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6 CONTENTS

Summary

Digital Signal Processing has evolved into one of the main applications of current VLSI technol-
ogy. The recent developments within the electronics industry has resulted in new applications
which require extensive signal processing. These applications have entered the consumer market
that has placed a high demand especially on multimedia applications.

Most of the digital signal processing operations can be expressed by means of convolutions where
the image data value and a set of neighbouring data values are convolved by a set of coefficients.
This operation is especially computation intensive as it involves a number of multiplications. For
high bandwidth signals such as images, these operations have to performed repedeatly over a
large set data continously. As a result, the general nature of this operation requires a number of
area consuming high speed multipliers.

In this work, a basic building block for the construction of convolutional filtering blocks is pre-
sented. This block (named Aries) uses pre-calculated values stored in a RAM to compute the
result of a 5 x 1 kernel. These blocks can be combined to generate a filter of any dimensions
(1-D or 2-D). Aries includes an output stage that can be used to generate a pipelined adder array
to sum up the results of all Aries blocks. The block operates on 8-bit unsigned data at a rate of
50 million samples per second. This corresponds to an equivalent performance of 450 MOPS
(Million Operations per second). A 9 x 9 filter realization would only need 18 Aries blocks, have
an equivalent performance of more than 8 GOPS (Giga Operations Per Second) and occupy a sil-
icon core area of less than 30mm2 even in a modest 0.8µm CMOS technology. The Full-Custom
design methodology employed throughout the design is presented as well.



Chapter 1

Introduction

Digital Signal Processing (DSP) technology is one of the more recent developments of the fast
evolving electronics technology and yet it is increasingly used in daily life. Celullar telephones,
modems, CD-ROM devices, audio equipment, hard disks and automobile electronics are ex-
amples of the broad spectrum of the broad application spectrum of DSP devices [1]. The first
programmable DSP processors appeared in the early 80’s and were intended as audio processors.
Within ten years the processing power of custom digitial signal processing hardware has became
capable of processing video rate signals. The development of multimedia applications and stan-
darts led to another development where recently general purpose processors started including
specialized hardware to acquire basic signal processing capability.

Even the most simple DSP algorithms require extensive computation and DSP operations in
general are still considered to be among the most demanding operations in integrated circuit
technology. A typical DSP operation consists of a series of multiplications on stored values of
input data with a set of co-efficients, producing results which are then accumulated. As the signal
has to be processed continously, the bandwidth of the signal puts strict constraints on the speed
of operation. As an example, for video applications 10 to 75 pictures need to be processed each
second. Depending on the resolution each picture may have as many as two million pixels, where
each pixel is represented by (at least) 8 bits. Any video processing algorithm will therefore need
to calculate the result of the operation on the order of tens of nanoseconds.

High performance digital signal processing architectures rely on complicated designs, that are
usually tailored for a particular application. Moreover, these designs are rather large and have
transistor counts on the order of millions of transistors. These designs are usually parts of a
custom chip-set for a specific application such as MPEG decoding. It is extremely hard to adapt
these designs for new requirements as most of them have application oriented optimizations.

In this work, a programmable, fully pipelined compact LSI macro block (Aries) is presented, that
can be used to design 1-D or 2-D convolutional filters of any size with a clock cycle of 20 ns.
The design is extremely compact and occupies an active silicon area of less than 1.5mm2 in a
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8 CHAPTER 1. INTRODUCTION

conventional 0.8µm digital CMOS technology. Several Aries macro-blocks can therefore easily
be embedded in a larger design. The fully pipelined 20 ns-cycle operation time is sufficient for
high resolution image processing. Aries is fully programmable (at a lower speed than the data
input rate), which gives it an adaptive filtering capability. Aries also includes the hardware nec-
essary to accumulate the results of several Aries chips and can easily be scaled to accommodate
digital filters of any dimensions.

There are three basic alternatives for the construction of digital filters [2]. The commonly used
two alternatives employ multipliers. In Aries there are no multipliers, the data is broken down
into its bitplanes. The data-bits of the same order are grouped to form a RAM address, and a pre-
computed partial result is read from a RAM. The partial results corresponding to these data-bits
are then weighted and accumulated in an adder array to form a result.

In Chapter 2, a brief introduction to Digital Signal Processing is given,with an emphasis on
the binary number systems used in digital systems. Aries is developed from earlier work on
Taurus, A Capacitive Threshold Logic based image filter [3]. Chapter 3 shortly describes the
basic architecture of Taurus and discusses the main problems encountered during design. The
design of Aries is explained in detail in Chapters 4 (general structure), Chapter 5 (RAM design),
Chapter 6 (adder design) and Chapter 7 (Implementation). As a speed and area optimized design,
Aries has been designed using a full-custom design methodology. Some aspects of this design
methodology are explained using the design of one of the main blocks of Aries in Chapter 8.
Finally, Chapter 9 summarizes all the results.



Chapter 2

Digital Signal Processing

Throughout the entire science history man has tried to understand, analyze, imitate and most of
all, control its surrounding environment. The limits of human capabilities were the dominant
factorsfor most of the technical inventions. They felt cold, understood that fire would provide
the necessary heat and then they went on to generate fire and control it. There are many key
inventions that has had a key role in the history of civilization: the wheel, the invention of
writing, bronze, gunpowder, the steam engine and integrated circuits have all changed the way
of life dramatically. Today, thanks to the extended usage of integrated circuits, we are said to be
living in an information age.

A very important breakthrough in information processing came with the introduction of inte-
grated digital circuits. Digital circuits, unlike their analog counterparts, interpret their inputs as
one of two logic states: logic “1” and logic “0”. The output of any digital circuit comprises of
a set of these states. These two states are enough to define a binary number system where any
mathematical operation can be realized, which makes digital circuits ideal candidates for com-
putational operations. Furthermore digital information is much more noise immune than analog
signals and there are practically lossless methods to store digital states. There is only one slight
problem:

“The world is analog”

Every piece of natural information is strictly analog in nature: they consist of continuous signals.
Fortunately it is quite easy to express any analog value in terms of a number of digital states.
Analog to Digital Converter (ADC) circuits are used to make this conversion. The digital circuits
can then process, store and manipulate these analog signals. Once a result is available Digital to
Analog Converter (DAC) circuits can convert the digital value into an analog signal.

Digital Signal Processing, is a general term that describes specialized algorithms for signal pro-
cessing using digital circuits. These signals can range from low frequency audio signals to high
resolution image image signals. Most DSP applications can be described as various filtering
algorithms to enhance the original signal. Applications include:

9



10 CHAPTER 2. DIGITAL SIGNAL PROCESSING

• Noise filtering

• Signal shaping

• Signal transformations (e.g. FFT)

• Feature extraction

• Normalizing

Especially new multimedia applications and standarts (eg. MPEG2, MPEG4) require computation-
intensive transformations to reduce the bandwidth and to enhance the quality of audio and video
signals.

2.1 Binary Number Systems

The basic digital unit is called a bit. One bit can only have one of the two values: logic “0” or
logic “1” (commonly referred to as 0 and 1). It is evident that one bit alone can not hold much
information. More bits can be joined to form a number that can express larger numbers. With
a total of n bits 2n different numbers can be expressed. Yet this alone does not describe how
a number can be represented in digital form. There are several number systems with different
capabilities and short-comings

2.1.1 Binary Number Systems

The binary number systems are the most widely used number systems because of their simplicity.
The basic binary number system is much similar to the decimal system we use. An n-bit number
in the binary number system is an ordered sequence of bits:

A = (an−1, an−2, ..., a0), ai ∈ {0, 1} (2.1)

This number exactly represents an integer or fixed-point number. If we consider only natural
numbers, a direct representation would be possible. This is called an unsigned binary number
representation. For a set of ai the corresponding value can be calculated as:

A =
n−1∑
i=0

ai · 2i (2.2)

Numbers from 0 to 2n − 1 can easily be represented this way. If negative numbers are involved,
a different approach needs to be taken. A solution analogous to the solution used in a decimal



2.1. BINARY NUMBER SYSTEMS 11

number system would be to use a digit to represent the sign. This representation, where the
Most Significant Bit (MSB) of the sequence represents the sign of the number, is called the
Sign-Magnitude Binary Number system. The value of A can be determined by:

A = (−1) · an−1 +
n−2∑
i=0

ai · 2i (2.3)

Although this format is relatively easy to comprehend, it has some important disadvantages. The
number 0 can be represented in two different ways (one with a positive and one with a negative
sign). A more significant problem is that positive numbers and negative numbers have to be
treated differently in arithmetic operations. This is a major problem for operations that involve
more than two operands, as the number of possibilities for the signs increase dramatically with
the increasing number of operands.

The Two’s Complement representation of the binary number system is the more frequently pre-
ferred alternative to represent both positive and negative numbers. The value of A of a two’s
complement number can be calculated by the following method:

A = −an−1 · 2n−1 +
n−2∑
i=0

ai · 2i (2.4)

The negative value of any number with this representation can be calculated as:

−A = A+ 1 ; A = (an−1, an−2, ..., ao) (2.5)

The most interesting feature of this representation is that for most of the basic arithmetic opera-
tions, digital computation blocks (with slight limitations) will perform correctly independent of
the sign of the number. Table 2.1 gives all the combinations of a 4-bit number and lists their
respective values for the three representations.

