 48A0. The

box weight is w¼ 1. Assume that a boundary plane of the ir-

reducible wedge cuts the cubic box such that, including the

neighboring wedge, the cubic box lies again inside these two

wedges. Then, the contribution to the whole Brillouin zone

is ABZ ¼ 48=2 � A0. The box weight is w¼ 1/2. And so on.

1E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).
2N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145

(2002).
3J. Rarity and P. Tapster, Phys. Rev. Lett. 64, 2495 (1990).
4B. F. Aull, Proc. SPIE 5353, 105 (2004).
5V. W. S. Chan, J. Lightwave Technol. 24, 4750 (2006).
6A. Lacaita, F. Zappa, S. Bigliardi, and M. Manfredi, IEEE Trans. Electron

Devices 40, 577 (1993).
7R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, and G. Valentini,

J. Phys. D 35, R61 (2002).
8S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, J. Mod. Opt. 51,

1267 (2004).
9M. Itzler, X. Jiang, M. Entwistle, K. Slomkowski, A. Tosi, F. Acerbi, F.

Zappa, and S. Cova, J. Mod. Opt. 58, 174 (2011).
10S. Wang, F. Ma, X. Li, G. Karve, X. Zheng, and J. C. Campbell, Appl.

Phys. Lett. 82, 1971 (2003).
11D. Ramirez, M. Hayat, G. Karve, J. Campbell, S. Torres, B. Saleh, and M.

Teich, IEEE J. Quantum Electron. 42, 137 (2006).
12J. Ng, C. Tan, J. David, and G. Rees, “Theoretical study of breakdown

probabilities in single photon avalanche diodes,” The 16th Annual Meet-

ing of the IEEE, Lasers and Electro-Optics Society, 27–28, Oct. 2003

(LEOS 2003), pp. 773–774.
13M. Hayat, U. Sakoglu, J. Campbell, B. Saleh, and M. Teich, IEEE J. Quan-

tum Electron. 39, 179 (2003).
14S. L. Tan, D. S. Ong, and H. K. Yow, J. Appl. Phys. 102, 044506 (2007).
15C. Jungemann, S. Keith, M. Bartels, and B. Meinerzhagen, IEICE Trans.

Electron. E82C, 870 (1999).
16K. Hess, Monte Carlo Device Simulation: Full Band and Beyond (Kluwer

Academic, Dordrecht, 1991).
17C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).
18C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation. The

Monte Carlo Perspective (Springer, New York, 2003).
19U. Ravaioli, Semicond. Sci. Technol. 13, 1 (1998).
20P. M. Marcus, J. F. Janak, and A. R. Williams, Computational Methods in

Band Theory (Plenum, New York, 1971).
21J. Chelikowsky and M. Cohen, Phys. Rev. B 14, 556 (1976).
22M. Fischetti and S. Laux, Phys. Rev. B 38, 9721 (1988).
23G. M. Dunn, G. J. Rees, J. P. R. David, S. A. Plimmer, and D. C. Herbert,

Semicond. Sci. Technol. 12, 111 (1997).
24F. M. Bufler, Full-Band Monte Carlo Simulation of Nanoscale Strained-

Silicon MOSFETs (Hartung-Gorre, Konstanz, 2003).
25F. M. Bufler, A. Schenk, and W. Fichtner, Math. Comput. Simul. 62, 323

(2003).
26Synopsys, Inc., Sentaurus Device User Guide, version Y-2006.06, Moun-

tain View, California, 2006.
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