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ABSTRACT
The bandgap narrowing (BGN) in zincblende III–V semiconductors is calculated in a finite-temperature full Random-Phase Approximation
(RPA) formalism based on an isotropic dispersion model. The cases of n-type and p-type quasi-neutral regions and the case of a neutral
electron–hole plasma are elaborated for the technologically important materials GaAs, AlAs, InAs, GaP, InP, GaSb, InSb, zb-GaN, zb-InN,
Al0.3Ga0.7As GaAs0.5Sb0.5, InP0.69Sb0.31, InAs0.4P0.6, InAs0.4Sb0.6, In0.52Al0.48As In0.49Ga0.51P, In0.53Ga0.47As In0.5Ga0.5Sb, and zb-Ga0.5In0.5N
(60 cases). In quasi-neutral regions, the correlation energy of the interaction between carriers and ionized dopants adds two terms to the total
BGN. At low temperatures, inefficient screening makes the hole term dominant in n-type materials with a large ratio of the valence band to
the conduction band (CB) density-of-states. The inclusion of the CB nonparabolicity is decisive here, as it prevents a diverging BGN at high
concentrations. For all 60 cases, the BGN is evaluated in the temperature range from 0 to 500 K. A strong temperature dependence over the
whole density range is observed in all direct n-type materials. Otherwise, the temperature dependence quickly ceases with increasing density.
An analytical model of BGN without material-dependent free fit parameters is derived and compared with the full-RPA results.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0149190

I. INTRODUCTION

Bandgap narrowing (BGN) in semiconductor devices is a
many-body effect that occurs in heavily doped regions and under
strong optical or electrical excitation. In the first case, as in bipo-
lar transistors (BTs) and field-effect transistors (FETs), the activated
doping is compensated by a one-component plasma either in the
emitter of a BT or in the source/drain of a FET. In the second case, a
two-component plasma is generated, as in optically and electrically
pumped laser diodes. Device characteristics can be altered by BGN,
examples being the reduced current gain in a BT due to the increased
emitter minority concentration or the density dependence of the
laser wavelength. Modeling of BGN is facilitated by the condition
of charge neutrality, which holds in quasi-neutral regions (negligi-
ble field strength) and in a neutral plasma (background doping is
small compared to the plasma density). The physical origin of BGN

is the many-body Coulomb interaction between free charge carriers
as well as between charge carriers and ionized dopants. The result-
ing total self-energy shifts the band edges such that the bandgap
shrinks. Four contributions have to be considered in a neutral
electron–hole (eh) plasma—the exchange and correlation energies
of electrons and holes, whereas five components contribute in quasi-
neutral regions—the exchange energy of the majority carriers, the
free-carrier correlation energies of the majority and minority carri-
ers, and the ionic correlation energies of the majority and minority
carriers. In this paper, all self-energies are calculated in the finite-
temperature full Random-Phase Approximation (RPA).1–6 RPA is
increasingly accurate at higher densities where BGN becomes sig-
nificant for device operation, and it is the only method to cover
the whole temperature range. In n-type III–V zincblende semi-
conductors with small electron effective masses, the temperature
dependence becomes extreme even at high densities. This is because
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the ionic correlation energy of holes is the largest contributor to the
total BGN here.7 The shift of the minority carrier band is a conse-
quence of the lowering of the energy of the generated/annihilated
minority carrier due to Coulomb attraction by the mobile major-
ity carriers and Coulomb repulsion by the sub-system of immobile
ionized dopants.8

The basic RPA theory as well as results for the eh-plasma in
various materials can be found in Ref. 1. The extrinsic semiconduc-
tor with a random distribution of dopants was treated in Ref. 4 for
T = 0 K. Earlier calculations of the self-energy of the carrier-dopant
interaction in the T = 0 limit were performed with the Hartree–Fock
variational method for donors distributed on a regular sub-lattice9

applying the single plasmon pole (SPP) approximation10 and with
second-order perturbation theory for randomly distributed dopants
based on RPA screening.11 The multi-valley case had been discussed
for both dopant arrangements in Refs. 12–14.

Measurements of BGN are accompanied by an intricate anal-
ysis. Three types of experiments have been developed and mostly
applied to silicon due to its outstanding role in technology: Absorp-
tion experiments,15–20 photoluminescence (PL) experiments,21–24

and electrical measurements of BTs.25–30 In absorption experiments,
phonon-assisted transitions are present besides the band-band tran-
sitions; therefore, the phonon energies must be known as well as the
exact position of the Fermi energy. The evaluation of PL experiments
is difficult because of the actual initial states and the weak intensity
of the spectrum. The electrical method requires the measurement of
collector current in the BT as a function of the emitter-base voltage,
sheet resistance below the emitter, and minority carrier mobility in
the base. An analytical model is then used to calculate the BGN from
these quantities. BGN data for III–V materials are rare; for most of
the 20 materials considered in this paper, they do not exist. Olego
and Cardona31 performed PL measurements of the BGN in p-type
GaAs at 2.1 K for concentrations of (1.6, 4, 9) × 1019 cm−3. The
same material was analyzed by Titkov et al.32 by PL spectroscopy
at 4.2 K in the density range 3 × 1018–4 × 1019 cm−3. Tiwari and
Wright33 used hetero-structure BTs to measure the BGN in p-type
GaAs at room temperature in the density range (1018–2 × 1019

)

cm−3. Semikolenova et al. performed absorption measurements of
the BGN of n-type InAs at room temperature for tellurium concen-
trations between 2 × 1017 and 3 × 1018 cm−3. PL spectra of p-type
GaSb with densities between 3 × 1018 and 4 × 1019 cm−3 at 4.2 K
were published by Titkov et al.32 The BGN in n-type InP at 300 K
was studied by absorption and PL experiments by Bugajski and
Lewandowski,35 covering the concentration range 1016–1019 cm−3.
In their careful analysis, they considered the nonparabolicity of the
conduction band (CB), band filling, and band tailing.

In view of the sparse experimental data and the complications
in extracting the actual BGN, reliable calculations and analytical
models derived from them are an important means to provide the
electronics and opto-electronics communities with information on
the density- and temperature-dependent BGN in zincblende III–V
materials.

The paper is organized as follows. Sec. II gives a short out-
line of the RPA theory of BGN and of the band structure model
that allows for both the numerical computation and the deriva-
tion of a general analytical model. All material and band-structure
related parameters of the 20 zincblende III–V semiconductors are
listed. The importance of nonparabolicity is demonstrated for the

three materials with the smallest gap (and smallest electron effec-
tive mass). It is shown how the hole masses are calculated from
Luttinger parameters and how the limitations of the band struc-
ture model lead to the allowed density maxima for each material.
Available experimental upper bounds of the densities from mea-
sured limits of the activated doping are cited and found to always
be smaller than the theoretical limits. Section III provides a sum-
mary of the results of the numerically calculated BGN as a function
of material at various densities and temperatures. The trends in com-
parison to bandgap and effective masses and the differences between
neutral eh-plasma, quasi-neutral n-type, and quasi-neutral p-type
materials are discussed. The strong temperature dependence of BGN
in n-type materials with small electron effective masses (like InSb) is
contrasted with the weak one in n-type materials with large electron
effective masses (like AlAs). Section IV presents the formulas of the
general analytical model of BGN in quasi-neutral regions and in the
neutral eh-plasma as functions of density and temperature, avoid-
ing any material-dependent free fit parameter. The way the multiple
integrals over complicated functions are solved is sketched, and the
origin of the strong temperature dependence of the BGN in n-type
materials is explored. It is shown that nonparabolicity increases
the electron-ion correlation energy but decreases the hole-ion cor-
relation energy. It is demonstrated how the latter effect weakens
the BGN in n-type materials with small electron effective masses,
preventing the bandgap from shrinking to zero in the relevant den-
sity range. Conclusions are given in Sec. V. Appendix A contains
the complete presentation of the full-RPA BGN in all 20 materi-
als as a function of density in the temperature range from 0 to
500 K. Each figure comprises quasi-neutral n-type, quasi-neutral
p-type, and neutral eh-plasma and also displays the correspond-
ing analytical curves. The density limits can be inferred from the
endpoint of the density axis. Appendix B provides the derivation
of the analytical expressions of the free-carrier correlation ener-
gies in quasi-neutral regions and in the neutral eh-plasma, whereas
Appendix C presents the derivation of the analytical formulas of the
ion-carrier correlation energies in quasi-neutral regions including
the effect of nonparabolicity in n-type material, and the tempera-
ture dependence of the donor-hole correlation energy including the
effect of nonparabolicity on this temperature dependence.

II. RPA THEORY AND BAND STRUCTURE MODEL
The full-RPA BGN is calculated by the quasi-particle shift

(QPS)1 Δa(k) (a = e for electrons, a = h for holes), which is given
by the difference between interacting and free dispersion,82

Δa(k) = Ea(k) − E0
a(k), (1)

and equals the real part of the self-energy Σa,

Δa(k) = Re Σa[k, Ea(k) + i0+] . (2)

It consists of the three terms

Δa(k) = Δx
a(k) + Δc

a(k) + Δi
a(k), (3)

the unscreened exchange energy Δx
a(k), the correlation energy of

free carriers Δc
a(k), and the correlation energy of the interaction

between the carriers and ionized dopants Δi
a(k). A random arrange-

ment on regular lattice sites is assumed for the dopants. Since the
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dispersion of the QPS in the energy interval between band edge
and Fermi energy is rather flat for the relevant densities,1,41 the
dispersive QPS Δa(k) can be replaced by a rigid shift Δa. Then a self-
consistent solution of the problem is not necessary because the rigid
shift drops out in the energy difference Ea(k + q) − Ea(k), which
becomes E0

a(k + q) − E0
a(k), i.e., fully determined by the free disper-

sion. In the distribution functions, Δa is fixed by the given density in
the quasi-neutral region or by the plasma density in the case of the
neutral eh-plasma. The condition that the QPS density should not
change in first order with respect to Δa(k) − Δa results in1 ,

Δa =
∑k ∂ fa(k)/∂ζa Δa(k)
∑k ∂ fa(k)/∂ζa

, (4)

with rigidly shifted bands Ea(k) = E0
a(k) + Δa and Fermi–Dirac

functions fa(k) depending on shifted chemical potentials μa,

fa(k) = f (E0
a(k) − ζa), ζa = μa − Δa. (5)

The first derivative of the Fermi–Dirac function in (4) plays the role
of a weight that filters out energies near the Fermi energy in the low-
T/high-density limit and energies close to the band edge in the high-
T/low-density limit.

