

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE)

K. Moselund¹, D. Cutaia¹. M. Borg¹, H. Schmid¹, S. Sant², A. Schenk² and H. Riel¹

¹IBM Research – Zurich, Switzerland

² ETH Zurich, Integrated Systems Laboratory

- Motivation & background
 - Low power electronics
 - Tunnel FET functionality & SOA
- Template Assisted Selective Epitaxy
 - Vertical & Lateral approach
- Experimental
 - P & N-TFET fabrication
 - Electrical characterization
- Limitations of InAs/Si P-TFETs
 - Analysis of trap contributions
- Outlook & Summary

Domain wall switching

Tunnel FET functionality

SI MOSFET

 $V_{\rm DD,III-V} < V_{\rm DD,Si}$

Steep slope \rightarrow V_{dd} scaling and low I_{off}

→ SS < 60 mV/dec possible

Potential to achieve ultra-low power operation

 $V_{\rm G}(V)$ source channel E_{f}^{s} Band-to-band-tunneling (BTBT) acts as bandpass filter $\Delta \Phi$ Е cutting off the tails of the Fermi distribution filtering of С the Ev **Fermi** \rightarrow $\sim \lambda \mid \leftarrow$ function

Log(l_b)

I_{off,SCE}

Ioff

Ion, TFET

TFE

III-V MOSFET

SS = 60 mV/dec

 $V_{DD,TFET} < V_{DD,III-V}$

 E_{f}^{d}

How to make a good tunnel switch

$$I_{on} \sim T_{tunneling}^{WKB} = \exp\left(-\frac{4\lambda\sqrt{2m^*}E_G^{3/2}}{3qh(\Delta\Phi + E_G)}\right)$$

Increasing Ion

λ: Electrostatics → <u>GAA</u>, EOT scaling, thin body, doping profiles E_g, m^{*}: materials based → Ge/InAs source on Si, III-V heterostructures

State of The Art Tunnel FETs

- Many different implementations (geometry, materials etc.) reported so far
- Varying potential for: High I_{on}, low SS, integration potential, scalability.

Complementary TFET technologies

IBM

- Challenging for heterojunction TFETs, due to the need for different material combinations for n- and p-channel devices
- VLSI 2015: Demonstrated p- and n-type InGaAs/GaAsSb TFETs on the same InP substrate – use of metamorphic buffer
- Using TASE we are able to selective grow InAs and GaSb NWs co-planar to each other
- VLSI 2016: InAs/Si p-TFETs and InAs/GaSb n-TFETs are implemented on different wafers, using compatible process flows

→ TASE technology for heterojunction TFETs
 → Development of heterojunction TFET technology: vertical → planar
 → Performance and limitations of fabricated TFETs

<u>Outline</u>

- Motivation & background
 - Low power electronics
 - Tunnel FET functionality & SOA
- Template Assisted Selective Epitaxy
 - Vertical & Lateral approach
- Experimental
 - P & N-TFET fabrication
 - Electrical characterization
- Limitations of InAs/Si P-TFETs
 - Analysis of trap contributions
- Outlook & Summary

Vertical Implementation of TASE

Applications: TFETs, dense integration, photovoltaics

Horizontal Implementation of TASE

- Good control over junction placement.
- Device parameters (L, L_i, W, etc.) easily defined by design.
- Easier fabrication

Applications: MOSFETs, TFETs, arbitrary geometry devices, optoelectronics

Template Assisted Selective Epitaxy (TASE)

Growth on any crystalline orientation

✓ Enables VLSI integration

Abrupt junctions

8

Stacked nanowires

✓ Scalable Technology

Arbitrary geometries

P. D. Kanungo et al. Nanotechnology, 2013, MM. Borg et al. Nanoletters, 2014. H. Schmid et al. APL 2015,

Classical devices fabricated using TASE

InAs MOSFETs

Device:

10 parallel NWs, L_G ~ 150 nm,

Results:

- $I_{on} = 480 \ \mu A/\mu m \ (V_{DS}=0.5V)$
- $g_m = 0.9 \text{ mS/}\mu\text{m} (V_{DS}=0.5\text{V})$
- Field-effect mobility ~ 500 cm²/Vs
- SS = 250 mV/dec

TASE grown Hall-bar structures

Hall measurements (0.1T, RT)

- $n_s = IB/qV_H = 3.9x10^{17}cm^3$
- electron mobility = 5400 cm²/Vs

 \rightarrow Material allows good device performance

H. Schmid et al. APL 2015,

Outline

- Motivation & background
 - Low power electronics
 - Tunnel FET functionality & SOA
- Template Assisted Selective Epitaxy
 - Vertical & Lateral approach
- Experimental
 - P & N-TFET fabrication
 - Electrical characterization
- Limitations of InAs/Si P-TFETs
 - Analysis of trap contributions
- Outlook & Summary

Developing our vertical InAs/Si TFET process

TEM: L. Gignac, J. Bruley, C. Breslin

K. Moselund, EDL 2012. H. Riel IEDM 2012. D. Cutaia, et al. J-EDS 2015, D. Cutaia, et al. ULIS 2015

→ Transfer to lateral technology → flexibility in device processing & complementary TFETs

IBM Research – Zurich Kirsten Moselund, CSW - IPRM, Toyama June 27th 2016.

