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Abstract— In this paper we present a method to compute exact
relaxation times for any moments of the Boltzmann equation.
The method is valid for any electric field and is particularly
useful in the case of vanishingly small field intensities. After
a theoretical explanation, the method is applied to a full-band
model for electrons and holes in silicon. A strong dependence of
the relaxation times on the doping concentration is shown, which
is in contradictions to popular beliefs.

I. INTRODUCTION

Over the past 50 years different approximations have been
used to compute transport parameters (mobility, diffusion
constant, energy relaxation time, ...) for the drift-diffusion
and hydrodynamic transport models (see e.g. [1], [2]). To
our knowledge no exact expression has ever been derived for
the relaxation times needed for the even moments (energy,
energy squared, squared norm of the velocity, ...) of the
transport models close to thermodynamic equilibrium. Only
an approximation formula for the energy relaxation time was
given by Jungemann et al. [3].

In this paper we will present a general scheme and a general
formula to compute these relaxation times. This scheme holds
for any Boltzmann equation (BE) and does not require specific
approximations besides those already present in the BE itself.
We will then give results for silicon using a full band structure
and compare them with the approximation formula of Ref. [3].

II. THEORY

A. Introduction

Using the Monte Carlo method, the relaxation times in bulk
material are usually computed using the formula (see e.g. [3]):

τg = −

∫

g(k)(f(k) − feq(k) n
neq

)d3k
∫ ∫

g(k)S(k, k′)f(k′)d3k′d3k
, (1)

where f is the solution of the stationary BE, feq is the
equilibrium distribution, n (resp. neq) is the integral of f

(resp. feq) on the k-space, and g is the moment for which
the relaxation time is needed. This formula, however, becomes
problematic in the case of small electric fields especially for
an even function g.

We found a general method and a general discretization
scheme that can be applied at least to any semiconductor

BE (linear and nonlinear) to compute moments of the inverse
scattering operator (ISO) S−1

g with the vital property:

〈S−1

g |S|f〉 = 〈g|f〉 − 〈g|feq〉
n

neq

. (2)

Here, S is the scattering operator (collision term in the rhs
of the BE), feq the equilibrium distribution function, and f

and g are arbitrary continuous functions. Based on this theory,
another formula for the relaxation times can be derived. By
multiplying the space-homogeneous BE:

−
q

~

~E · ∇kf = S|f〉 (3)

with g and S−1

g and integrating one obtains

−
q

~

~E ·

∫

(∇kf)g(k)d3k =
∫ ∫

g(k)S(k, k′)f(k′)d3k′d3k (4)

−
q

~

~E ·

∫

(∇kf)S−1

g (k)d3k =
∫

g(k)(f(k) − feq(k)
n

neq

)d3k. (5)

Inserting the rhs of (4) and (5) in (1) gives:

τg = −
~n ·

∫

(∇kf)S−1
g (k)d3k

~n ·
∫

(∇kf)g(k)d3k
, (6)

where ~n is the vector pointing in the direction of the electric
field. Note that (6) can be easily extended to the space-
inhomogeneous BE. Using (6) allows to compute exact re-
laxation times particularly in the limit of a vanishing electric
field. For high electric fields the Monte Carlo method can be
used to evaluate either (1) or (6).

B. The problem of small electric fields

For small electric fields the distribution function f can be
written as:

f(k) = feq(k)

(

1 +
q

kBTeq

~E · S−1

~v
(k)

)

+ O(E2), (7)

where S−1

~v
is the vector whose i-th component is the (~v)i-

moment of the ISO. The important point for the following
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is that using standard methods, the O(E2) terms cannot be
computed.

Inserting (7) into (1) gives:

τg =

−

∫

g(k)
(

feq(k) ~E · S−1

~v
(k) + O(E2)

)

d3k

∫ ∫

g(k)S(k, k′)
(

feq(k′) ~E · S−1

~v (k′) + O(E2)
)

d3k′d3k

. (8)

For any system with an even band structure (ε(k) = ε(−k)),
the function feq(k) ~E · S−1

~v
(k) is odd, because S−1

~v
has by

construction the same symmetry properties as ~v. Thus, if the
function g is an even function, (8) reduces to

τg = −

∫

g(k)O(E2)d3k
∫ ∫

g(k)S(k, k′)O(E2)d3k′d3k
. (9)

Because O(E2) cannot be computed in the general case using
standard methods, (9) cannot be evaluated. Therefore, formula
(1) is unusable at all for even functions g in the limit of a
vanishing electric field.