The dispersive QPS (3) is given explicitly in Refs. 1, 4, and 41.
Insertion into Eq. (4) results in the following consolidated forms of
the three contributors to the rigid shift:1,4,41

Δx
a = −

e2

4πϵ0ϵsΛa
F−1/2(βζa), (6)

Δc
a =

1
2β ∫

d3q
(2π)3∑

ν
[ϵ−1
(q, Ων) − 1]

∂ϵ(q, Ων)

∂na
, (7)

Δi
a = −

ni

2
(
∂na

∂ζa
)

−1

∫
d3q
(2π)3

v(q)
ϵ2
(q, 0)

∂ϵ(q, 0)
∂ζa

. (8)

In the correlation energies (7) and (8), v(q) = e2
/(ϵ0ϵsq2

) is the
Fourier transform of the bare Coulomb potential with the static
permittivity ϵs. Ων =

2πi ν
h̵β denotes the Matsubara frequency (ν inte-

ger) and ni the concentration of electrically active dopants. The
correlation energies are governed by the RPA dielectric function,

ϵ(q, Ων) = 1 − v(q)∑
a,k

ga
fa(k + q) − fa(k)

Ea(k + q) − Ea(k) − h̵Ων
, (9)

where the energy difference Ea(k + q) − Ea(k) in the denominator is
replaced by E0

a(k + q) − E0
a(k) (rigid shift).

In the parabolic band model, the QP density na in the rigid shift
approximation is defined by

na =∑
k

ga fa(k) = gaΛ−3
a F1/2(β ζa), (10)

with the Fermi integral F1/2, the thermal wavelength Λa

= (2πh̵2β/ma)
1/2, the inverse thermal energy β = 1/kBT, and

the Fermi energy ζa = μa − Δa. The simple form of the exchange
energy (6)—just a single integral (the Fermi integral)—is bound to
parabolic bands E0

a(k) = h̵2k2
/2ma.1,42 In contrast, the rigid-shift

expressions of the correlation energies (7) and (8) are obtained by
employing (4) regardless of the specific form of the band dispersion.
The exchange-correlation energy of the electron and hole plasmas
is rather insensitive to band structure details as a consequence of
a compensation effect.1,43 Therefore, parabolic bands are used to
evaluate Eqs. (6) and (7) in this paper. However, the nonparabolicity
of the CB is crucial for the ionic correlation energy Δi

h,n−type of
certain n-type III–V materials in the low-T/high-density regime7

since, due to the small n-density-of-states (DOS), the Fermi level
moves deep into the CB. The electron density ne and the dielectric
function ϵ(q, Ων) in (8) are then calculated with the nonparabolic
free dispersion,

E0,np
e (k) =

1
2γe
(

√

2γeh̵2k2
/me + 1 − 1), (11)

where γe denotes the nonparabolicity parameter (the common sym-
bol α is used for the mass ratios α{e,h} in this paper). In addition, for
the shift of the majority band edge in n-type material, Δi

e,n−type, and
for the shift of the minority band edge in p-type material, Δi

e,p−type,
the nonparabolic dispersion (11) is applied for electrons.

Figure 1 demonstrates the nonparabolicity effect on Δi
h,n−type,

which dominates the total BGN in all n-type materials with me ≪ mh
(αh ≪ 1). It is particularly strong for the small-gap materials with
strong CB-valence band (VB) coupling (Nos. 1–5 in Table I) but is
also important for all other direct materials. The only exception is
the indirect materials AlAs and GaP, where me ≈ mh (α{e,h} ≈ 0.5).

As the evaluation of (7) comes down to a sevenfold integra-
tion and that of (8) to a sixfold integration, an isotropic dispersion
model is inevitable. A full numerical treatment based on a more
elaborate band structure model is out of reach even in the rigid-
shift approximation of BGN. Therefore, the real DOS has to be
approximated by an isotropic DOS, and its range of validity must be
carefully determined, which sets upper bounds on the allowed den-
sities. The isotropic band structure model is obtained as follows: for
all direct zincblende materials, the Γ-valley is assumed isotropic with

FIG. 1. Hole-ion part Δi
h,n−type of the average QPS for quasi-neutral n-type InAs,

InSb, and InAs0.4Sb0.6 as a function of activated doping concentration at T = 20 K.
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TABLE I. Parameters of zincblende III–V semiconductors.44,45,69–72,74 The symbols have the following meaning: Eg(0 K) is the fundamental bandgap at zero temperature;
me/m0 is the density-of-states electron mass in units of the free electron mass; mh/m0 is the density-of-states hole mass in units of the free electron mass; ge,h are the
band multiplicities including the spin degree of freedom; μ∗/m0 is the reduced effective mass in units of the free electron mass; αe,h are the mass ratios μ∗/me,h; γe is the
nonparabolicity parameter for the conduction band; Ryex is the excitonic Rydberg energy, i.e., the binding energy of the exciton (used for energy scaling); aex is the excitonic
Bohr radius (used for length scaling); and ϵs is the static permittivity of the semiconductor in units of the vacuum dielectric constant. The excitonic quantities are very suitable
reference units, even at densities where excitons do not exist.1 Detailed explanations and corresponding formulas are given in Sec. II of the main text.

No. Material Eg (0 K) (eV) me/m0 mh/m0 ge gh μ∗/m0 αe αh γe (1/eV) Ryex (meV) aex (nm) ϵs

1 InAs0.4Sb0.6 0.146 0.010 0.268 2 4 0.010 0.964 0.036 6.85 0.50 88.55 16.1
2 InSb 0.235 0.0135 0.272 2 4 0.013 0.953 0.047 4.1 0.62 69.12 16.8
3 InAs 0.415 0.024 0.261 2 4 0.022 0.917 0.083 2.5 1.28 37.04 15.15
4 In0.5Ga0.5Sb 0.420 0.025 0.265 2 4 0.023 0.914 0.086 2.38 1.18 37.64 16.25
5 zb-InN 0.530 0.054 0.779 2 4 0.0505 0.935 0.065 4.45 2.95 15.95 15.3
6 InP0.69Sb0.31 0.647 0.059 0.356 2 4 0.051 0.858 0.142 1.55 3.60 14.46 13.8
7 GaAs0.5Sb0.5 0.809 0.054 0.316 2 4 0.046 0.854 0.146 0.86 3.07 16.41 14.3
8 GaSb 0.813 0.041 0.259 2 4 0.035 0.863 0.137 1.2 1.95 23.47 15.7
9 In0.53Ga0.47As 0.816 0.043 0.335 2 4 0.038 0.886 0.114 1.2 2.68 19.30 13.9
10 InAs0.4P0.6 0.995 0.057 0.340 2 4 0.049 0.855 0.145 1.0 3.63 14.61 13.6
11 zb-GaIn0.5N0.5 1.155 0.123 0.806 2 4 0.107 0.868 0.132 0.87 9.29 6.20 12.5
12 InP 1.421 0.080 0.392 2 4 0.066 0.831 0.169 0.7 5.79 9.95 12.5
13 In0.52Al0.48As 1.486 0.072 0.377 2 4 0.060 0.840 0.160 0.67 5.31 10.67 12.7
14 GaAs 1.519 0.067 0.374 2 4 0.057 0.848 0.152 0.66 4.86 11.47 12.9
15 Al0.3Ga0.7As 1.910 0.092 0.413 2 4 0.075 0.818 0.182 0.52 7.05 8.47 12.05
16 In0.49Ga0.51P 2.006 0.093 0.458 2 4 0.077 0.831 0.169 0.5 7.55 8.08 11.8
17 AlAs (X) 2.240 0.361 0.505 12 4 0.211 0.583 0.417 0.45 28.3 2.53 10.1
18 GaP (X) 2.350 0.378 0.522 6 4 0.219 0.580 0.420 0.43 24.2 2.68 11.1
19 zb-GaN 3.280 0.193 0.838 2 4 0.157 0.813 0.187 0.3 22.7 3.27 9.7
20 zb-AlN 4.900 0.250 1.369 2 4 0.211 0.846 0.154 0.2 35.5 2.25 9.0

an effective mass me taken from Refs. 45 and 44. For the two indi-
rect materials, AlAs and GaP, the anisotropic valleys are mapped to
isotropic ones with an effective DOS mass me = (m2

t ml)
1/3. The val-

ley degeneracy is included in the total degeneracy factor ge. Heavy
and light holes are treated as independent isotropic VB valleys, and
the effective DOS mass is obtained as mh = [(m

3/2
lh +m3/2

hh )/2]
2/3,

which results in valley degeneracy factors of 2 for all materials
included in the total degeneracy factor gh. The split-off band is
neglected. In some cases, the values of mlh and mhh were taken
from Ref. 44 if based on experimental data. For most materials,
however, the Luttinger parameters γ{1,2,3} published in the review of
Vurgaftman et al.45 were used to compute

mlh/m0 =
1

γ1 + 2γ̄
, mhh/m0 =

1
γ1 − 2γ̄

, (12)

with46

γ̄ =

√

2γ2
2 + 3γ2

3

5
. (13)

Thanks to the isotropic model, the angular integrations in the cor-
relation energies (7) and (8) and in the dielectric function (9) can
be performed exactly. The numerical expense then reduces to a dou-
ble integral plus the Matsubara sum for the free-carrier correlation
energy and to a twofold integration for the ionic correlation energy.
The Matsubara sum is transformed into an integral in the case of
T = 0 K. For zero temperature, the multiple integrals are solved

approximately in Sec. IV to obtain a general analytical BGN model
in terms of the material parameters listed in Table I.