2.1.2 Gray Numbers

The most important disadvantage of the binary number representation is that for some small
change in value, a large number of bits within the number may change. As an example for a 8
bit number, consider the representation of 63 (0011 1111)2 and 64 (0100 0000)2 (notice that this
example is independent of the number representation). Although the distance between these two
numbers is only one LSB, 7 out of 8 digits have changed their values.

The Gray number system is a non-monotonic representation where two consecutive numbers
differ in only one of their digits. For some applications such as counters or low-power address
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Table 2.1: Values of a 4-bit number according to its representation.

Bit sequence Unsigned Sign-Magnitude Two’s Complement
0000 0 +0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 -0 -8
1001 9 -1 -7
1010 10 -2 -6
1011 11 -3 -5
1100 12 -4 -4
1101 13 -5 -3
1110 14 -6 -2
1111 15 -7 -1

bus decoders the Gray number system can help reduce the power consumption as for consecutive
numbers there will be fewer transitions (and associated power consumption).

The main disadvantage of this number representation is that it is not well suited for arithmetic
operations mainly because Gray numbers are non-monotonic. The lower power consumption
issue is also arguable, as the extra power used for the generation of Gray numbers may decrease
the aforementioned power savings considerably [4].

2.1.3 Redundant Number Systems

Addition is by far the most important elementary operation with in digital systems. The main
difficulty with the addition lies in the carry problem (also referred as the curse of carry) [1]. The
result of an operation on the bits of same magnitude can affects the result of higher order bits
and is likewise affected by the result of lower order bits.

The redundant number systems are a result of this problem. The main idea is to represent one
digit with more than one bits (hence the name redundant) to avoid carry propagation in adders.
As a result of redundant bits, a number represented in a redundant number system has higher
storage requirements than that of a number represented in a non-redundant form. A second
disadvantage is that the conversion from a redundant number system to non-redundant number
system is quite complicated.
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2.1.4 Floating-Point Number Systems

All the number systems discussed so far are so-called fixed point number systems. The floating
point representation consists of a sign bit (S), a mantissa (M ) and an exponent (E) in the form
of:

F = (−1)S ·M · 2E (2.6)

Table 2.2 shows two IEEE standarts for floating point representations.

Table 2.2: IEEE Floating point standart.

standart n nM nE range precision
single 32 23 8 3.8 · 1038 10−7

double 64 52 11 9 · 10307 10−15

Floating point operations require different operations for mantissa and exponent parts of the
number. General purpose processors which are used for scientific computing make use of float-
ing point arithmetics by means of dedicated Floating Point Units (FPU) to speed up computation
intensive applications. Not more than five years ago these FPU’s were usually auxiliary proces-
sors. Today all of the modern general purpose processors have embedded FPU blocks.

There are other number representations such as: Residue Number System, Logarithmic Number
System and Anti-Tetrational Number System [5] whose details are beyond the scope of this text.

2.2 Hardware Solutions

Once the data is represented in digital form, it can be processed with a large number of algo-
rithms. Any specialized hardware that performs signal processing on digitally represented data
can be called Digital Signal Processing Hardware (DSP hardware). Few different families of
DSP Hardware can be identified [1]:

DSP processors: These chips are essentially RISC architecture processors with specialized hard-
ware for DSP algorithms. They can be programmed to perform a wide range of algorithms.

DSP cores: These blocks are large macro-blocks with the functionality of a DSP processor that
can be embedded in ASIC’s. These cores would include a more specialized hardware for
the algorithm.

Application Specific DSP Chips: These chips are designed for a specific algorithm and are
used where programmable approaches can not achieve the required performance.
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The nature of DSP algorithms have different requirements than generic computational algo-
rithms. Multipliers and adders are indispensable blocks of any DSP algorithm. DSP algorithms
operate on a fixed rate of data, putting strict restrictions on the speed of individual operations.

Another interesting aspect of DSP algorithms is that it frequently relies on the current as well
as previous values of data. The only way to realize this is to use storage elements (registers or
RAM). RAM access is a slow and complicated process and large memory arrays are the least
wanted blocks in any high speed design. As an example, a (512 x 512), 8-bit grayscale image
needs a storage of approximately 2 million bits which, in turn, requires a considerable RAM
capacity. No DSP algorithm can afford to have simultaneous access to all pixels of this image, it
can at most concentrate on one part of the image.

The main problem however, lies in the I/O bandwidth. The source that will provide the data to the
DSP block and the receiving end that will receive the processed data, typically have limitations
on the available bandwidth.

The introduction of DSP specific hardware dates back to the early 80’s. First programmable
DSP processors were mainly used for audio-band applications. Especially the Texas Instruments
320c series of general purpose DSP processor was widely used for a wide range of applications.
Strangely enough, contrary to the parallel developments in general purpose microprocessors or
memory chips, the DSP specific hardware did not have a continuously expanding usage within
the 80’s. It took almost 10 years until the developments in electronics industry enabled DSP
hardware to be developed that were fast enough for image processing. Image filtering, compres-
sion and coding are the three main fields for which a number of dedicated chipsets have been
produced.

2.3 Dedicated Hardware versus Generic Processors

The last decade has seen an enormous increase in the capabilities and application areas of general
purpose microprocessors. As a result of these developments, the average home computer user
nowadays has a typical computation power which is at the same level of that of leading research
institutes not much more than ten years ago. There are a few key reasons for this accelerated
development [6]:

• The home computer market has grown enormously. Computers have migrated from being
a scientifically complicated instrument to a easy-to-use common home appliance that is
used mainly for amusement and personal productivity.

• The software industry quickly exhausts the increased capabilities of the new processors
by the way of new applications, such as more detailed Graphical User Interfaces, higher
resolutions for data, multimedia applications, which in turn creates a demand for faster
processors and increased storage capacity.
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• Companies producing processors need to make huge investments to develop their new
products. They can only recover their costs by means of a continuous demand from market.
This forces the companies to design more advanced products continuously.

• Despite all negative prognoses, the electronic technology continues to achieve faster, denser
devices with an increasing accuracy.

As a result, we are continuously offered an increasing number of extremely powerful general
purpose processors which enable many sophisticated and computationally complex problems to
be solved by software running on these processors. The main advantages of these processors are
obvious:

• They are mass-produced and therefore when compared to other chips with the same tech-
nology and capability have a low unit price.

• They can be reconfigured and re-used easily

• They are readily available on the market.

• Software development is much cheaper than hardware development.

• As the general purpose processors are widely used, a large number of development engi-
neers are already familiar with the processors and their applications.

• A new processor with increased performance is expected to appear every year.

At the beginning of 1980’s when the first DSP chips were introduced to the market nobody would
have believed that general purpose processors could outperform specialized Signal Processing
Processors. The initial boom of DSP chips faded silently, and especially after the introduction of
MMX extensions to the majority of general purpose processors (which essentially adds a number
of specialized instructions for DSP), it is doubtful whether or not they can reconquer the market.
While the future of DSP processors is not very bright, specialized DSP chips, and macro-blocks
will continue to be play an important role in the future.
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Chapter 3

Earlier work: A Programmable Image
Filter - Taurus

In this section, we present the overall architecture of a dedicated chip, Taurus, which is a fully
pipelined real-time programmable 3x3 image filter [3, 7] based on Capacitive Threshold Logic
(CTL) [8]. This chip has essentially been designed to demonstrate the capabilities and possible
applications of a new circuit technique (CTL) in digital signal processing. This material is pre-
sented to serve as preliminary background for the Aries architecture which will be introduced in
Chapter 4.

The extensive research on CTL has resulted in a wide range of building blocks like multipliers,
parity generators and population counters. CTL blocks have the advantage of realizing high
fan-in building blocks with a much lesser complexity than a CMOS counterparts. As most of
these blocks have costly CMOS realizations, traditional designs often tend to avoid algorithms
employing functions with high fan-in. Having developed these fast and compact blocks, research
intensified on the realization of complex digital systems using CTL building blocks.

A number of applications and algorithms have been examined for their suitability to include CTL
building blocks [8, 9, 10, 11]. The time-domain two dimensional convolution (among others)
proved to be suitable candidate for a CTL based application. The two dimensional convolution
filter, depending on the window-or-kernel size of the filter, involves the multiplication of data
values with their corresponding coefficients and the accumulation of the weighted sum of all the
product terms. Thus an n x m filter needs n ·m multiplications and (n ·m) − 1 additions with
a total of 2 · (n ·m)− 1 operations per result. These operations can be defined in mathematical
notation as:

yp,q =
m∑
j=1

n∑
i=1

ci,j · xp+i−2,q+j−2 (3.1)

where xp,q is an element of the input set, yp,q is the filter result corresponding to the input and ci,j

17
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are the coefficients of the n xm window (kernel). The realization of an 3 x 3 (n = m = 3) image
filter was targeted as a demonstration of capabilities of the CTL blocks. Rewriting equation 3.1
for the given values of n and m we get

yp,q =
3∑
j=1

3∑
i=1

ci,j · xp+i−2,q+j−2 (3.2)
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Figure 3.1: 3 x 3 convolutional filtering.