IBM

1) P⁺ diffusion doping(PTFET) 2) Etch Si device layer 3) Oxide template & Si etch

1) P⁺ diffusion doping(PTFET) 2) Etch Si device layer 3) Oxide template & Si etch

4) PTFET: InAs Source growth = 4) NTFET: n-InAs(D)/InAs(C) & p-GaSb (S)

IBM

1) P⁺ diffusion doping(PTFET) 2) Etch Si device layer 3) Oxide template & Si etch

4) PTFET: InAs Source growth = 4) NTFET: n-InAs(D)/InAs(C) & p-GaSb (S)

IBM

1) P⁺ diffusion doping(PTFET) 2) Etch Si device layer 3) Oxide template & Si etch

Horizontal InAs/Si p-TFETs

D. Cutaia et al., VLSI Symp 2016

Horizontal InAs/gaSb n-TFETs

D. Cutaia et al., VLSI Symp 2016

InAs/Si p-TFET: comparison vertical vs. planar

Observations:

- Ion boosted x50 by EOT scaling (vertical TFETs)
- Size: 100 nm cross-section \rightarrow 30nm.
- Horizontal: SS_{ave} much improved 150 mV/dec \rightarrow ~70mV/dec

Transfer Characteristics – 300K

- <u>P-TFET</u>: I_{oN}=4µA/µm at V_{GS}=V_{DS}=-0.5V,
 SS~70-80mV/dec., I_{ON}/I_{OFF}~10⁶
- <u>N-TFET</u>: I_{ON}=40µA/µm at V_{GS,ov}=3V, V_{DS}=0.5V,
 SS~1V/dec., I_{ON}/I_{OFF}~400

D. Cutaia et al., VLSI Symp 2016

Transfer Characteristics – T-sweep

- Small T-dependence for I_D in the ON state
- Strong SS T'dependence
 - **P-TFET**: SS_{ave} reduced to 55mV/dec. at 150K
 - **N-TFET**: SS_{ave} reduced to 400mV/dec. at 150K

SS and $g_m/I_D - p$ -TFET

Subthreshold Slope vs. I_D : Traps at InAs/Si heterojunction and InAs/High-k interface \rightarrow Switching region limited by TAT g_m/I_D vs. V_{GS} : Transconductance efficiency peak at 300K \rightarrow 34V⁻¹ Peak shifts to higher I_D when reducing T \rightarrow SS improvement

Diode/Output characteristics

10⁻⁵ $V_{GS} = -1V$ 10⁻⁶ 10⁻⁷ Drain current, I_b [A] 0.5 10⁻⁸ 10⁻⁹ ′_{GS} = 0V **10**⁻¹⁰ = -0.5V **10**⁻¹¹ no traps **10**⁻¹² Experiment F44 Simulation - traps **10**⁻¹³ Simulation - no traps orward **10**⁻¹⁴ 0.4 0.0 0.2 -02 -0 Drain voltage, V_{DS} [V] S. Sant, submitted TED 2016

P-TFET: No NDR expected for V_{GS} levels used in measurements (-0.5V) due to gate overlap of source.

N-TFET: NDR observed on pn and pin diodes with gate metal removed, but not on TFETs

D. Cutaia et al., VLSI Symp 2016

Outline

- Motivation & background
 - Low power electronics
 - Tunnel FET functionality & SOA
- Template Assisted Selective Epitaxy
 - Vertical & Lateral approach
- Experimental
 - P & N-TFET fabrication
 - Electrical characterization
- Limitations of InAs/Si P-TFETs
 - Analysis of trap contributions
- Outlook & Summary

Effect of generation centers ("traps")

- IBM
- Trap-assisted tunneling (TAT) can be seen as multi-phonon-assisted trap-band tunneling or as field-enhanced multi-phonon generation.
- Contribution from 3 kinds of traps: bulk, hetero interface, gate oxide interface

A. Schenk et al. ULIS 2015, D. Sant et al., DRC 2016

• Only traps at InAs/Si hetero interface can give desired match with the experimental data

S. Sant el. al. submitted to IEEE TED

- Low gate bias: thermionic emission is the bottleneck => SS close to thermionic SS.
- Medium gate bias: thermionic barrier is lowered => TAT becomes bottleneck.
- High gate bias: BTBT is dominating mechanism

One active trap level per dislocation $\rightarrow D_{it} = 1.5 \times 10^{13} \text{cm}^{-2}$

Image - Tomioka et. al. Nano Lett. 2013.

- Large lattice mismatch > 11% between Si and InAs.
- Predictive simulations show highest tolerable dit level ~ $5 \times 10^{11} \text{ cm}^{-2}$.
- Extreme scaling required, or.....
- Use of lattice-matched material system \rightarrow InGaAs/GaAsSb.
- Similar requirements on oxide D_{it} levels.

State-of-the-art TFETs

- Different designs \rightarrow different merits
- SS_{ave} scaling below 60 mV/dec in significant I_{on} range still missing

- Introduced tunnel FETs and low-power electronics
- Demonstrated TASE growth for TFETs and device fabrication.
- Demonstrated scaled complementary TFETs
 - InAs/Si P-TFET & InAS/GaSb N-TFET
- Traps at the oxide and hetero interface are currently limiting perfromance.

Outlook

- Optimization of N-TFET (GaSb doping, gate stack)
- Reduction of defects → essential for all TFETs
- Applications of TASE to new fields: photonics, sensors,...

Gate ()

Thank you for your attention

Acknowledgement:

MIND group at IBM Research Zurich

TEM images: L. Gignac, J. Bruley, C. Breslin, SIMS: Marinus Hopstaken IBM Research Yorktown

Support from colleagues and staff at Binnig- Rohrer Nanotechnol. Center

Funding: European FP7 Projects