An important aspect in the context of BGN is the possible max-
imum density. Applying the theory to unreasonably high densities
can readily shrink the gap of certain n-type materials to zero. In
quasi-neutral regions, the carrier density is equal to the electrically
active doping. The intrinsic limitations of the latter have been subject
to intensive research.47,48 It has been recognized that this limitation
is a property of the material and not a chemical or electronic fea-
ture of the dopant47 (e.g., formation of inactive complexes or charge
compensation due to the amphoteric nature of shallow dopants).
Process-related localized defects stabilize the Fermi energy at the
Fermi-level stabilization energy ∼4.9 eV below the vacuum level in
many III–V materials.47,49 The amphoteric nature of these defects
leads to a Fermi level pinning in the gap or in the CB, independent
of the type or doping level, which explains the saturation of the elec-
trically active doping. Experimental data for the limits of activated
doping are only available for some of the 20 materials treated in this
paper: InSb,50,51 InAs,52,53 GaSb,54–56 InP,57,58 GaAs,59 GaP,60–64 and
zb-GaN.48,65–68 These limits were adopted for the density limits since
they are, in any case, smaller than the limits imposed by the band
structure model. In all other cases and, in general, for the neutral
eh-plasma, the maximum densities were calculated from the con-
dition that the Fermi level must not move into the next higher CB
valley (electrons) or into the split-off band (holes). The valley sep-
aration energies EL − EΓ or EX − EΓ, and the spin–orbit energies Eso
were adopted from Refs. 44, 45, and 69. The nonparabolic free dis-
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FIG. 2. Static permittivity ϵs and effective DOS masses me and mh of zincblende
III–V materials ordered by the size of their energy gap at T = 0 K (compare
Table I). The point mh = 1.369 m0 for zb-AlN was omitted for better scalability.

persion (11) was used for the relation between electron density and
Fermi level in n-type materials. The upper bounds of the density can
be inferred from the end points of the density axis in Figs. 10–29.

If available, the nonparabolicity parameters γe were either
directly taken from full-band calculations72 or from the data collec-
tion of Ref. 44. In most cases, they had to be estimated by73 γe = 1/Eg
(0 K), where the size of the bandgap at zero temperature was adopted
from Refs. 44 and 45, except for InN, where a more recent value was
used.69,74,75 The static permittivities were taken over from Ref. 44.
If they were not available for certain ternary compounds, they were
calculated as the composition average of the permittivities of the
binary constituents.

All material-related parameters needed for the BGN calculation
are listed in Table I, where the size of the energy gap at T = 0 K was
chosen for the ordering of the materials. The degeneracy factors ga
account for the multi-valley conduction band (AlAs, GaP), heavy
and light hole bands, and spin summation. It is convenient to use
normalized quantities. All energies are normalized by the excitonic
Rydberg energy Ryex = h̵2

/(2 μ∗a2
ex) and all lengths by the excitonic

Bohr radius aex = h2ϵs/(e2μ∗), where μ∗ denotes the reduced effec-
tive mass μ∗ = (1/me + 1/mh)

−1. The parameters αa = μ∗/ma serve
to transform excitonic quantities back to electron/hole quantities.
Note that αe + αh = 1.

Figure 2 shows permittivity (left ordinate) and effective DOS
masses (right ordinate) as functions of material, where their order-
ing is the same as in Table I, i.e., according to the size of the energy
gap at T = 0 K. The general trends are that the permittivity decreases
from ∼17 to ∼9, and both DOS masses increase. In the case of the CB
DOS mass, the indirect materials AlAs and GaP are outliers, which
is related to their multi-valley nature. The nitrides are strong outliers
with respect to the VB DOS mass (see the distinct peaks of the blue
curve). The general trends of permittivity and DOS masses roughly
explain the general trend of BGN (see Sec. III).

III. SUMMARY OF FULL-RPA RESULTS
The total full-RPA BGN as a function of material, i.e., in depen-

dence on the increasing bandgap, is shown in Fig. 3 for 300 K and in
Fig. 4 for 20 K. Two densities have been chosen for all 60 cases: 1018

and 1019 cm−3. In some cases, the higher density already exceeds the

FIG. 3. Total full-RPA BGN of zincblende III–V materials at T = 300 K (ordered as
in Fig. 2) for two concentrations (1018 cm−3, filled circles and 1019 cm−3, open
circles) and the cases n-type (red), p-type (blue), and eh-plasma (green). Lacking
data points at 1019 cm−3 are due to the density limitations described in the text.

allowed limit, as discussed earlier; hence, the corresponding values
were omitted.

Looking at the room-temperature results first, n-type, p-type,
and eh-plasma differ only a little at the lower density (filled circles).
The average trend is an increase in BGN from ∼15 to ∼50 meV. At
the higher density, p-type and eh-plasma still behave similarly with
an average increase from ∼30 to ∼100 meV, but the BGN in direct n-
type material is significantly larger due to the small electron mass
leading to reduced screening.7 One observes an average increase
from ∼40 to ∼120 meV. The indirect materials AlAs and GaP make
an exception since their CB-DOS and VB-DOS are comparable in
strength. Therefore, the BGN in n-type material is almost identical to
the one in p-type material here. The trends closely follow the trends
of the DOS effective masses (see Fig. 2). The maxima produced by
the nitrides are reflected in the BGN curves, albeit scaled-down a lot.

Turning to the low-temperature case of 20 K in Fig. 4, the
behavior of p-type material and eh-plasma is not only almost iden-
tical at the lower density of 1018 cm−3 but also very similar to the
one at room temperature. To a lesser extent, this also holds at a

FIG. 4. Total full-RPA BGN of zincblende III–V materials at T = 20 K (ordered as
in Fig. 2) for two concentrations (1018 cm−3, filled circles and 1019 cm−3, open
circles) and the cases n-type (red), p-type (blue), and eh-plasma (green). Lacking
data points at 1019 cm−3 are due to the density limitations described in the text.

AIP Advances 13, 070702 (2023); doi: 10.1063/5.0149190 13, 070702-5

© Author(s) 2023

 14 July 2023 14:39:17

https://pubs.aip.org/aip/adv


AIP Advances REVIEW pubs.aip.org/aip/adv

FIG. 5. Total full-RPA BGN in InSb as function of concentration for different
temperatures.

higher density of 1019 cm−3. The behavior of n-type material, how-
ever, differs drastically from that at 300 K. At lower densities, the
BGN exhibits a slightly decreasing tendency up to the indirect mate-
rials, followed by an increase for the wide-gap nitrides. Nevertheless,
the BGN is relatively independent of material, taking values between
∼50 and ∼80 meV. In direct n-type materials, the BGN becomes
dramatically increased as a consequence of the weak screening of
the hole-ion interaction by majority carriers (electrons), an effect
that gains importance with decreasing temperature (compare Fig. 5
and the detailed BGN representations in Appendix A). The analyt-
ical explanation for this temperature dependence will be given in
Sec. IV. One can see an increasing tendency of the BGN from ∼130
to ∼200 meV, only interrupted by the indirect materials AlAs and
GaP, where again the values are the same as in p-type materials due
to the similar DOS size.

In Figs. 5 and 6, the BGN of the small-gap direct material InSb
is compared with that of the wide-gap indirect material AlAs. The
density limit for n-type InSb in the left part of Fig. 5 stems from
the measured maximum of activated doping (7.5 × 1018 cm−3)51 and
results in a BGN that already slightly exceeds the value of the zero-
temperature gap. Interestingly, for a limit of 4.5 × 1018 cm−3, as
found in a standard low-pressure growth process,50 the gap would
exactly shrink to zero at T = 0 K. In all other cases in Figs. 5 and 6,
the upper bounds of the density are imposed by the band structure
model. The striking difference between InSb and AlAs is the behav-
ior of n-type materials. Whereas in AlAs, the BGN is similar to that
in p-type and eh-plasma (note the similar BGN scale and the almost
identical temperature dependence, which ceases above 1019 cm−3),
the BGN in n-type InSb exhibits a strong temperature dependence
that becomes even more pronounced at higher densities. At T = 0 K
and 1018 cm−3, the BGN is 15 times larger than in p-type material.
As outlined in Ref. 7, this is due to the small electron effective mass
and the resulting weak screening of the hole-ion correlation energy.
It will be shown in Sec. IV that the strong temperature dependence
arises from the occupation probability of the minority (hole) band.

Appendix A comprises the presentation of BGN for all 20
materials (n-type and p-type) and for the neutral eh-plasma (in
the intrinsic form of these materials) as a continuous function of
density from 1015.5 cm−3 to the maximum at the temperatures
T = 0, 20, 77, 300, and 500 K. The full-RPA curves for T = 0 K

FIG. 6. Total full-RPA BGN in AlAs as function of concentration for different
temperatures.

(black solid) start at the Mott density76 nb,M = (pM/aexαb)
3, if nb,M

> 1015.5 cm−3, using pM = 0.296 for the Mott criterion. In all p-type
nitrides, nh,M > ni,max; hence, the T = 0 curves are completely miss-
ing. Reasons could be (i) the Mott parameter, (ii) the size of the
Luttinger parameters from which the VB DOS masses are derived,
(iii) the isotropization Eq. (13), or (iv) the size of the spin–orbit
energy Eso that determines ni,max. The latter is rather small [(6–19)
meV in the ordering of the nitrides given in Table I],45 which leaves
only a narrow energy interval compliant with the 2-valley VB model.
The ratio nh,M/ni,max increases from 5 to 12. Actually, (i) and (ii)
are not independent of each other since nh,M ∼ (pMmh)

3. As the
Mott parameter is related to the lattice constant, it decreases from
zb-InN toward zb-AlN, which could partly explain the discrepancy.
The analytical T = 0 curves are displayed over the whole density
range, neglecting carrier freeze-out.