A real time implementation of this filter will need to have access to three subsequent lines (rows
of pixels) of the image at any time during its operation. Three new values from each line needs to
be taken at each clock cycle (Figure 3.1), thus at any given time the hardware would have access
to any of these pixel values and the 2 dimensional convolution function can also be simplified
into a 1-D FIR algorithm as follows:

yp,q =
9∑
i=1

ci−1 · xu,v (3.3)

where the indexes for the 2 dimensional position of the input pixel can be calculated from the 1
dimensional variable i using modulo and remainder operations:

u = (i−
∥∥∥∥ i3
∥∥∥∥ · 3)− 2 (3.4)

and

v =
∥∥∥∥ i3
∥∥∥∥− 2 (3.5)

Having this conversion form i → ( p, q ) in mind, equation 3.3 can be written in a more simpli-
fied way such as
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ym =
8∑
i=0

ci · xm(i) (3.6)

A traditional high-speed implementation of this algorithm requires 9 parallel multiplier circuits
to compute each product term, and an adder to calculate ym which increases the silicon area
significantly [1].

A totally different approach to this problem can replace all multipliers with population counters.
For image processing applications one may assume that xm is a 8 bit unsigned integer corre-
sponding to the intensity of a pixel in the input image (Although any other value might also have
been used within the algorithm). Any xm can be written as

xm = 27bm,7 + 26bm,6 + 25bm,5 + 24bm,4 + 23bm,3 + 22bm,2 + 21bm,1 + 20bm,0 (3.7)

xm =
7∑
j=0

2j · bm,j (3.8)

where bm,j ε {0, 1} is the jthbit of the mth image pixel. Breaking down image pixels into bits
leads to the definition of bitplanes which are 2 dimensional arrays that have the same dimensions
as the image, but only consist of the jth bit of the image pixel values (see Figure 3.2). Substituting
this representation of a binary number in Equation 3.6 we get:

ym =
8∑
i=0

7∑
j=0

ci · 2j · bm(i),j (3.9)

Using the associative property, we can further modify this equation into

ym =
7∑
j=0

2j ·
(

8∑
i=0

ci · bm(i),j

)
(3.10)

This re-arrangement is very important in understanding the operation principle of the Taurus
architecture. The inner parenthesis which involves a multiplication is a special multiplication
operation as one of the operands has only two possible values (bm,j ε {0, 1}). Therefore, the
result of the multiplication can be expressed as:

bm(i),j = 0 → ci · bm(i),j = 0 (3.11)

bm(i),j = 1 → ci · bm(i),j = ci (3.12)
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Figure 3.2: Bitplane representation of a binary coded image.

The inner sum therefore, is only a conditional sum of the coefficients. Taurus uses a CTL based
counter to generate this sum. An input switch matrix provides a programmable switch for each
of the coefficients. If bm(i),j = 1, ci number of inputs of a counter are made active. The counter
simply counts the number of logic “1”s on its input which is the sum of all coefficients which
have a non-zero corresponding bit on the bitplane. Once this sum is generated for each bitplane
of the image, the result is obtained by weighting and adding these sums. The jth sum has a
weight of 2j , but this weighting is relatively easy to implement with by the means of a simple j
bit shift left operation. In fact, the shifting operation can easily be implemented within the adder
with no extra cost at all.

3.1 Capacitive Threshold Logic

Threshold Logic (TL) emerged in early 1960’s as a unified theory of logic gates, which includes
conventional switching logic as a subset. The formal TL gate can perform not only and/or prim-
itives but any linearly separable boolean function [12]. But despite the theoretically obvious
merits, until recently TL has never had a significant impact in practice, due to the limited success
achieved in developing a suitable TL gate on silicon.

The similarities between the functionality of a TL gate and the hard limiting neuron structures
used in artificial neural networks, has led to the development of Capacitive Threshold Logic
(CTL) gates [8].

3.1.1 CTL Operation Principle

The CTL circuit technique offers a successfull implementation of threshold functions using con-
ventional CMOS processes. A threshold gate is defined as an m input gate where the output Y
is defined as follows:
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Y = 1 if
m∑
j=1

Wj ·Xj ≥ T (3.13)

Y = 0 if
m∑
j=1

Wj ·Xj < T (3.14)

where Xj is the jth binary input with a corresponding weight of Wj . A basic CTL gate of m
inputs, as shown in Figure 3.3, comprises a row of weight-implementing capacitors Ci and a
chain of inverters which functions as a voltage comparator.

ROW OUT
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Figure 3.3: Basic circuit diagram of a Capacitive Threshold Logic (CTL) gate.

The CTL gate operates in a two phase non-overlapping clock consisting of a reset phase defined
by the clock φR and an evaluation phase defined by φe. During the reset phase, the row voltage
Vrow is reset to the threshold voltage of the first inverter Vth1. The bottom plates of all input
capacitors are forced to ground potential while all the threshold capacitors have their bottom
plates connected to VDD. The total charge accumulated in the row during reset can be calculated
as follows:

Qrow,reset = Vth1 .
∑

Ci + (Vth1 − VDD) · CT + (Vth1 − Vth2) · Cd (3.15)

where Vth1 is the inversion (logic) threshold voltage of the first inverter within the comparator
and Vth2 is the inversion (logic) threshold voltage of the inverter in the dummy column. In
the evaluation phase all binary inputs are forced onto the m input columns while the threshold
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capacitors are connected to ground potential. The amount of charge in the row, for a given set of
inputs, can be calculated as follows:

Qrow,evaluate =
∑

(Vrow · Vi) · Ci + (Vrow − 0).CT + (Vrow − 0).Cd (3.16)

Since the row charge is retained (charge conservation) during both operational phases, the row
voltage perturbation during the evaluation phase becomes:

(Vr − Vth1).ΣCi + (Vr − Vth1).CT + (Vr − Vth1).Cd = ΣViCi − VDD.CT − Vth2 .Cd (3.17)

The row perturbation is equal to the difference between row voltage in reset and evaluation
phases.

∆Vrow = (Vrow − Vth1) (3.18)

Substituting this in Equation 3.17 yields

∆Vrow =
1

(
∑
Ci + CT + Cd)

.(
∑

Vi.Ci − (VDD · CT + Vth2 · Cd)) (3.19)

Notice that the first inverter of the comparator circuit is biased exactly at inversion threshold
Vth1 , which is also the operating point with the highest gain, at the beginning of the evaluation
phase. If the voltage perturbation ∆Vrow is positive, the first inverter output will tend to drop to
logic “0” and the second inverter will switch to logic “1”. If the voltage perturbation ∆Vrow is
negative, the opposite will happen.

∑
Vi.Ci ≥ (VDD · CT + Vth2 · Cd)→ Vout = VDD (3.20)

∑
Vi.Ci < (VDD · CT + Vth2 · Cd)→ Vout = 0 (3.21)

It can be seen that Equations 3.20 and 3.21 correspond to the basic threshold gate Equations
given in 3.13 and 3.14.

3.1.2 CTL-Based Parallel Counter

The CTL-based parallel counter (i.e. population counter) circuit constitutes the heart of the
Taurus architecture [10]. A parallel counter is a multi-input, multi-output combinational logic
circuits which determine the number of logic “1”s in their input vectors and generate a binary
encoded output vector which corresponds to this number.
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A traditional CMOS realization of a parallel counter involves a number of full adders (FA’s)
arranged in a tree like structure (See Figure 3.4). Swartzlander [13] reports the number of FA’s
for an m-input population counter as

m− log2(m) (3.22)
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Figure 3.4: Full Adder (FA)-based realization of a (31:5) parallel counter.

Different threshold logic realizations of the population counter exists in the literature [14, 15, 16].
The CTL realization of the parallel counter used in this work is based on the two level Minnick
counter (Figure 3.5).

3.2 Description of the Architecture

The basic architecture of the Taurus comprises of the basic building blocks given in Figure 3.6:

Input registers: At any given time the Taurus architecture needs access to a 3 x 3 snapshot of
the image. Three rows of shift registers with a depth of three are used to store this snapshot.
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Switch matrix: Each input bit within the input data has a corresponding weight. For a logic “1”
bit, this weight is applied to the inputs of the counters. The switch matrix is used to store
the filter weights. Each element within the switch matrix is trigerred by a different bit of
the input image and can activate a programmable number of inputs of counters.

The CTL counters: For an 8-bit image, eight independent counters are used to accumulate the
weights of corresponding bits. The switch matrix activates a number of inputs on each
counter depending on the value of the corresponding bit. The total number of active inputs
is accumulated by the CTL counter blocks.

Systolic adder tree: The output of the CTL counters corresponds to a partial sum of one bit-
plane of the image. All eight partial sums need to be added to get the result. Since each
bitplane has a different weight, they can not be added directly. The systolic adder tree
shifts (and thereby multiplies) the partial results according to their rank and accumulates
the final result.

This basic architecture has been refined to achieve higher performance.