C. The heated Maxwellian ansatz

Jungemann et al.[3] tackled the problem by using a heated
Maxwellian as ansatz for f :

f(k) := e
−

ε(k)
kBT , (10)

and computed τg in the limit T → Teq . Plugging this into (1)
leads to

τg = −

∫

ε(k)feq(k)
(

g(k) −
geq

neq

)

d3k
∫ ∫

g(k)S(k, k′)ε(k′)feq(k′)d3k′d3k
, (11)

where geq := 〈g|feq〉.
The scattering operator S(k, k′) can be formally sepa-

rated in one elastic part S(k, k′)elastic and one inelastic part
S(k, k′)inelastic. The elastic part has the property:

∫

S(k, k′)elastich(ε(k′))d3k′ = 0, (12)

for all function h of the energy. Thus, the denominator of (11)
does not depend on the elastic scattering. This is unfortunate,
because in most models the impurity scattering is an elastic
process.

Therefore, the heated Maxwellian ansatz comes off badly
in the case of silicon, in particular because contributions from
the impurity scattering automatically drop out, which yields
relaxation times independent of the doping concentration.

D. Exact solution

Inserting (7) in (6) gives:

τg =

−
~n ·

∫

(∇k(feq

(

1 + q
kBTeq

~E · S−1

~v

)

))S−1
g d3k + O(E2)

~n ·
∫

(∇k(feq

(

1 + q
kBTeq

~E · S−1

~v

)

))gd3k + O(E2)

. (13)
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Fig. 1. S
−1
vx averaged on an iso-energy surface as a function of energy in

the first band and the valley along the 〈100〉 direction for electrons

Considering again an even function g and neglecting the
O(E2) terms, (13) reduces to:

τg = −
~n ·

∫

∇k(feq(k)~n · S−1

~v (k))S−1
g (k)d3k

~n ·
∫

(∇k(feq(k)~n · S−1

~v (k))g(k)d3k
, (14)

because S−1

g (k) has by construction the same symmetry
properties as g(k).

As (14) is independent of E there is no problem anymore
to evaluate τg in the limit E → 0. One can easily show that
if ε(k) is an even function, than (14) does also not depend on
~n, i.e. the direction of the electric field.

Thus, we proved that the knowledge of S−1

g (k) allows one
to compute relaxation times for all moments of the Boltzmann
equation, even in the limit of a vanishing electric field.

III. RESULTS

In this part we will focus on the low field case. The theory
has been applied to full-band silicon, to electrons and holes,
and to different lattice temperatures and doping concentrations.
We used the full-band structure and the scattering models as
described in [4] and [5].

To give the reader an idea about the shape of the S−1
g s, two

examples have been chosen. Fig. 1 shows the x-component
of the average of the function S−1

~v
on an iso-energy surface

(see eq. (14)) as a function of energy in the first band and
the valley along the 〈100〉 direction for electrons. Fig 2 shows

the x-component of the function dS−1
ε

dε
as a function energy

in the first band and the valley along the 〈100〉 direction for
electrons. This function appears in (14) in the numerator, if
one performs an integration by parts.

Using (14), we computed the relaxation times for the energy
〈ε〉, the energy squared 〈ε2〉, for 〈v2〉 and 〈v4〉 as they are
needed e.g. in the six-moments model of Grasser et al. [6].

The bold lines in Figs. 3–10 show the results from the exact
computation, whereas the thin lines are computed using the
ansatz from Jungemann et al. [3].
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Fig. 3. Energy relaxation time for electrons
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Fig. 4. Energy relaxation time for holes
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Fig. 5. Energy squared relaxation time for electrons
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Fig. 6. Energy squared relaxation time for holes
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Fig. 7. Velocity squared relaxation time for electrons
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Fig. 8. Velocity squared relaxation time for holes
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Fig. 9. Velocity to the fourth power relaxation time for electrons

10
12

10
13

10
14

10
15

10
16

10
17

10
18

10
19

10
20

10
21

Doping concentration [cm
-3

]

10
-14

10
-13

10
-12

10
-11

10
-10

τ V
4   

[s
-1

]

50K
100K
150K
200K
250K
300K
350K
400K
450K
500K

Hole <V
4
> relaxation time

Fig. 10. Velocity to the fourth power relaxation time for holes

It seems that in general the Maxwellian ansatz (11) is
rather poor and gives inaccurate results. One also observes
a quite strong dependence on doping concentration which can
be explained by a detailed inspection of the functions in (6).
The exact low-field relaxation times allow to reproduce the
Nyquist theorem more precisely than with the usual approxi-
mations. In general, the relaxation times show a non-negligible
dependence on doping concentration. This is in contradiction
to what can be found in the literature (see e.g. [1]).

IV. CONCLUSION

A method has been found to compute exact relaxation times.
This method is especially important for low electric fields and
even functions g. It can be applied to any semiconductor BE.
Discrepancies between the usual approximations found in the
literature (e.g. [1], [6] or [3]) and the exact results prove the
utility of our method.
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