Figure 7 compares the available experimental data with the full-
RPA results. The left panel shows PL31,32 and hetero-structure BT33

data for p-type GaAs. They fairly match the theoretical curves. In
the case of p-type GaSb (right panel), the measured BGN by PL32

is systematically larger than the RPA one. The opposite is found for
n-type InP (absorption data35) in the high-density range. Absorption

FIG. 7. Comparison of full-RPA BGN with experimental data for p-type GaAs31–33

(left), n-type InAs34 (middle), and p-type GaSb32 and n-type InP (right).35
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measurements of the BGN in n-type InAs at room temperature34

resulted in a sharp peak at intermediate densities. The authors inter-
preted this peculiar behavior by a large screening length due to the
strong correlation of the tellurium dopants (“complete ordering”)
when their concentration falls into the interval (2–4) × 1018 cm−3.
Interestingly, full-RPA results (based on the assumption of a ran-
dom impurity distribution) are in reasonable agreement both at low
and very high densities.

IV. ANALYTICAL MODEL WITHOUT
MATERIAL-DEPENDENT FREE FIT PARAMETERS

In this section, a fully analytical model of BGN as a function of
density and temperature in terms of the material and band structure
parameters of Table I is presented. The goal is not the highest accu-
racy but to avoid free fit parameters for each case [as performed in
Refs. 77 and 78 for T = 0 K and local-density approximation (LDA)].
This facilitates physical insight and the possibility to quickly calcu-
late BGN for other materials or ternary compositions, as long as they
obey (or can be approximated to) the isotropic band structure model
consisting of one CB valley and two VB valleys. Wurtzite materials
are excluded because of their complicated VB structure caused by
the crystal-field splitting.

The general approach is to combine the T = 0-limit ΔEg,T=0
with the high-temperature (Debye) limit79 ΔEg,T→∞ by a Padé
approximation1,41 using a universal switching function,5,41

U(n, T) = (4πβ)3n2. (14)

For p-type material and the neutral eh-plasma, this automatically
interpolates between the high- and low-density regimes. In the case
of direct n-type materials, the hole-ion correlation energy causes a
strong temperature dependence at any density of interest. This is
because the main origin is the occupation probability of the minority
holes, which are non-degenerate no matter how strong the n-doping
is. Therefore, ΔEg,T=0 is replaced by ΔEg,0(T) with the analytical
model for Δi

h,n−type(T) (see below), but the T = 0-limits in the
case of all other energy contributions. The total BGN is, therefore,
calculated by

ΔEg(n, T) =
1 +U(n, T)

1/ΔEg,T→∞(n, T) +U(n, T)/ΔEg,0(n, T)
. (15)

Here, n equals the concentration ni of activated dopants in quasi-
neutral regions or the plasma density ne = nh of the neutral eh-
plasma, respectively. Note that BGN is defined as a positive quantity,
i.e., the negative sum of all QPS contributions (6)–(8). The Debye
limits read1,5

ΔEg,T→∞(n, T)

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

8πnβαe/ge + 6
√

2πnβ, n→ ni, n − type,

8πnβαh/gh + 6
√

2πnβ, n→ ni, p − type,

8πnβ(αe/ge + αh/gh) + 8
√

πnβ, n→ ne, eh − pl,
(16)

where the first term is the exchange energy and the second term is
the sum of all correlation energies. Nonparabolicity is negligible in
the low-density range.

The analytical calculation of ΔEg,0(n, T) involves the following
terms:

ΔEg,0(n, T)

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−Δx
e − Δc

e − Δc
h − Δi

e − Δi
h(T) for n − type,

−Δx
h − Δc

h − Δc
e − Δi

h − Δi
e for p − type,

−Δx
e − Δx

h − Δc
e − Δc

h for eh − pl.

(17)

The expression of the exchange energy Δx
{e,h} is well known,1 and

numerous attempts have been made to fit power laws in terms
of density to the RPA free-carrier correlation energies of the eh-
plasma Δc

{e,h} (reviewed in Ref. 1). In Ref. 7, the ionic correlation
energies Δi

{e,h} at T = 0 K were derived for n- and p-doped quasi-
neutral regions of InGaAs, with a first estimate of how strongly
nonparabolicity impacts Δi

h,n−type. In this paper, all terms are cal-
culated analytically starting from Eqs. (7) and (8) using the RPA
dielectric function (9). A central role in the multiple integrations of
complicated functions is played by the length

sb =
gb

παbqF,b
, (18)

where qF,b is the Fermi momentum of the degenerate majority
carriers,

qF,b = (
6π2n

gb
)

1/3

, (19)

and “b” is the index of the majority carrier band. Hence, sb is pro-
portional to the Fermi wavelength λF,b in units of the excitonic Bohr
radius, sb = gb/(2π2αb)λF,b. The assumption sb ≪ 1 is sometimes
used in this paper to simplify the integrands. Since 1/qF,b is normal-
ized by the excitonic Bohr radius aex, this assumption works better
as the Fermi level moves deeper into the majority band (increasing
density, weak DOS) and the excitonic Bohr radius is large, i.e., in
the case of direct n-type III–Vs with small electron effective mass
me. On the contrary, if gb is large and also me, as in the case of
n-type AlAs and GaP, the assumption sb ≪ 1 is rather poor, as
sb = 1 already corresponds to a density of ∼ 1021 cm−3. This finally
shows up in a worse agreement between analytical and numeri-
cal ΔEg(n, T)-curves. Therefore, also sb ≫ 1 is tested and utilized if
more appropriate. The analytical form of BGN is first given in terms
of the length sb, which is more compact, and then as a function of
the normalized density for more convenient use.

A. Quasi-neutral regions
In quasi-neutral regions, ΔEg,0(n, T) reads in terms of the

normalized length sb

ΔEg,0(sb, T) =
2gb

π2αbsb
+

2gb

3π2αb
ln (1 +

√
2/sb)

+
gb

√
3π(αbsb)

3/4 +
gb[δbh + φnp(sb)δbe]

3παb
√

2sb

+

√
2gb

3παas3/2
b

⎡
⎢
⎢
⎢
⎢
⎣

δbh +
φT(sb)

φ3/2
np (sb)

δbe

⎤
⎥
⎥
⎥
⎥
⎦

, (20)
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with

φnp(se) =

¿
Á
ÁÀ1 +

4γeg2
e

π2αes2
e

, (21)

φT(se) = 1 −
2
π

arctan
⎡
⎢
⎢
⎢
⎢
⎣

(
2π2α2

ese

βαhg2
e φnp(se)

)

3
4
⎤
⎥
⎥
⎥
⎥
⎦

. (22)

In Eq. (20), “b” is the index of the majority carrier band (b = e for
n-type, b = h for p-type material), and “a” is the index of the minor-
ity carrier band (a = h for n-type, a = e for p-type material). The
ordering of the five terms is the same as in Eq. (17). Note that the
third term, the minority free-carrier correlation energy, only con-
tains the index of the majority carrier band (b), since minority car-
riers do not contribute to screening. Nevertheless, the effective mass
of the minority carriers finally comes into play after multiplication
with the normalization energy (excitonic Rydberg).

Equation (21) is the nonparabolicity correction that only
applies to n-type material. Note that it increases the electron-ion cor-
relation energy (fourth term) but decreases the hole-ion correlation
energy (fifth term) with different powers. Equation (22) describes
the reduction of the hole-ion correlation energy with increasing
temperature at intermediate and high densities. It also applies to
n-type material only and is strongly affected by nonparabolicity
(note the occurrence of φnp in the argument of arctan[⋅ ⋅ ⋅]). The
zero-temperature limit (β→∞) is φT = 1. Figure 8 shows the abil-
ity of this model to reproduce the T-dependence of the hole-ion
correlation energy for all densities >1015.5 cm−3 over the whole
temperature range. By way of example, the cases InSb (small gap),
InGaAs (intermediate gap), and zb-GaN (wide gap) have been cho-
sen. One observes a decreasing T-dependence and a changing shape
of the n-dependence with a rising gap.

From Eq. (8), one can see that the temperature dependence
has two origins: (i) the distribution function of minority carriers in
the factor (∂nh/∂ζh)

−1 and (ii) the occupation probability of the
majority carriers contained in the dielectric function (9). From a
second-order Taylor expansion of the latter by 1/β around the Fermi

FIG. 8. Hole-ion part Δi
h,n−type of the average QPS for quasi-neutral n-type InSb

(left), In0.53Ga0.47As (middle), and zb-GaN (right) as a function of density at differ-
ent temperatures. Comparison of full-RPA (solid lines) with the analytical model
(symbols).

energy, one obtains a quadratic T-dependence which, however, is
weak and vanishes at high densities. It is negligible compared to (i),
which results in the term (22). The derivation of this term is given in
Appendix C.

Replacing sb by the normalized density n using Eqs. (18) and
(19), i.e., sb = g4/3

b /[αb(6π5n)1/3
], one obtains

ΔEg,0(n, T) = (
48n
πgb
)

1/3

+
2gb

3π2αb
ln
⎛

⎝
1 +
√

2αb(6π5n)1/6

g2/3
b

⎞

⎠

+ (
2πn

3
)

1/4
+

g1/3
b

3
√

αb
(

3n
4π
)

1/6
[δbh + φnp(n)δbe]

+
2(παb)

3/2√n
√

3αagb

⎡
⎢
⎢
⎢
⎢
⎣

δbh +
φT(n)

φ3/2
np (n)

δbe

⎤
⎥
⎥
⎥
⎥
⎦

, (23)

with

φnp(n) =

¿
Á
Á
ÁÀ1 + 4γeαe(

6π2n
ge
)

2/3

, (24)

φT(n) = 1 −
2
π

arctan

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

α3/4
e

[βαhg2/3
e φnp(n)]

3
4
(

4π
3n
)

1
4

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

. (25)

In Eqs. (23)–(25), n represents the density ni of ionized dopants
(normalized by a−3

ex ). Note that BGN is normalized by the excitonic
Rydberg energy Ryex, as is the thermal energy 1/β and the inverse of
the nonparabolicity parameter 1/γe.