• The speed of the basic building blocks made it possible to use internal time multiplexing,
and to reduce the required hardware by 50%. Instead of operating on full 8-bits data,
Taurus first operates on the lower order 4-bits of the image data, this result is stored in an
accumulator. In the next clock cycle the higher order 4-bits are calculated using the same
blocks. This time the result is shifted four times and added in the accumulator. The chip
accepts three new input pixels in each cycle, at a frequency of fclk. The data is multiplexed
at the output of the registers and the subsequent blocks operate at 2 · fclk frequency.

• The fan-in of the parallel counter circuits used in this design sets a hard limit for the sum of
the coefficients. The basic counter block used was a 31-input counter, which was obviously
insufficient for the sum of 9 4-bit coefficients. Therefore, two counters were used for each
bitplane enabling a sum of coefficients of up to 62. This resulted in having two separate
five bit results as the sum of the bitplanes. For increased efficiency two groups of four
counters were developed. The four counter groups included one counter for each block
and the corresponding systolic adder structure. The result of both systolic adders was later
added using a second adder stage.

• The counting algorithm can not cope with negative coefficients directly. To allow negative
coefficients, an exact copy of the first block is used. This block too has two separate
outputs and the second adder mentioned above was enhanced to subtract these negative
coefficient sum from the sum of the positive block. The second adder stage also included
a switch to enable addition of all four numbers in case there were no negative coefficients
needed, thereby increasing the coefficient dynamic range if all coefficients were positive
(or negative).
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• It was decided that all coefficients would be 4-bit integers and would not exceed 15. The
hardware also restricted the sum of all coefficients to 60. For each bitplane this meant
routing of sixty separate signals from the switching matrix to the counters, taking up enor-
mous amounts of silicon area. As there would be only nine coefficients, each between
zero and fifteen and having a sum of at most sixty, it was evident that there existed a
grouping of input signals that did not impose further limitations on the coefficients but
minimized the number of connections. Prof. Dr. İ. Cem Göknar [17] provided a group
of numbers that made it possible to use only 25 connections (the original solution was
25 numbers but 26 connections were used to have the same groupings for both counters).
These numbers were commonly referred to asCG−magic among the Taurus design group
members.(CG−magic = {6, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1}).

Figure 3.7 shows the final detailed block diagram of the Taurus architecture with all these im-
provements and the pipeline registers.

3.3 Realization of the Image Filter Chip

To evaluate the performance of the proposed architecture a test chip has been designed and devel-
oped (See Figure 3.8) using conventional 1.2 µm double-poly double-metal CMOS technology.
The chip contains a fixed weight version of the processing core which realizes a (3 x 3) smoothing
function. The switch matrix array, which is used to facilitate coefficient programming, has been
omitted to simplify testing. The realized test structure contains three eight-bit-wide and three-
bit-deep input shift registers which facilitate simultaneous input of three eight-bit pixels during
each cycle, the corresponding bitplane multiplexers, eight CTL-based parallel (30,5) counters,
and two systolic adder arrays. edge triggered dynamic CMOS register cells were used for all
pipeline registers. the parallel counters and the adder arrays each form separate pipeline stages
in order to reduce the stage delays (These blocks can be seen in Figure 3.7 as shaded blocks).

Extensive post-layout simulations have shown that the signal propagation delay associated with
the CTL based parallel counters is about 10 ns, whereas the overall delay of the CMOS adder ar-
ray stage is well below 10 ns, using a supply voltage of 5 V. Thus, the maximum clock frequency
can be as high as 100 MHz, allowing real-time processing of high-resolution (1024 x 1024) pixel
images at a rate of 50 frames per second.

The core area of the implemented test chip (1.8 mm x 1.5 mm) compares very favourably with
other image filters using a similar fabrication technology. About 60% of the active area of the
chip is occupied by the CTL counters and their input and output registers, while the systolic
adder arrays occupy around 15% of the total area.

Although tests were hampered by different reasons, the calculation time for a single vector was
measured to be around 7.9 ns [7] which is well under the designed 10 ns.
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Figure 3.7: Detailed block diagram of the Taurus architecture.
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Figure 3.8: Microphotograph of the fabricated Taurus core test chip.
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3.4 Design Problems Associated with the Taurus Architecture

A number of problems both in the design and the implementation of the algorithm have been
detected after carefull analysis of the Taurus design:

• The first problem that emerged was the difficulty of testing the chip. This was partly
caused by the lack of built-in test hardware (scan registers for example). The complexity
of pipeline operation and especially the very large internal data busses (up to 192-bits)
made testing and problem detection an extremely difficult task.

• The coefficient dynamics are severely limited by the hardware. Increasing the coefficient
dynamics would increase the internal routing and require more counters which would in
turn further complicate the design of adders.

• The necessity to use a separate, identical block for negative coefficients introduced a high
degree of redundancy and increased the silicon area.

• The switch matrix block turned out to have extreme routing requirements. The first few
layouts of the switch matrix had unacceptably high routing area overhead.

• The most important shortcoming of the design of the Taurus is that the architecture is prac-
tically not scalable in terms of filter window size and filter order. It will require extremely
complicated hardware to utilize a number of Taurus image filter chips to construct a higher
order image filter.

A number of solutions to address the above mentioned problems have been evaluated and as a
result of this research Aries was developed. In Aries the basic idea of computing a convolution
without using conventional multiplier cells, in breaking up the input (image) data to bitplanes
remained the same, but RAM blocks were used to calculate bitplane results instead of CTL
blocks.
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Chapter 4

A Programmable Digital Filter
Architecture - Aries

Two main problems in the design of Taurus became primary considerations in the design of
Aries: scalability and programmable coefficients with a higher dynamic range.

Although many applications could make use of a 3 x 3 image filter, a scalable building block
is much more desirable than a block with a fixed kernel size. Any kernel with size M x N can
be realized by accumulating the results of a number of kernels with smaller sizes m x n where
M ≥ m and N ≥ n. It can be shown that the number of such m x n kernels needed is:

(∥∥∥∥Mm
∥∥∥∥+ 1

)
·
(∥∥∥∥Nn

∥∥∥∥+ 1
)

(4.1)

Scaling of the filter kernel along the Y axis does not impose extra restrictions on the design but
in order to scale along the X axis, the block must be able to provide the outputs of the internal
shift registers to the next stage. If this is not the case, the same delay must be provided externally
to the block. This would result in a non uniform structure as the first block would need no delay
elements, the second would need m delay elements, the third 2 ·m and so on. The last problem
rises in the addition of all the block results. As the complexity of the addition increases with the
number of blocks included, it is not convenient to leave this task out of the block. The block
needs to provide some sort of support for the addition of a number of results.

Integer coefficients of up to 15 might be reasonable (though more would be desirable) for a
3x 3 filter. But filters with a larger kernel usually need a higher coefficient range. A possible
solution is to scale all coefficients of one block with a fixed number, thus changing the range of
the coefficients locally. This solution might be applicable for a number of applications but is not
sufficient enough for a complete solution.

Increasing the coefficient range within the Taurus architecture is only possible by adding more

31



32 CHAPTER 4. A PROGRAMMABLE DIGITAL FILTER ARCHITECTURE - ARIES

parallel counter blocks. The increase in the number of counters would also complicate the inter-
nal routing to an almost unmanageable level, while further complicating the later adder stages.
An algorithmic improvement is inevitable for a significantly higher coefficient dynamic range.

Aries is designed to be a building block for convolutional filters and the main design issue is on
scalability. Therefore the design has to:

• Provide shift register outputs for further processing

• Have a useful size to be used as a building block for filters with big kernels

• Include hardware for accumulation of all results

• Be as small and fast as possible

As scaling in the Y dimension did not have any extra complexity penalty a one dimensional
structure was used for Aries. Almost all filters have odd sized dimensions and therefore an even
sized block would not be very practical. 3 x 1 proved to be too small to justify the overhead
involved in the architecture and blocks larger than 5 x 1 would have too much redundancy in
them for small to medium sized filters (which usually are 3 x 3 or 5 x 5). As a result, Aries was
designed to provide the functionality of a 5 x 1 one dimensional convolution filter that could be
expanded to realize 1D and 2D convolutional filters of any complexity.

4.1 Description of the General Architecture

The basic DSP algorithms implemented by the Taurus and Aries architectures are very similar.
The general block diagram of the Aries architecture is shown in figure 4.1. Aries has a 5 level
shift register on its input (as opposed to 3 in Taurus) to have simultaneous access to all the data
elements. The main difference between the two designs lies in the calculation of the conditional
sums of the coefficients on a bit plane. The CTL-based parallel counters in the Taurus architec-
ture are replaced by RAM blocks in the Aries architecture . Once the problem of calculating the
result

4∑
i=0

ci · xm(i) (4.2)

has been reduced to adding the conditional sums of all bitplanes:,

7∑
j=0

2j ·
(

4∑
i=0

ci · bm(i),j

)
(4.3)
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Figure 4.1: General block diagram of the Aries architecture.
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it was shown that the inner sum could be calculated by simply adding or neglecting the associated
coefficient ci depending on the value of bm. As the block only needs five values of the input
source, this sum is a linear combination 5 coefficients. Different algorithms can be devised to
calculate the sum of coefficients of any length, but as long as the coefficients do not change there
will be only 25 = 32 different results depending on the 5-bit value of the input pattern. If a
32-word memory (note that in the case of fixed coefficients, a simple ROM can be used for this
purpose) is used to store all the possible results, this sum can be calculated independently of the
coefficient representation. To provide programmability a RAM structure was used in Aries. As
the delay of reading data from RAM is independent of the word size any length of coefficients
can be used. Table 4.1 lists all possible conditional sums depending on the input data.

Table 4.1: All possible conditional sums as a function of input data.

Data Sum Data Sum
00000 0 10000 c5
00001 c1 10001 c1 + c5
00010 c2 10010 c2 + c5
00011 c1 + c2 10011 c1 + c2 + c5
00100 c3 10100 c3 + c5
00101 c1 + c3 10101 c1 + c3 + c5
00110 c1 + c2 10110 c2 + c3 + c5
00111 c1 + c2 + c3 10111 c1 + c2 + c3 + c5
01000 c4 11000 c4 + c5
01001 c1 + c4 11001 c1 + c4 + c5
01010 c2 + c4 11010 c2 + c4 + c5
01011 c1 + c2 + c4 11011 c1 + c2 + c4 + c5
01100 c3 + c4 11100 c3 + c4 + c5
01101 c1 + c3 + c4 11101 c1 + c3 + c4 + c5
01110 c2 + c3 + c4 11110 c2 + c3 + c4 + c5
01111 c1 + c2 + c3 + c4 11111 c1 + c2 + c3 + c4 + c5

Aries also uses the time multiplexing scheme to operate only on 4 bit planes at any given time.
As each bitplane may have different data bits to be processed simultaneously, four different RAM
structures have to be used. But since all of the RAM’s would hold exactly the same information,
it is not necessary to have four completely different RAM blocks. Figure 4.2 shows three existing
alternatives:

• Four different single-port RAM structures: This solution seems to be the most basic, but
the most costly solution (for the reason explained above).

• A single 4-port RAM structure: This solution attempts to share all common blocks in
order to reduce the required silicon area. It requires a single memory structure that can
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Figure 4.2: Three alternative designs for the RAM blocks which are to be used to store the
conditional sums.
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be simultaneously accessed through four I/O ports. But the transistor-level design of an
efficient 4-port (quad-port) SRAM cell is quite complicated.

• Two dual-port RAM structures: This alternative is a midway solution between the two
other alternatives. It is less complex than the quad-port memory, and occupies less area
than four individual single-port RAM blocks.

Of the different RAM realizations, the Static RAM (SRAM) realization was used in the design of
the Aries architecture, because it is easier to design and more robust than the other alternatives.
The double dual-port alternative was used in the design, since the basic cell for a dual-port RAM
cell was not much more complex than the single-port RAM cell, keeping the overall size of the
RAM block compact. The quad-port RAM would have benefited from maximum resource shar-
ing; but the basic cell proved to be too complex, as the extra routing overhead nearly cancels out
all the area gained by the single RAM array. The dual port architecture had another advantage:
As the RAM is laid out in a column, a totally symmetric structure could be used for both ends
of the column (Although this advantage was later given up in favour of shorter signal routing
paths).

The output of the RAM’s is later shifted and added in a systolic adder that is similar to the one
used in Taurus. There is an interesting speed/accuracy trade off parameter that can be adjusted
within these two blocks. As mentioned earlier, the speed of RAM is independent of the word
width, whereas the speed of the systolic adder heavily depends on the word width of its operands.
As both of these blocks are in different pipeline stages, they can be optimized to match each other,
minimizing the pipeline redundancy.

The results from the upper and lower parts of the blocks are merged in a separate accumulating
adder which again has the same structure as the accumulator that was used in Taurus. The result
of this operation is actually the result of the operation. This value will correspond to the new
value of data, but it has to be reformatted to the same range as the input: an 8-bit unsigned
integer value. This involves some sort of truncation and rounding which heavily depends on the
coefficients and the input data ranges.

At this point the data is ready for output. The block includes an additional adder stage that can
be configured to be part of an adder chain to add the results of all blocks in the filter.

Figure 4.3 shows the basic floorplan of the Aries DSP engine. The dashed line in the figure
shows the flow of data within the blocks. Rough pre-design estimations suggested the size of the
final layout to be between 2mm2 and 4mm2using the 0.8µm double-metal CMOS technology
of the Austria Micro Systems (AMS). The extremely compact size and the high-flexibility of the
Aries architecture makes it possible to construct even the most demanding and complex image
filters within a single chip.

Aries consists of several independent blocks (see Figure 4.1):

• Input Registers
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Figure 4.3: General floorplan of the Aries DSP engine.

• SRAM

• Systolic Adder

• Accumulator

• Output Stage

• and Final Adder

4.2 Pipeline Structure and Pipeline Elements of Aries

The Aries architecture computes the weighted sum of five consecutive signal values. A simple
structure consisting of five shift registers is used to store these consecutive data. The 8-bit input
data is sampled at the rising edge of the first clock cycle by the first register. The output of the
first register is connected to a second one, and at the second rising edge the data is sampled by
the second stage registers while at the same time the first stage registers sample a new data. After
the first five clock cycles, the block has access to five consecutive data values and can calculate
a weighted sum for these values. At each new clock cycle a new value enters the shift registers
and the last value is pushed out of the block.

The Aries architecture is designed as a pipeline structure to speed-up the operation. The signal
flow is broken down into several sub-blocks separated by registers. At each clock cycle, the
output of each block is sampled by a pipeline register. At the same time the result of the previous
block is sampled by another register block and is made available as an input to the first block.
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Each block has a fixed time determined by the clock rate of the pipeline registers to compute the
result.

Instead of calculating all results for 8-bits in n clock cycles, the architecture consists of inner
blocks that operate on 4-bit data and produce a new result in n

2
clock cycles. The outputs of

the shift registers have a simple multiplexer structure that selects the lower order 4-bits while
the clock signal is high and selects the higher order 4-bits when the clock signal is low. These
4-bit partial-data is processed with a faster clock of 2f frequency within the inner blocks and the
partial results are joined in the accumulator block. The general pipeline structure of the Aries
architecture is shown in Figure 4.4.

The design of the pipeline registers is a very important phase of any pipeline based design.
Generally, a large number of registers have to be used. As an example, Aries uses 170 pipeline
registers throughout the design. Table 4.2 lists the distribution of registers for various blocks. As
mentioned earlier, each block is allotted a certain time to finish the calculations before the output
is sampled by the output register. For extremely fast pipeline stages the sampling speed of the
register itself is a critical factor. In Aries the inner blocks (which operate on a faster clock) are
designed to operate in a 10 ns pipeline. This 10 ns includes the calculation delay of the block
plus the sampling time of the register. Therefore, it is highly desirable to have a register that is
extremely fast (< 1 ns).

Table 4.2: Number of registers used throughout Aries.

Name Number Clock
Input Shift Registers 5 · 8 = 40 f

RAM outputs 4 · 10 = 40 2 · f
Sys. Adder outputs 13 2 · f

Accumulator 13 f
Accumulator Outputs 16 f

Output Stage 16 f
Final adder 2 · 16 = 32 f

TOTAL 170

Two basic circuits are widely used to realize pipeline registers. The most common solution is
to use a latch. A simple and efficient latch can be realized with as few as 4 transistors. The
main problem is that the circuit requires two complementary clocks. The second alternative
is to use a D-type flip-flop (DFF) which is edge trigerred (contrary to the latch which is level
sensitive). DFF’s are usually preferred for their relative robustness over simple latches in many
applications, even though the circuit complexity of a typical DFF is usually twice of that of a
simple latch, due to the Master-Slave configuration. All registers within Aries are realized as
modified Yuan-Svensson D-type flip-flop [18], whose circuit schematic is given in Figure 4.5.

The Yuan-Svensson Flip-Flop is one of the fastest and most compact D-type flip-flop realization
available. The circuit is based on the True Single Phase Clock (TSPC) principle and requires
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Figure 4.4: Timing diagram of the pipeline.
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Figure 4.5: Schematic of the Yuan-Svensson D-type flip-flop.

a single data and clock signal for operation. Its high operation speed and low transistor count
make it an interesting alternative for traditional latch architectures. Figure 4.6 shows a simulation
result of the Yuan-Svensson D-type flip-flop (all nMOS transistors W = 2µm, and all pMOS
transistors W = 5.6µm). The simulation shows that even without aggressive transistor sizing,
the Yuan-Svensson D-type flip-flop is able operate much faster than 1 ns.

The 8-bit outputs of the shift registers are pairwise fed into a multiplexer. This multiplexer selects
the lower order 4-bits for the high value of the clock signal and the higher order 4-bits for the
low value of the clock. The output of each multiplexer in a shift register block drives a separate
address line of the RAM. Combining the outputs of multiplexers in five rows, four different
RAM address lines of five bits each aregenerated. The simple 2:1 multiplexer circuit would be
sufficient for read only operation. For write operations the address lines of the RAM blocks must
be controlled separately. A third mode where the address lines are tied to an external data bus is
used to create a simple interface to the outside world. Figure 4.7 shows the block schematic of
the input stage.