B. Neutral electron–hole plasma
In the case of the neutral eh-plasma, both exchange energies

are present, but the carrier-ion correlation energies are absent [see
Eq. (17)]. The analytical model for T = 0 K and parabolic bands
reads as a function of the normalized lengths s{e,h},

ΔEg,0(se, sh, 0K) =
2

π2 (
ge

αese
+

gh

αhsh
) +

2ge

5π
ln [1 + (

8αe

3
)

1
4 1

s3/4
e
]

+
2gh

π

⎧⎪⎪
⎨
⎪⎪⎩

Θ(0.85 − αe) ln
⎡
⎢
⎢
⎢
⎢
⎣

1 + (
8αh

3
)

1
4 1

s3/4
h

⎤
⎥
⎥
⎥
⎥
⎦

+Θ(αe − 0.85) ln
⎛

⎝
1 +
√

2αh

αhesh

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

, (26)

with

αhe =
αh

1 + ( ge
gh
)

2
3 αh

αe

. (27)

The first term in (26) is the sum of the exchange energies; the second
and third terms are the correlation energies of electrons and holes,
respectively. These terms differ from the corresponding majority-
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FIG. 9. Contribution of free-carrier correlation energy Δc to the average QPS
of In0.53Ga0.47As for quasi-neutral n-type, quasi-neutral p-type, and neutra
l eh-plasma as a function of density at T = 0 K. Comparison of full-RPA with the
analytical model Eq. (28) (last term).

carrier correlation energy of the one-component plasma [second
term in Eq. (20)] because of the stronger screening by the two-
component plasma. The derivation of the correlation terms with
detailed explanations is presented in Appendix B.

Inserting s{e,h} = g4/3
{e,h}/[α{e,h}(6π5n)1/3

], one obtains the
model as function of plasma density n,

ΔEg,0(n, 0K) =
⎛

⎝

1
g1/3

e
+

1
g1/3

h

⎞

⎠
(

48n
π
)

1/3
+

2ge

5π
ln
⎡
⎢
⎢
⎢
⎣

1 +
2αe(π5n)

1
4

ge

⎤
⎥
⎥
⎥
⎦

+
2gh

π

⎧⎪⎪
⎨
⎪⎪⎩

Θ(0.85 − αe) ln
⎡
⎢
⎢
⎢
⎣

1 +
2αh(π5n)

1
4

gh

⎤
⎥
⎥
⎥
⎦

+Θ(αe − 0.85) ln
⎛

⎝
1 +
√

2αh(6π5n)1/6

√
αheg2/3

h

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (28)

FIG. 10. Total BGN in InAs0.4Sb0.6. Densities limited by EL-EΓ-separation (left and
right) and Ev-Eso-separation (middle).

FIG. 11. Total BGN in InSb. Densities limited by activatable n-doping51 (left),
Ev-Eso-separation (middle), and EL-EΓ-separation (right).

In Fig. 9, the numerical RPA results of the band edge shifts
induced by the free-carrier correlation in InGaAs at T = 0 K are
compared with the outcomes of the analytical models. The freeze-
out of carriers was disregarded to display the whole density range.
The agreement is excellent for the shift of the CB edge and reason-
able for the shift of the VB edge. This difference in accuracy is due to
se ≪ sh (αe ≫ αh). Figure 9 also shows that the correlation energies
in a neutral eh-plasma are very similar to the free-carrier correlation
energies of the majority carriers in quasi-neutral regions. Size and
slope are only slightly larger, which can be attributed to the stronger
screening in a two-component plasma.

The comparison of the analytical BGN model with the numeri-
cal full-RPA is presented in Appendix A for all 60 cases (Figs. 10–29).
In p-type material and in the eh-plasma, the temperature depen-
dence is only significant at intermediate densities. For better vis-
ibility, the analytical curves were plotted just for 0 K and room
temperature here. The Padé approximation leads to a relatively large
deviation in the transition region,1,41 which is unavoidable. The den-
sity and temperature dependences are correctly reproduced in all

FIG. 12. Total BGN in InAs. Densities limited by activatable n-doping52 (left),
activatable p-doping53 (middle), and EL-EΓ-separation (right).
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FIG. 13. Total BGN in In0.5Ga0.5Sb. Densities limited by EL-EΓ-separation (left and
right) and Ev-Eso-separation (middle).

FIG. 14. Total BGN in zb-InN. Densities limited by EX-EΓ-separation (left) and
Ev-Eso-separation (middle and right).

60 cases. Very good agreement is found for the direct n-type mate-
rials, except for InAsSb at high densities because of its extreme
nonparabolicity. Larger deviations occur for the indirect materi-
als AlAs and GaP, as se ≪ 1 is a poor assumption here. For many
p-type materials, the accuracy is satisfactory as well; exceptions are

FIG. 15. Total BGN in InP0.69Sb0.31. Densities limited by EL-EΓ-separation (left and
right), and Ev-Eso-separation (middle).

FIG. 16. Total BGN in GaAs0.5Sb0.5. Densities limited by EL-EΓ-separation (left
and right) and Ev-Eso-separation (middle).

FIG. 17. Total BGN in GaSb. Densities limited by EL-EΓ-separation (left and right)
and Ev-Eso-separation (middle). Experimental data on the limits of activatable
n-doping54–56 cover the range (6.5 × 1017–3 × 1018

) cm−3.

InAsSb, InSb, and the nitrides. For the neutral eh-plasma, the ana-
lytical model works best at high densities but deviates markedly
at intermediate densities due to the error caused by the Padé
interpolation.

FIG. 18. Total BGN in In0.53Ga0.47As. Densities limited by activatable n-doping80

(left), activatable p-doping81 (middle), and EL-EΓ-separation (right).
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FIG. 19. Total BGN in InAs0.4P0.6. Densities limited by EL-EΓ-separation (left and
right) and Ev-Eso-separation (middle).

FIG. 20. Total BGN in zb-GaIn0.5N0.5. Densities limited by EX-EΓ-separation (left)
and Ev-Eso-separation (middle and right).

FIG. 21. Total BGN in InP. Densities limited by EL-EΓ-separation (left and right)
and Ev-Eso-separation (middle). Experimental data on the limits of activatable
n-doping57,58 cover the range (5.5 × 1019–1.76 × 1020

) cm−3.

FIG. 22. Total BGN in In0.52Al0.48As. Densities limited by EX-EΓ-separation (left
and right) and Ev-Eso-separation (middle).

FIG. 23. Total BGN in GaAs. Densities limited by activatable n-doping59 (left),
activatable p-doping59 (middle), and EL-EΓ-separation (right).

FIG. 24. Total BGN in Al0.3Ga0.7As. Densities limited by EL-EΓ-separation (left and
right) and Ev-Eso-separation (middle).

AIP Advances 13, 070702 (2023); doi: 10.1063/5.0149190 13, 070702-11

© Author(s) 2023

 14 July 2023 14:39:17

https://pubs.aip.org/aip/adv


AIP Advances REVIEW pubs.aip.org/aip/adv

FIG. 25. Total BGN in In0.49Ga0.51P. Densities limited by EX-EΓ-separation (left and
right) and Ev-Eso-separation (middle).

FIG. 26. Total BGN in AlAs. Densities limited by EL-EX -separation (left and right)
and Ev-Eso-separation (middle).

FIG. 27. Total BGN in GaP. Densities limited by activatable n-doping61–63 (left) and
Ev-Eso-separation (middle and right).

FIG. 28. Total BGN in zb-GaN. Densities limited by activatable n-doping66,68 (left),
activatable p-doping65,67 (middle), and Ev-Eso-separation (right).

FIG. 29. Total BGN in zb-AlN. Densities limited by EX-EΓ-separation (left and right)
and Ev-Eso-separation (middle).

V. CONCLUSION
The BGN in quasi-neutral n-type and p-type regions and

in a neutral electron–hole plasma of 20 technologically relevant
zincblende III–V semiconductors was calculated in full-RPA as a
function of density in the temperature range from 0 to 500 K. The
sevenfold (plasma) and sixfold (quasi-neutral regions) integration is
enabled by a careful isotropization of the band dispersion, including
the important CB nonparabolicity in n-type materials. The neglect of
higher CB valleys and of the split-off VB imposed by the simplified
band structure model results in upper bounds for the allowed den-
sity in each case. The available experimental limits of the activated
doping are always smaller than these theoretical limits. The gap can
never shrink to zero, even at zero temperature. An exception is
n-type InSb, where measured doping limits would lead to a
vanishing gap at 0 K.

At room temperature, the trend of the BGN as a function of
material (gap) follows the trend of the DOS effective masses. At a
density of 1018 cm−3, the BGN increases from ∼15 meV (InAsSb)
to ∼50 meV (AlN) with only a little difference between n-type,
p-type, and eh-plasma. At the higher density of 1019 cm−3, the BGN
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of p-type and eh-plasma is still similar with an average increase
from ∼30 meV (InAsSb) to ∼100 meV (AlN), but the BGN in direct
n-type material becomes larger due to the small electron mass
(reduced screening) and increases from ∼40 meV (InAsSb) to
∼120 meV (AlN). An exception is given by the indirect materials
AlAs and GaP due to their similar CB- and VB-DOS. The nitrides
are strong outliers with respect to the VB DOS mass, which becomes
visible as maxima in the BGN curve.

At very low temperatures, p-type material and eh-plasma show
almost identical behavior at a density of 1018 cm−3, which is
not much different from that at 300 K. At the higher density of
1019 cm−3, p-type material and eh-plasma are still comparable, but
in direct n-type materials, the BGN becomes giant as a consequence
of the weak screening of the hole-ion interaction by the majority
of electrons. At a density of 1018 cm−3, the BGN is relatively inde-
pendent of material, taking values between ∼50 meV and ∼80 meV
at 20 K. At 1019 cm−3, it increases from ∼130 meV (InAsSb) to
∼200 meV (AlN), again with the exception of the indirect materials
AlAs and GaP.

The strong temperature dependence of the BGN in n-type
materials with small CB DOS is traced back to the occupation prob-
ability of minority holes. It persists at all electron concentrations. In
p-type material and eh-plasma, the temperature dependence of the
BGN is much weaker; it is only significant at low and intermediate
densities and always ceases at high densities.