The shift registers are laid out in two separate blocks in order to drive the address decoders of the
Dual-Port RAM structure. Figure 4.8 shows the layout of one of the input register blocks. The
layout consists of two separate paths, each having 2 x 5 Yuan-Svensson D-type flip-flops, and
each register pair is followed by a three input multiplexer. The external address lines are shared
by both paths, and they are located in the middle of the bus seen to the center of the cell. All
clock and power signals are routed horizontally over the cells. The layout occupies an area of
320µm x 140µm.
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Figure 4.6: Simulation result of the Yuan-Svensson D-type flip-flop
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Figure 4.8: The layout of the input shift registers



Chapter 5

Design of the RAM Arrays Used in Aries

The main algorithm implemented by the Aries architecture is based on the fact that for m in-
puts, (regardless of the complexity of the data and coefficients involved) there can be only 2m

different results, all of which can be stored within a processing pipeline to reduce computational
complexity. This is only possible if:

1. For a given numberm, the on-chip storage blocks require less silicon area than blocks used
to calculate the results.

2. Retrieval of the results from the storage can be completed faster than calculating the results.

A number of factors need to be evaluated to see if the above mentioned requirements can be met.
It is clear that the efficiency heavily depends on the number m, the data storage method and the
width of coefficients as well as width of data involved in the convolution.

Generally speaking, for a convolution over m input cells with a data width of b bits with a set
of kernel coefficients to get a result k bits wide, the total amount of required storage can be
expressed as

Nstorage = b · 2m · k (5.1)

It must be noted that the storage for each bitplane will be identical, resulting in

Nunique = 2m · k (5.2)

unique storage cells. These two expressions clearly show that regardless of the storage method
a memory based solution is not very efficient for large values of m. Yet for a simple building
block, large values of m are not needed. Even values of m are also not very practical as most

43
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convolutions used in DSP algorithms need the data point plus an equal number of neighbours,
commonly resulting in a matrix of odd dimensions. Table 5.1 compares the amount of memory
to the number of multiplications (assuming k = 10) for selected values of m.

Table 5.1: Number of operations.

m Nunique 8 x 8 Multiplications
3 80 3
5 320 5
7 1280 7

In this work,m = 5 was found as a more reasonable candidate as it has a relatively small memory
requirement which is large enough to justify the peripherals associated with the storage elements.
At first sight, the amount of computational complexity that the storage replaces may not seem
significant. Multiplication is one of the most demanding and area consuming operations in the
digital domain. Aries, as an example, uses m = 5 and the storage elements can deliver the result
of 5 multiplications in 10 ns, in a technology where a well designed Full Adder has a delay
of about 1 ns. The same performance can only be achieved by the utilization of at least two
(or more) multiplier blocks. Moreover the delay of the storage elements is independent of the
coefficient dynamics, that is to say a result of any bit length will be delivered at the same rate
as the 10-bit result. This allows for optimization in the bit-length, by which the delays of all
pipeline stages can be carefully balanced to match the speed of storage elements, as increasing
word lengths accounts for increasing processing in the subsequent combinational adder stages.

5.1 Practical Semiconductor Storage Methods

It is a known fact that the flagship of integrated circuits development is the realization Random
Access Memory devices. Current technology is often referred in terms of storage elements per
chip (such as 1 G-bit technology). Yet much of these advanced technologies are not available for
common digital designs and large on-chip memories are not desirable, mainly because of their
area requirements.

For small and medium scale storage within the constraints of conventional digital VLSI technol-
ogy two practical solutions exist:

• Register Array consisting of D-type flip-flops

• Static Random Access Memory (SRAM)

The most important advantage of the register array, which basically consists of an array of D-type
flip-flops, is that the designer can safely use standart cell elements to generate the register array,
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completely avoiding the time-consuming full custom design effort. Most of the modern synthesis
tools support these arrays and many contemporary designs include relatively large amounts of
such structures. But the register array design also has several disadvantages:

• Standart Cells are much larger than optimized Full Custom Cells

• Standart Cell design techniques will result in a layout consisting of rows of standart cells
which will fail to exploit the two dimensional nature of a storage array. The layout will
lack regularity which will cause non-uniform interconnection delays and timing problems.

Figure 5.1: 2 x 2 SRAM array compared to 4 x 1 DFF array.

Figure 5.1 clearly shows the difference in silicon area. Even without any associated connections
and peripherals, the full custom realization of a 2 x 2 Static-RAM (∼ 1000µm2) occupies less
than one sixth of the area of the registers (∼ 6500µm2).

Although the advantages of using a RAM block is clear, it requires much more design effort
than the standart cell based solution. Some semiconductor foundries have tools to automati-
cally generate RAM blocks, while some others have services for commercial products (in which
practically the foundry employs a RAM design engineer). In the case of Aries, the chosen semi-
conductor foundry Austria Micro Systems (AMS) did not have a RAM generator, so the RAM
cells had to be designed in full custom.

Although inherently Dynamic RAM (DRAM) circuits have a much higher density, their design
is much more complicated (state of the art DRAM designs rely on a broad range of technology
enhancements which are not common in normal digital CMOS technologies), requires more
sophisticated clocking and is usually slower than Static RAM (SRAM) circuits.

5.2 General SRAM Structure

A generic SRAM carray and its peripheral circuitry are shown in Figure 5.2. The SRAM ar-
ray consists of a dense two-dimensional arrangement of the actual storage elements. For small
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Figure 5.2: General SRAM structure.

memories it is possible to store one word of data in a row (for larger memories one row holds
several words of data). All cells in one column share the same input signals (called the bitlines).
Prior to read or write operations, the bitlines are charged to a known value by the pre-charge
circuits. The row decoders are used to select one row in the array. The storage elements in the
row are connected to the common bitlines and either the value within the cell is sensed (read)
by sense-amplifiers or is overwritten by write circuits depending on the mode of operation. For
large memories, an additional column decoder is used to select the desired word within a row.

5.3 Basic SRAM Cell

A simple CMOS-SRAM cell consists of two cross coupled inverters and two access transistors
connecting these two inverters to complementary bitlines.

The two switches in 5.3 are simple nMOS pass-transistors. A so called wordline controls these
pass-transistors. As long as the pass transistors are turned off, the cell retainsone of its two
possible steady state.

A read operation from this cell is performed by pre-charging the bitlines to a known value (e.g.
VDD) and enabling the wordline. As during any read operation only one row can be active (the
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Bitline Bitline

Figure 5.3: Basic SRAM cell.

row decoder guarantees this), each column (bitline) can be modelled by a capacitor representing
all the parasitic capacitance of the bitline and the input capacitance of all the access transistors.
Figure 5.4 shows the pre-charge circuitry and the simple SRAM cell itself, together with the
column capacitances.

Figure 5.4: Equivalent SRAM cell during Read and Write operations.

Depending on the content (i.e., the state) of the cell, one of the bitlines will be pulled down by
the nMOS transistor of the inverter with the logic “0” state, while the other bitline will remain at
VDD .

Figure 5.5 shows the simulation results of two consecutive read operations. The nMOS tran-
sistors of the simulated RAM cell have dimensions of W = 3µm and L = 0.8µm while the
pMOS transistors and the access transistors are minimum width transistors, having dimensions
of W = 2µm and L = 0.8µm. The parasitic bitline capacitance is modeled to be 1pF . The first
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Read Cycle starts at 160 ns with the activation of the wordline. The stored information is a logic
“1”, bitline rises to VDD while bitline’ is pulled down by the second inverter. Notice that the
bitline is not pulled down completely (in fact it only reaches 4 Volts) but that is enough for the
sense amplifier to operate correctly. The second read operation starts at 180 ns with the activation
of another wordline (not shown, which in fact is just the inverted first wordline). This time the
stored information is a logic “0” and the switching of the bitlines can be seen clearly.

Figure 5.5: Simulated SRAM read operation.

A write operation is pretty similar in nature to the read operation. Again the cell is accessed with
enabling the wordline, but this time the bitlines are driven to a known state by the write circuitry.
This write circuitry is designed to have a stronger current driving capability than the pre-charge
and storage cell circuitry, and as a result the bitlines are driven beyond the inversion thresholds
of the inverters within the SRAM cell.

The plot in Figure 5.6 is a snapshot of a simulation used to verify the functionality of the RAM
design. The first three strips are the control signals. Write enable signal activates the write mode,
Wordline selects the rows to be accessed and the Data is the value to be written to the selected
cell. The voltages of the bitplanes is plotted next followed by the voltages within the SRAM cell.
(the inputs of the two inverters). The simulation snapshot displays consecutive write and read
cycles. The first write cycle starts at 220 ns. A logic “0” is written to a cell within the column
which is not the cell that we are concentrating. At 240 ns. a logic “1” is written into the cell. The
Wordline goes high indicating a write to the cell we are observing. Notice the bitline swing for
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Figure 5.6: CMOS SRAM Write operation.
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the write operation. Also the last two strips clearly show the switching inverters. A new value
has been written. There is a read cycle starting at 280 ns. At 300 ns our cell is accessed for a read
operation. Notice the relatively low bitline swing and the perturbation on the inverter. It is clear
that a perturbation as high as the threshold voltage of the nMOS transistor may cause the inverter
switch state and destroy the content of the cell. Kang and Leblebici [19] give a conservative
analytical expression for the sizing of access and pass transistors to prevent overwrite during
read.

kn,pass
kn,inv

=

(
W
L

)
pass(

W
L

)
inv

<
2 · (VDD − 1.5 · VT,n) · VT,n

(VDD − 2 · VT,n)2 (5.3)

Substituting the values for the AMS 0.8µm process (VDD = 5V and VT,n = 0.75V ) we get.

kn,pass
kn,inv

<
2.906

4
(5.4)

The simulation shows a second write operation starting at 340ns. At 360ns logic “1” is written
to the cell activated by the Wordline.

5.4 Dual Port SRAM Cell

To achieve a higher RAM density, Aries uses dual port RAM cells. As each port must be able
to access the cell independent of each other the basic access lines Bitline, Bitline’ and Wordline
need to be duplicated. Two more pass transistors are added to control access of the second port
(See Figure 5.7).

An efficient layout for the basic cell is the key point of any dense RAM circuit layout. There are
a few important factors to consider when designing a custom cell like this:

• Decide the signal and layer flow. In this example it was decided to use vertical Metal-1
lines for the bitlines and vertical Metal-2 lines for power connections and the wordlines.

• Try to exploit sharing as many signals as possible with neighbouring cells. The bitlines
severely limit this along the X axis, but the substrate contacts and power connections can
be designed so that they can be shared with neighbouring cells. This results in a structure
where every other line is mirrored.

• Of the 8 transistors present in this cell, only the two nMOS transistors of the inverters are
sufficient to alter the electrical behaviour of the cell. A high degree of freedom for the
dimensions of the nMOS transistors, is highly desirable. In the example below the nMOS
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Figure 5.7: Dual-Port CMOS SRAM cell schematic.

transistors of the inverters can take any dimensions from 2µm
2.2µm

to 7.9µm
0.8µm

without changing
the dimensions of the basic cell. Within the basic SRAM cell used in Aries, the nMOS
transistors have dimensions of 3µm

0.8µm
.

Figure 5.8 gives the basic Dual-Port CMOS SRAM cell used within Aries. The basic cell mea-
sures 30.2µm× 19.2µm.

5.5 Pre-charge Circuit

A very simple pre-charge circuit is used for the realization of the RAM. Unlike many SRAM
designs, the SRAM in Aries does not use clocked pre-charge circuits. The RAM is targeted to
operate at clock speeds of up to 100 MHz. A clocked pre-charge circuit would have needed a very
accurate and complicated clock timing. The schematic of the static pre-charge circuit structure
can be seen in Figure 5.9

The pMOS transistors driving the bitlines have width of 6µm, all the other transistors have
dimensions of 2µm. While providing a very simple column pre-charge mechanism, this structure
also has some drawbacks:

The most important is that as there is a constant pre-charge voltage in the bitline, any effort
to pull the bitline down must fight against this pre-charge circuit. One possible remedy would
be to use minimum-size pMOS transistors in the pre-charge, but this is not feasible as a fast
recovery is required to pull the bitlines from their low states to their high states. A weak pull-up
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Figure 5.8: Layout of the optimized Dual-Port CMOS SRAM cell.

Figure 5.9: Pre-charge circuit schematic.
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would result in a slower response time in read access. On the other hand, the write operation
needs to pull down the bitline even further, in order to be able to switch the internal inverters.
A relatively strong write circuit easily accomplishes this task. This in turn has another negative
effect. After any write operation one of the bitlines is pulled down to a relatively low voltage
level. Thus, a subsequent read operation may under certain circumstances overwrite the content
of the cell. Fortunately, this is not a major issue, since write operations are only required to
update the weights; therefore, the write timing is not critical. In Aries, a write operation must be
followed by an idle state (to help recover the bitlines) prior to a read operation. This restriction
does hardly effect the operation of the circuit.

5.6 Sense-Amplifier

The main issue in the RAM design for Aries was the speed of read operation. The sense amplifier
is the most important block that dictates the speed of read operations. The sense amplifier was
developed by B. Aksoy [20]. A number of different architectures were evaluated. Finally, a
two stage amplifier with a cross-coupled pMOS amplifier as the first stage and a conventional
differential amplifier as the second stage was found to give the best performance. Figure 5.10
shows the schematic and the transistor sizing of the sense-amplifier circuit. Detailed evaluation
and simulation results of this two-stage sense amplifier can be found in [20].

Figure 5.10: Schematic of the Sense Amplifier.
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5.7 Write-circuit

The write circuit is a simple differential stage that is driven to saturation by Data and Data’.
Two pass transistors and the current source for the differential amplifier is controlled by the
Write signal. Figure 5.11 shows the schematic of the write circuit together with the sizing of non
minimal transistors.

Figure 5.11: Schematic of the Write circuitry.

5.8 Row Decoders

A typical RAM circuit consists of an array of RAM cells that are arranged in rows and columns.
The RAM can be laid out so that each row holds exactly one word of data, which for most
RAM designs would generate blocks with dramatic aspect ratios that are totally unacceptable for
efficient design both for their awkward geometry and the parasitics associated with especially the
very long bitlines, not to mention the complicated decoder structure. For these reasons, RAM’s
are designed to contain more than one words in a row, with a two stage decoding process: First
the row decoder selects the row of interest and than column decoders chose the required word
from the selected row. Aries however required, only 32 different values for 8-16 bit data words
(the exact word length was not chosen to be 10 at the beginning of the design). It was therefore
possible to make an array without column decoders. The RAM array used, has an aspect ratio of
2:1 which is totally acceptable.

Five address lines are necessary to decode 32 individual rows. For the design of Aries a two
stage decoding structure was used. Figure 5.12 illustrates the decoding circuitry. The box on the
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Figure 5.12: Row decoder schematic.
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top is the first stage decoder (pre-decoder). Please note that the block in the figure is not logic
optimized and contains a number of redundant blocks. The block diagram represents the actual
logic elements realized on the layout (the AND gate as an example is realized by a combination of
NAND and NOT). The local inverters on the eight blocks are used to generate the complementary
signals where needed and thereby reduce the number of vertical wires in the decoder.

5.9 Control Circuitry

There are two problems associated with writing to the RAM blocks:

• The write operation must be followed by an idle period (where no read or write access is
made)

• In normal operation the row decoders in normal operation receive the address lines from
the shift register chain. This is not feasible when updating the weights within the RAM
structure - the address lines must be accessible for updating the weights.

Both of these problems can be addressed with relatively low design effort. For the first problem
a very simple state machine as shown in Figure 5.13 can be used to generate the idle times. The
circuit in the Figure 5.13 generates synchronous read and write signals depending on the state of
“en”.

Figure 5.13: Read-Write state machine.

Aries uses a 2:1 multiplexer to achieve time domain multiplexing. A 3:1 multiplexer can be used
to account for the write state where the address lines are supplied externally. As an alternative,
a simple counter could be added in to the design to generate the addresses during a write cycle.
These issues are discussed in Section 7.2.1
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5.10 Layouts of RAM Blocks

The layout of a single RAM column has evolved considerably during the design process. Figure
5.14 compares the initial floorplan to the final floorplan.

The initial floorplan tries to take advantage of the symmetric nature of the dual port architecture
in which sense amplifiers and the pre-charge circuit of the other port is placed on the ends of the
blocks. The first row of the RAM will always contain the value 0. A special cell consisting of
this “zero-RAM Cell” and the write circuit was designed. This cell also switched the order of
the bitlines which enabled using the same pre-charge and amplifier circuits. Although the idea is
appealing at first sight, it creates a few additional problems:

• The zero cell does not contain any storage elements (just access transistors connected to
power connections), attention must be given to the write operations as improper writing
could indeed cause physical damage.

• The zero cell has different dimensions than the other RAM cells which complicates the
routing for the decoder circuits as the regularity is broken for that row.

• The most important problem is that the outputs are placed far apart. Three out of four
outputs from the two dual RAM ports have to enter the same adder. The routing overhead
was immense which also heavily effected the overall timing.

The final floorplan has the write circuitry on one end of the block while two read ports are on
the same side. This minimizes the routing for the next adder stages. The routing of the outputs
requires ten Metal-2 busses to be placed after the sense amplifier block (as there are ten outputs).
It was possible to place the pipeline registers underneath these busses, which saved a significant
amount of silicon area.

Figure 5.15 shows the complete layout. A close-up (marked with the circle on the complete
layout) can be seen in Figure 5.16. The closeup shows parts of the first stage and second stage
row decoders, the RAM cell array, the pre-charge circuit, the sense amplifier as well as the
pipeline registers underneath the output bus. (the Metal-2 lines are drawn only as outlines as
otherwise they would obstruct the view to the cells completely).