The second major result of the paper is the derivation of an
analytical BGN model without material-dependent free fit para-
meters, applicable to all densities and temperatures. Compared to
numerical full-RPA, it reduces the central processing unit (CPU)
time from days (the worst case is a very low but non-zero tem-
perature and a high density) to less than seconds. The analytical
model reveals the dependencies on band-structure and material
parameters and allows for a quick calculation of the BGN in mate-
rials not explicitly treated in this paper. The only restriction here
is compliance with an isotropic dispersion model (which excludes
wurtzite materials). Besides other model simplifications (e.g., neglect
of disorder-induced DOS tails and polaronic mass enhancement),
isotropization is the key not only for the numerical full-RPA cal-
culations but also for the analytical model. After the exact angu-
lar integrations, threefold integrals over complicated functions are
approximately solved for the free-carrier correlation energies at 0 K
and for the non-perturbative temperature-dependent hole-ion cor-
relation energy, including the nonparabolicity of the CB. This is
enabled by taking advantage of the ratio between Fermi wavelength
and Bohr radius and by applying other approximation methods. As a
result, the functional dependence of the BGN(n,p,T) on material and
band structure parameters can be preserved. Comparison between
analytical and numerical curves shows very good agreement in many
cases, in particular for the density and temperature dependence of
the BGN in n-type materials. Larger deviations occur in the case of
n-type InAsSb at high densities (extreme nonparabolicity), for the
indirect materials AlAs and GaP (due to their comparable CB and
VB DOSs), and for some p-type materials such as InAsSb, InSb, and
the nitrides.

A serious attempt has been made to express the BGN of
ternary compounds by a composition average of the BGNs of their
binary constituents (without or with bowing), as is common for the
bandgap. However, although possible to some extent for a particular

density and temperature, it fails for a wider density interval. This
is probably due to the involved dependence on band filling and
screening.
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APPENDIX A: BANDGAP NARROWING AS FUNCTION
OF DENSITY IN THE TEMPERATURE RANGE
FROM 0 TO 500 K FOR ALL 60 CASES

This appendix presents the BGN for all 20 materials (n-type and
p-type) and for the neutral eh-plasma in these materials as a contin-
uous function of density from 1015.5 cm−3 to the maximum at the
temperatures T = 0, 20, 77, 300, and 500 K. The full-RPA curves for
T = 0 K (black solid) start at the Mott density. The end point of each
density axis corresponds to the allowed density maximum accord-
ing to the measured limits of activated doping or to the limitations
of the band-structure model. Solid lines are used for numerical full-
RPA, i.e., Eqs. (6)–(8) with the RPA dielectric function Eq. (9) and
densities calculated with Eq. (10) (parabolic case) or Eq. (11) (non-
parabolic case), symbols are used for the analytical model outlined
in Sec. IV.

APPENDIX B: ANALYTICAL APPROXIMATION
OF THE FREE-CARRIER CORRELATION ENERGIES

This appendix provides the derivation of the analytical expres-
sions of the free-carrier correlation energies in quasi-neutral regions
[second and third terms in Eq. (20)] and in the neutral eh-plasma
[second and third terms in Eq. (26)].

1. Quasi-neutral regions
The zero-temperature correlation energy of free carriers is cal-

culated by Eq. (7) in the parabolic band approximation (justification
given in the main text). The integration of angles can be performed
exactly. Furthermore, the limit β→∞ is utilized. First, in the factor
∂ϵ/∂n, the derivative of the distribution function of majority carriers
can be generated by partial integration, which turns into a delta-
function and removes one integral. Second, the Matsubara sum is
replaced by∑ν → 2β/π∫

∞

0 dt with t = πν/β. In the momentum inte-
gration, the variable q is normalized by the Fermi momentum of the
majority carriers: q→ zqF,b = z

√
ζb/αb. This results in
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lim
β→∞

Δc
a = −

2
π2
√

αaζa
∫

∞

0

dz
z ∫

∞

0
dt × [1 − ϵ−1

T=0(z
√

ζb/αb, t)]

×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

tanh−1
[

z
1 + z2

/4 + t2
/(z2ζ2

b)
]δab

+ (
αaζb

αb
)

3/2√
ζa

z3

t2
+ ( αaζb

2αb
)

2
z4
(1 − δab)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (B1)

The RPA dielectric function (9) becomes fully analytical at T = 0 K,

ϵT=0(z
√

ζb/αb, t) = 1

+
sb

z2

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 +
1
z
(1 −

z2

4
+

t2

z2ζ2
b
)tanh−1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

z
1 + z2

4 +
t2

z2ζ2
b

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−
t

zζb
[tan−1

(
zζb

2t
(2 + z)) + tan−1

(
zζb

2t
(2 − z))]

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

Θ(ζb),

(B2)

with the normalized length sb defined in Eq. (18),

sb =
gb

παbqF,b
=

gb

π
√

αbζb
. (B3)

Note that only majority carriers (index “b”) contribute to free-carrier
screening in quasi-neutral regions. Expression (B2) is obtained from
Eq. (A6) in Ref. 7 in the parabolic and zero-temperature limits. It
must be drastically simplified to enable the double integration of
momentum (z) and frequency (t) in (B1). For that purpose, the sin-
gle plasmon pole (SPP) approximation3,10,39,40 is a good candidate.
Here, it is used for a one-component plasma,

ϵspp(q, ν) = 1 +
ω2

p

ω2
p

q2

κ2 + (
h̵q2

2mb
)

2
−Ω2

ν

, (B4)

where ωp is the plasmon frequency and κ is the Thomas-Fermi
momentum (the static Debye limit is ϵD = 1 + κ2

/q2). After normal-
ization, one obtains for the case of a degenerate carrier gas at T = 0
K,

h̵2ω2
p = 16παbnb =

8gb

3π
√

αb
ζ3/2

b , (B5)

κ2
= 8π∂nb/∂ζb =

2gb

πα3/2
b

√
ζb, (B6)

and

ϵspp(z
√

ζb/αb, t) = 1 +
2sb

z2
+ 3( z4

4 +
t2

ζ2
b
)

. (B7)

Note that ϵspp is not used in the factor ∂ϵ/∂n of Eq. (B1) but only in
the screening function (1 − 1/ϵ), which reads

1 − ϵ−1
spp(z
√

ζb/αb, t) =
2sb

2sb + z2
+ 3( z4

4 +
t2

ζ2
b
)

. (B8)

The correlation energy (B1) takes the form

Δc
a = −

4gb

π3αb
∫

∞

0
dz∫

∞

0
dτ

1

2sb + z2
+ 3( z4

4 + τ2
)

×

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
z

tanh−1
⎡
⎢
⎢
⎢
⎢
⎣

z3

z2
+ z4

4 + τ2

⎤
⎥
⎥
⎥
⎥
⎦

δab

+ (
αa

αb
)

z2
(1 − δab)

τ2
+ ( αa

2αb
)

2
z4

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

, (B9)

where the integration variable t was changed to τ = t/ζb. The goal
is to approximate the integrand such that the correct dependence on
density (contained in sb) is preserved as well as possible. After testing
various ways, the following turned out to be the best.

a. Majority-carrier band edge
For the majority-carrier band edge (first term in curly braces),

the frequency dependence in the denominator of the SPP screening
function [first line in Eq. (B9)] is skipped (τ → 0). This allows us to
perform the remaining τ-integration exactly, leading to

Δc
a,maj ≈ −

2gbδab

π2αb
∫

∞

0
dz

zΘ(2 − z) + 2Θ(z − 2)
2sb + z2

+ 3z4
/4

. (B10)

The numerator of the integrand is replaced by zΘ(2 − z) + 2Θ
(z − 2)→ 2, which results in

Δc
a,maj ≈ −

4gbδab

3π2αb
∫

∞

0
dz

1
2
3 sb +

1
3 z2
+ 1

4 z4 , (B11)

and after exact integration in the analytical expression

Δc
a,maj ≈ −

2gbδab

παb
√

sb

1
√

1 +
√

1 − 6sb +
√

1 −
√

1 − 6sb
. (B12)

To obtain the density dependence in the form of a simple power law,
the limits sb ≪ 1/6 and sb ≫ 1/6 are considered,

Δc
a,maj ≈ −

gbδab

παb
×

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
2/sb sb ≪ 1/6,

(
2
3
)

1
4 1

s3/4
b

sb ≫ 1/6.
(B13)

The first limit (high density, short Fermi wavelength) yields an
n1/6-dependence, and the second limit (low density, long Fermi
wavelength) yields an n1/4-dependence. In Fig. 30, se and sh at a den-
sity of 1019 cm−3 are plotted for all materials. Neither of the two
limits is actually valid, as one can see by comparison with the green
dashed line (1/6). A possible simple fit to the full-RPA curves (com-
pare Fig. 9) is the following: (i) the limit sb ≪ 1/6 is chosen, (ii) a
logarithmic weakening5,36,38 is performed, and (iii) the numerical
pre-factor is adjusted. The result is [the second term of Eq. (20)],

Δc
a,maj ≈ −

2gbδab

3π2αb
ln (1 +

√
2/sb), (B14)

i.e., a logarithmic weakened n1/6-dependence.
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FIG. 30. Length parameters sb and σb of zincblende III–V materials (ordered as in
Fig. 2) for a concentration of 1019 cm−3.

b. Minority-carrier band edge
For the minority-carrier band edge [second term in the curly

braces of Eq. (B9)], the τ-integration can be performed exactly, and
one is left with the single integral,

Δc
a,min = −

4gb(1 − δab)

3π2αb

× ∫

∞

0
dz

1
αaz2

2αb

√
2
3 sb +

z2

3 +
z4

4 +
2
3 sb +

z2

3 +
z4

4

. (B15)

The integrand is replaced by a simpler and integrable function that
yields the correct limits z → 0 and z →∞ and that closely follows
the course at intermediate z,

Δc
a,min ≈ −

4gb(1 − δab)

3π2αb
∫

∞

0
dz

1
2
3 sb +

z2

3 +
z4

4αb

. (B16)

Except for the occurrence of αb in the last term of the denomina-
tor, this approximate integrand equals the integrand in Eq. (B11).
Proceeding as for the majority-carrier band edge, one obtains

Δc
a,min ≈ −

gb(1 − δab)

παb
×

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
2/sb sb ≪ 1/6,

(
2αb

3
)

1
4 1

s3/4
b

sb ≫ 1/6.
(B17)

A feasible power-law fit to the full-RPA curves (compare Fig. 9) is
obtained as follows: (i) the limit sb ≫ 1/6 is chosen, and (ii) the
numerical pre-factor is adjusted. The result is [the third term of
Eq. (20)],

Δc
a,min ≈ −

gb(1 − δab)
√

3π(αbsb)
3/4 , (B18)

i.e., an n1/4-dependence.
It should be noted that the power-law fits for majority and

minority band edges are somewhat arbitrary, as the applicability
of the limits strongly depends on material and density. This might
explain the many variants suggested in the past, e.g., n1/6 in Ref. 37,
n1/4 in Ref. 38, and n7/30 in Refs. 38 and 41.

2. Neutral electron–hole plasma
Screening by electrons and holes with density n = ne = nh

determines the free-carrier correlation energies in a neutral eh-
plasma. Analytical modeling proceeds similarly to the case of a
one-component plasma. Charge neutrality imposes a simple relation
between the quasi-Fermi levels (parabolic dispersion, T = 0 K),

ζb = (
ga

gb
)

2/3 αb

αa
ζa. (B19)

In the screening function (1 − 1/ϵ), the SPP approximation is now
applied to a two-component plasma,

ϵspp,eh(q, ν) = 1 +
ω2

p

ω2
p

q2

κ2 + (
h̵q2

4μ∗ )
2
−Ω2

ν

. (B20)

Using relation (B19), plasmon frequency ωp and Thomas-Fermi
momentum κ at T = 0 K are given by

h̵2ω2
p =

8
3π

⎛
⎜
⎝

geζ
3
2

e
√

αe
+

ghζ
3
2

h√
αh

⎞
⎟
⎠
=

8ge

3π
(

ζe

αe
)

3
2

=
8gh

3π
(

ζh

αh
)

3
2

, (B21)

κ2
=

2
π
⎛
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ge
√

ζe

α3/2
e
+

gh
√

ζh

α3/2
h

⎞

⎠

=
2
π

ge
√
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α3/2
e

⎡
⎢
⎢
⎢
⎢
⎣

1 + (
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)

2
3 αe

αh

⎤
⎥
⎥
⎥
⎥
⎦

=
2
π

gh
√

ζh

α3/2
h

⎡
⎢
⎢
⎢
⎢
⎣

1 + (
ge

gh
)

2
3 αh

αe

⎤
⎥
⎥
⎥
⎥
⎦

. (B22)

The screening function reads

1 − ϵ−1
spp,eh(z

√
ζb/αb, t) =

2sbαb

2sbαb + z2αba + 3[( z
2)

4
+ ( tαb

ζb
)

2
]

, (B23)

with

αba =
αa

1 + ( ga
gb
)

2
3 αb

αa

. (B24)

The form of the correlation energy at zero temperature is similar to
the majority-carrier term in Eq. (B1),

Δc
b = −

2
π2
√

αbζb
∫

∞

0

dz
z ∫

∞

0
dt[1 − ϵspp, eh−1

(z
√

ζb/αb, t)]

× tanh−1
⎡
⎢
⎢
⎢
⎢
⎢
⎣

z

1 + ( z
2)

2
+ ( t

zζb
)

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(B25)
With the same approximations as for Eqs. (B10) and (B11), one
obtains

Δc
b ≈ −

4gbαb

3π2 ∫

∞

0
dz

1
2
3 sbαb +

1
3 αbaz2

+ 1
16 z4 , (B26)

where αba is defined in Eq. (B24). Exact integration yields the
analytical expression
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Δc
b ≈ −

2gb

π
√

sb

√
αb/αba

√

1 +
√

1 − sb/σb +

√

1 −
√

1 − sb/σb

, (B27)

with

σb =
2α2

ba

3αb
. (B28)

Again, the limits of very small and very large sb are considered in
order to simplify the model,

Δc
b ≈ −

gb

π
×

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

√
αb

αba

√
2/sb sb ≪ σb,

(
8αb

3
)

1
4 1

s3/4
b

sb ≫ σb.
(B29)

As can be seen from Fig. 30, the assumption se ≫ σe is fulfilled for all
materials, whereas sh ≫ σh is only fulfilled for the indirect materials
AlAs and GaP. For the antimonides and InAs, it rather holds that
sh ≪ σh. Inspection of the full-RPA correlation energies at a density
of 1019 cm−3 shows that Δc

e ≈ Δc
h is only for the indirect materials

AlAs and GaP; otherwise, the ratio Δc
h/Δ

c
e increases from 2 to 6 with

decreasing gap. Therefore, the same simple power law for Δc
h cannot

work in all 20 cases.
To achieve a good agreement with the full-RPA curves in all

20 cases, a distinction is made based on the parameter αe = mh/

(mh +me): if αe > 0.85 (materials No. 1–11), the limit sh ≪ σh is
used; if αe < 0.85 (materials No. 12–20), the limit sh ≫ σh is applied.
A logarithmic weakening5,36,38 is performed, and the numerical pre-
factor is adjusted independently for electrons and holes. The result
is [the second and third terms of Eq. (26)],

Δc
e + Δc

h ≈ −
2ge

5π
ln [1 + (

8αe

3
)

1
4 1

s3/4
e
]

−
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⎧⎪⎪
⎨
⎪⎪⎩
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⎡
⎢
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⎢
⎢
⎣

1 + (
8αh

3
)

1
4 1

s3/4
h

⎤
⎥
⎥
⎥
⎥
⎦

+Θ(αe − 0.85) ln
⎛

⎝
1 +
√

2αh

αhesh

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (B30)

The outcome of this general analytical model is displayed for the
free-carrier correlation energy in InGaAs (Fig. 9) and as part of the
total BGN of the neutral eh-plasma in all materials in the right panel
of Figs. 10–29.

APPENDIX C: ANALYTICAL APPROXIMATION
OF THE ION-CARRIER CORRELATION ENERGIES

This appendix provides the derivation of the analytical expres-
sions of the ion-carrier correlation energies in quasi-neutral
regions including the effect of nonparabolicity in n-type material,
and the temperature dependence of the donor-hole correlation
energy including the effect of nonparabolicity on this temperature
dependence.

The correlation energy of the ion-carrier interaction is calcu-
lated from Eq. (8). After normalization and integration over angles,
it is given by

Δi
a = −ni

2
π
(
∂na

∂ζa
)

−1

∫

∞

0
dq

1
ϵ2
(q, 0)

∂ϵ(q, 0)
∂ζa

. (C1)

The static RPA dielectric function reads [compare Ref. 7, Eqs.
(A7)–(A9)],

ϵ(q, 0) = 1 +
1

πq3∑
a

ga

α2
a
∫

∞

0
dκκ fa(κ){2[ha(κ, q) − ha(κ,−q)]

+ ha(κ, 0) ln
[ha(κ, 0) − ha(κ, q)]2

[ha(κ, 0) − ha(κ,−q)]2
}, (C2)

where

ha(κ, q) =
√

1 + 4γa(κ +
√

αaq)2, (C3)

fa(κ) = {1 + eβ[ha(κ,0)−1]/2γa−βζa}
−1

, (C4)

have to be used. For the derivative of ϵ(q, 0) with respect to the
Fermi energy, one needs

∂ fa

∂ζa
= −

∂ fa

∂κ
ha(κ, 0)

2κ
= β fa(κ)[1 − fa(κ)], (C5)

under the κ-integral. To obtain the T = 0 K-limit, the κ-integral
in Eq. (C2) is integrated by parts, where the derivative of the
distribution function with respect to κ becomes a delta function,

∂ fa

∂κ
= −δ[κ −

√
ζa(1 + γaζa)]. (C6)

Then

ϵT=0(q, 0) = 1 +
gb

πα2
bq3∫

√

ζ̃b

0
dκκ{2[hb(κ, q) − hb(κ,−q)]

+ hb(κ, 0) ln
[hb(κ, 0) − hb(κ, q)]2

[hb(κ, 0) − hb(κ,−q)]2
}Θ(ζb), (C7)

with the abbreviation ζ̃b = ζb(1 + γbζb) and “b” denoting the index
of the majority carrier band. Only majority carriers contribute to
screening in quasi-neutral regions (ζb > 0), whereas minority car-
riers are frozen out. The derivative of the densities with respect to
the Fermi energy becomes

lim
β→∞

∂na

∂ζa
=

ga

4π2α3/2
a

×

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

√

ζ̃a(1 + 2γaζa)Θ(ζa) majority band,
√

π
2

exp (βζa)
√

β
∣

β→∞

Θ(−ζa) minority band.

(C8)

AIP Advances 13, 070702 (2023); doi: 10.1063/5.0149190 13, 070702-16

© Author(s) 2023

 14 July 2023 14:39:17

https://pubs.aip.org/aip/adv


AIP Advances REVIEW pubs.aip.org/aip/adv

For the derivative of the static dielectric function with respect to the
Fermi energy ∂ϵ(q, 0)/∂ζa in the limit β→∞, one needs

lim
β→∞

∂ fa

∂ζa
= − lim

β→∞

h(κ, 0)
2κ

∂ fa

∂κ

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

h(κ, 0)
2κ

δ(κ −
√

ζ̃a)Θ(ζa) majority band,

βe−β(κ2
−ζa)∣

β→∞
Θ(−ζa) minority band,

(C9)

which follows from Eq. (C5) neglecting nonparabolicity for the
minority carriers. Using this in Eq. (C2) leads to

lim
β→∞

∂ϵ(q, 0)
∂ζa

=
1

πq3
ga

α2
a

h2
a(

√

ζ̃a, 0)

×

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ha(
√

ζ̃a, q) − ha(
√

ζ̃a,−q)

ha(
√

ζ̃a, 0)

+
1
2

ln
⎛
⎜
⎜
⎝

[ha(
√

ζ̃a , 0) − ha(
√

ζ̃a , q)]
2

[ha(
√

ζ̃a , 0) − ha(
√

ζ̃a ,−q)]
2

⎞
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

Θ(ζa)

+ lim
β→∞

1
πq3

ga

α2
a

βeβζa
∫

∞

0
dκκe−βκ2

× ln(
[κ2
− (κ +

√
αaq)2

]
2

[κ2
− (κ −

√
αaq)2

]
2 )Θ(−ζa), (C10)

where in the term ∼ Θ(−ζa) nonparabolicity was again neglected.
The κ-integral can be calculated analytically,

lim
β→∞

βeβζa
∫

∞

0
dκκe−βκ2

ln(
[κ2
− (κ +

√
αaq)2

]
2

[κ2
− (κ −

√
αaq)2

]
2 )

= lim
β→∞

2βeβζa
∫

∞

0
dt t e−t2

tanh−1
(

4t
√

αaβq
)

= lim
β→∞

2
√

πeβζa

√
αaβq

. (C11)

For the second line, the relation ln(∣x + 1∣/∣x − 1∣) = 2 tanh−1
(1/x)

was used. Inserting Eq. (C10) with (C11) and Eq. (C8) into Eq. (C1),
the correlation energy of ion-carrier interaction in the T = 0 K-limit
becomes

lim
β→∞

Δi
a = −ni

8
√

αaζ̃a
∫

∞

0
dq

Θ(ζa)

q3ϵ2
T=0(q, 0)

×

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

[ha(

√

ζ̃a, q) − ha(

√

ζ̃a,−q)]

+
1
2
(1 + 2γaζa) ln

⎛
⎜
⎜
⎝

[1 + 2γaζa − ha(
√

ζ̃a , q)]
2

[1 + 2γaζa − ha(
√

ζ̃a ,−q)]
2

⎞
⎟
⎟
⎠

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

− ni
32
αa
∫

∞

0
dq

Θ(−ζa)

q4ϵ2
T=0(q, 0)

, (C12)

where the static dielectric function ϵT=0(q, 0) is defined in Eq. (C7)
and the function ha in Eq. (C3). Introducing normalized momen-

tum variables of majority carriers by z = q/qF,b = z
√

αb/ζ̃b and

t = κ/
√

ζ̃b, this can be written in the form

lim
β→∞

Δi
a = −

2gb

3π2∫

∞

0
dz

z
αb

Hb(1, z)δab +
8
αa
(1 − δab)

[z2
+ sb

z ∫
1

0 dt t Hb(t, z)]
2 Θ(ζb), (C13)

with

sb =
gb

π
√

αbζ̃b

,

Hb(t, z) = 2[hb(t, z) − hb(t,−z)]

+ hb(t, 0) ln(
[hb(t, 0) − hb(t, z)]2

[hb(t, 0) − hb(t,−z)]2
),

hb(t, z) =
√

1 + 4γbζ̃b(t + z)2,

ζ̃b = ζb(1 + γbζb),

(C14)

after inserting (C7) into Eq. (C12).
Analytical integration necessitates the simplification of the

function Hb(t, z). The shape of the total integrand strongly depends
on the size of the parameter sb. In terms of the normalized dop-
ing concentration (normalized by a−3

ex ), the parameter sb becomes
[compare Eqs. (18) and (19)],

sb =
g4/3

b

(6π5
)

1/3αb

1
n1/3

i

. (C15)

Therefore, one can assume sb ≪ 1 for very large ni, which results in a
pronounced maximum of the integrand at some z < 1. The function
Hb(t, z) can then be linearized in z, which results in

Hb(t, z) ≈
2z
t
[hb(t, 0) +

4γbζ̃bt2

hb(t, 0)
]. (C16)

With that, the t-integration in the dielectric function can be
performed easily, giving

sb

z ∫
1

0
dt t Hb(t, z)

= sb

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2hb(1, 0) +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

hb(1, 0) −
sinh−1

(

√

4γbζ̃b)

√

4γbζ̃b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

. (C17)

The second term is negligible compared to the first one as long
as 4γbζ̃b ≪ 1 can be assumed, meaning that the Fermi energy in
the corresponding parabolic band must be much smaller than the
bandgap. For InAsSb and InSb, this becomes critical at higher den-
sities, as can be seen in Figs. 10 and 11. With the linearized form of
Hb(1, z) in the numerator of Eq. (C13) and inserting

sb

z ∫
1

0
dt t Hb(t, z) ≈ 2sbhb(1, 0), (C18)
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in the denominator, the remaining z-integration is trivial and yields

lim
β→∞

Δi
a = −

2gb

3π

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
αb
[hb(1, 0) + 8γb ζ̃b

hb(1,0) ]δab
√

2sbhb(1, 0)

+

4
αa
(1 − δab)

[2sbhb(1, 0)]3/2

⎫⎪⎪
⎬
⎪⎪⎭

Θ(ζb). (C19)

A last simplification is the replacement

√
hb(1, 0) +

8γbζ̃b

h3/2
b (1, 0)

→ hb(1, 0), (C20)

that closely matches the numerical RPA result. Using the notation
φnp(sb) = hb(1, 0) for the nonparabolicity correction factor finally
results in the ionic correlation energies in Eq. (20). Note that γh = 0.

As discussed in Appendix B 1, the strong temperature depen-
dence of the hole-ion correlation energy Δi

h,n−type(T) mainly arises
from the occupation probability of holes, whereas the majority-
carrier screening is only weakly T-dependent and vanishes at high
concentrations. Therefore, Eq. (C1) becomes

Δi
h,n−type = −ni

2
π
(
∂nh

∂ζh
)

−1

∫

∞

0
dq

1
ϵ2

T=0(q, 0)
∂ϵ(q, 0)
∂ζh

. (C21)

Since γh = 0 is used throughout, nonparabolicity only needs to be
taken into account in the factor 1/ϵ2

T=0(q, 0) (screening by major-
ity electrons). Furthermore, the T-dependent factors (∂nh/∂ζh)

−1

and ∂ϵ(q, 0)/∂ζh can be calculated with Boltzmann statistics. From
Eq. (10), one obtains after normalization

(
∂nh

∂ζh
)

−1
=
(4παh)

3/2

gh

√
βe−βζh , (C22)

and from Eq. (C2) after partial integration

∂ϵ(q, 0)
∂ζh

=
gh

2πα2
hq3 eβζh

∫

∞

0
dκ e−βκ2 d

dκ
Hh(κ, q), (C23)

with Hh(κ, q) defined in Eq. (C14). Its parabolic version reads

Hh(κ, q) = tanh−1
(

√
αhκq

κ2
+ αhq2

/4
). (C24)

Inserting

d
dκ

Hh(κ, q) = −2q
√

αh
κ2
− αhq2

/4
(κ2
− αhq2

/4)2 Θ(
q
√

αh

2
− κ), (C25)

into Eq. (C23) and introducing the new integration variables
t = κ
√

β and z = q
√

αe/
√

ζ̃e, consequently,

(
∂nh

∂ζh
)

−1 ∂ϵ(q, 0)
∂ζh

=
8
√

παe

z2ζ̃e
τ(z, β), (C26)

where

τ(z, β) = ∫
za(β)

0
dt

βe−t2

a2
(β)z2

− t2 , (C27)

a2
(β) =

αhζ̃e

4αe
β =

αhg2
e

(2παese)
2 β. (C28)

The hole-ion correlation energy can now be written as

Δi
h,n−type(T) = −16ni

√
αe

πζ̃e
∫

∞

0

dz
z2

τ(z, β)
ϵ2

T=0(z, 0)
. (C29)

Its zero-temperature limit7 follows from lim
β→∞

τ(z, β)

= 2
√

παe/(αhζ̃ez2
).

In the low-T/high-density range, the denominator in (C27)
can be taken at t = 0, and He(t, z) can be linearized in z: He(t, z)
≈ 2zhe(t, 0)/t. The dielectric function then reads ϵT=0(z, 0) = 1
+ se

z3 ∫
1

0 dt t He(t, z) = 1 + 2sehe(1, 0)/z2, which results in

Δi
h,n−type(T) = −

16ge

3π2αh
∫

∞

0
dz

erf(za(β))
[z2
+ 2sehe(1, 0)]

2 . (C30)

For an analytical solution of the integral in (C30), the error function
is approximated as

erf(x) ≈
2x
√

π
Θ(1 − x) +Θ(x − 1). (C31)

This results in

Δi
h,n−type(T) = −

√
2ge

3παhs3/2
e φ3/2

np (se)

× {1 −
2
π

arctan(
1

a(β)
√

2seφnp(se)
)

+
2(2 −

√
π)

π3/2
a(β)
√

2seφnp(se)

1 + a2
(β)2seφnp(se)

}, (C32)

where he(1, 0) was renamed by φnp(se), which is the symbol for the
nonparabolicity correction factor Eq. (21) in the main text. The last
term in curly braces in Eq. (C32) is small compared to the second
one and will be omitted. Inserting a(β) from Eq. (C28) gives

Δi
h,n−type(T) = −

√
2ge

3παhs3/2
e φ3/2

np (se)

×

⎧⎪⎪
⎨
⎪⎪⎩

1 −
2
π

arctan
⎡
⎢
⎢
⎢
⎢
⎣

(
2π2α2

ese

βαhg2
e φnp(se)

)

1
2
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (C33)

In this approximation, the temperature dependence has the form
∼[1 − 2 arctan(c

√
T/n1/6

)/π]. Due to the assumption of very large
Fermi momenta in the dielectric function, z ≪ 1, it only matches the
numerical results at low temperatures and extremely high densities,
which are outside the validity range.

The opposite assumption, z ≫ 1, would lead to He(t, z) ≈ 8t/z.
The dielectric function then reads ϵT=0(z, 0) = 1 + 8se/(3z4

), result-
ing in a temperature and density dependence of the correlation
energy given by ∼

√
n/T as in the Debye limit [compare Eq. (16)].

Combining both limits with the static form of the SPP approx-
imation (B7) leads to cumbersome expressions that are not helpful.
Therefore, to cover the cases z ≪ 1 and z ≈ 1, a viable solution is to
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replace arctan[(⋅ ⋅ ⋅)1/2
] by arctan[(⋅ ⋅ ⋅)3/4

] in (C33). This not only
preserves the zero-temperature limit but also results in excellent
agreement with the numerical curves for all n-type materials over
the whole density and temperature range, as can be seen from Fig. 8
and the left panel of Figs. 10–29.
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