The layout of a single RAM block consisting of two separate address decoders, 32 rows of
10 Dual port SRAM cells, all the associated sense amplifier, write, precharge circuitry and the
pipeline registers occupies an area of 390µmx 815µm (0.32mm2). With these dimensions the
RAM block is by far the most area consuming of all the Aries blocks. This was already predicted
in the pre-design floorplan shown in Figure 4.3.
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Figure 5.14: Floorplan of the RAM column.
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Figure 5.15: Floorplan layout of the complete Dual-Port SRAM. Detailed layout of the circled
area is shown in Figure 5.16.
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Figure 5.16: Close-up of the Dual-Port SRAM layout (area highlighted in Figure 5.15).



Chapter 6

Adder Blocks of the Aries Architecture

6.1 Systolic Adder

A systolic structure is made up of an array of identical basic processing elements with same
type of (similar) connections. The name systolic adder is actually misleading for this particular
adder used within Aries. The name comes from the earlier adder design used within the Taurus
architecture, where the partial results of all eight bitplanes were shifted and added in a single
structure consisting of eight adder rows of five adders each (See Figure 3.6). In the present
Aries architecture, the systolic adder is required to shift-add four numbers in each cycle, as a
result of time multiplexing. Yet we have retained the name of this block, since the essence of
the operation has not changed. This section will give an architectural overview of the designed
adder. A detailed analysis discussing the design methodology will be presented in Chapter 8.

The algorithm in Aries requires that four numbers corresponding to the partial sums of bitplanes
be added in one cycle. This operation can be summarized as:

SUM = 23 · Σb3 + 22 · Σb2 + 21 · Σb1 + 20 · Σb0 (6.1)

The multiplication with a power of two represents a shift-left operation. Symbolically this can
be expressed like in Figure 6.1.

Bitplane 0

Bitplane 1

Bitplane 2

Bitplane 3

RESULT

Figure 6.1: Symbolical representation of the shift-add operation used in Aries.

61
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As no general building blocks for the addition of four binary numbers exist readily, this operation
must be broken down into a simpler form so that it can be calculated with the basic CMOS
building blocks. For the addition of more than two binary numbers (multi operarand addition),
two different structures are commonly used [5]:

• Carry Propagate adders

• Carry Save adders

HA

HA

HA

FAFAFA

FA FA FA

FA FA FA FA

Number 1

Number 2

Number 3

Number 4

Figure 6.2: Multi-operand adder array with carry propagate adders.

Figure 6.2 shows the basic structure of a multi operand adder array which is constructed with
carry propagate adders. This is called carry propagate because the carry from each adder is
propagated directly to its neighbour. Only the sums of the adders within a row are passed to the
next stage. The carries of all stages are evaluated with additional adders. The main disadvantage
of this is the heavily serial nature of the operation. A worst case vector may cause the final result
to be delayed more than m · n adder delays in an m × n adder array. A detailed analysis of the
carry-ripple effect that causes this problem will be given in Section 6.1.2.

The carry output bit of a FA is by one order more significant than the sum output bit of the same
adder. This is the reason why the carry is propagated in the carry propagate structure. It can be
done differently though: In the carry save structure, the carry is saved, it is passed diagonally of
the adder that is left to the adder that gets the sum output. This scheme is illustrated in Figure
6.3.

Notice that the last stage in the figure is in fact another carry propagate adder. The carries are
saved until the last operation, which leaves two vectors; one consisting of the sum and the other
of the carries of the previous operations. Needless to say, these two numbers have to be added.
If the simple carry propagate adder is used as the last step the worst case delay will be m+ n for
an adder array of the dimensions m × n. This can even be enhanced if a faster adder is used as
the final adder.
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Figure 6.3: Multi-operand adder array with carry save adders.

6.1.1 1-Bit Full Adder

The most basic addition block that is used is the half adder. The half adder has only two 1-bit
inputs, A and B, whose Sum can be calculated by a simple XOR operation. The Sum output is
sufficient to express the sum of two 1 bit numbers for three out of four possible inputs. The sum
of A = 1 and B = 1 can not be expressed by a single bit and a result with a higher significance
than the Sum is required. This result is known as the Carryout which states that an overflow has
occurred.

The 1-bit FA is an enhanced half adder circuit having an additionalCarryin signal, which enables
it to be cascaded with other adders and therefore is commonly used as a basic building block for
generic adder arrays. The truth table of the FA is given in Table 6.1. (The truth table of the half
adder corresponds to the first four entries in the truth table where Carryin = 0)

Table 6.1: Truth table of 1-bit FA.

Carryin A B Carryout Sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

As the FA is the most widely used structure in a wide range of computationally complex func-
tions, a significant amount of research effort was made on the realization of efficient adder struc-
tures. A quick glance to the truth table clearly reveals a classical XOR behaviour. XOR type
functions typically have difficult CMOS realizations. A number of different realizations of FA’s
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have been published [4, 21, 22, 23, 24]. A well known CMOS FA structure was chosen in Aries
since this adder is one of the most compact, robust and fast FA alternatives. The detailed de-
sign of a high performance FA cell, based on this adder, will be discussed in Section 8.3.2. The
schematic of the adder and the transistor dimensions are shown in Figure 6.4.

Figure 6.4: Circuit schematic of the CMOS FA.

Please note that in this implementation, Carry is used to generate Sum; as a result the Carry
signal can be generated before the Sum signal.

6.1.2 Ripple Carry Adder

A total of n 1-bit FA’s can be used to add two n-bit binary numbers (to be more precise n−1 FA’s
and a half adder, as the first addition would normally not have a Carryin). This arrangement of
FA’s, where the Carryout signal of the FA is connected to the Carryin signal of the FA that adds
the next significant bits, is known as the Ripple Carry Adder. The generic arrangement of the
ripple carry adder is given in Figure 6.5.
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Figure 6.5: The Ripple Carry Adder

Compared to all the known n-bit binary adders, the ripple carry adder is the most compact solu-
tion. It requires a small number of operational blocks (1 bit adders) and has a minimum routing
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overhead, as only the the Carryout signals have to be connected to the Carryin signals of the
adjacent blocks. In a well designed layout of a FA circuit this connection can be made by simple
abutment, which makes the design of the n-bit adder extremely simple.

The main drawback however, is that this realization is also the slowest parallel solution available.
Although the adder accepts data in parallel, the operation is inherently serial because the addition
of the ith bit needs the Carryout of the (i− 1)thbit for the correct result. Starting from bit 0, the
actual Carry is generated and rippled through all the stages to create the final result, hence the
name ripple carry adder. The worst case scenario is when the carry of the first bit causes all the
Sum bits to change. The delay for this operation is roughly expressed as n FA delays.

Figure 6.6: Simulated ripple effect in a 10-bit Ripple Carry Adder.

The behavioural simulation of a 10-bit Ripple Carry Adder in Figure 6.6 shows a worst case
where A = (00 0000 0001)2 and B = (11 1111 1111)2 are added. All adders except for the adder
of the least significant bits produce Carryout = 0 and Sum = 1. Carryout is available from the
first adder (which in this case was at logic “0” prior to the addition) at the very first instant. As
a result of the addition of the least significant bits (both of which are logic “1”) a Carryout = 1
signal is generated by the first FA . With the arrival of this new (updated) signal the second FA
starts calculating the correct result, generating another Carryout = 1 which in turn effects the
third and all the subsequent stages. The carry generated by the first adder ripples through all the
stages, causing subsequent transition of the sum bits. This is clearly visible in Figure 6.6.

Although it is true that for a worst case situation the carry will have to pass through a total of
n adder stages, the associated delay is not exactly equal to n FA delays, as the Carryout signal,
for most efficient realizations of a FA, is calculated in advance of the Sum output which makes
the overall delay shorter than expected. It is also easy to design a FA that is extremely fast for
a single, given worst case situation (with far worse responses for other situations). Examples of
this misleading approach are present even in the most known literature [21]. There are detailed
analyses of the delay of the Ripple Carry Adder in the literature [25], but for first order estimation,
the aforementioned worst case delay approximation of n FA delays is a solid measure.
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6.1.3 Parallel Prefix Adders

One of the most serious drawbacks of ripple-carry adders is that: the delay scales linearly with the
bit length, making adders operating on bit lengths larger than 16 rather in effective. A common
philosophy in the microelectronic design is that in most cases silicon area can be traded off in
order to get achieve higher speed. Addition proves to be no exception for this philosophy. A
number of methods including, the carry skip adder, carry select adder, conditional sum adder,
carry increment adder and the more general carry lookahead adder have been proposed. All of
these methods are based on pre-determining the carry signal of a number of stages before the
Sum of the previous stages is available.

The parallel prefix adder [5] is a universal adder architecture that covers all of the known parallel
adder structures described so far. The addition is described in three distinct steps:

• Preprocessing

• Carry Lookahead

• Postprocessing

Let A and B describe the two input signals that are associated with each stage. Two special sig-
nals are extracted from the inputs in preprocessing: propagate (p) and generate (g) signals. These
two signals are said to describe how the Carryout signal will be handled. A Carryout could be
generated within the block or the existing Carryin signal could be propagated to Carryout.
These signals can be easily obtained from the available inputs as:

p = A⊕B (6.2)

g = A ·B (6.3)

The ith carry signal, Carryi, can easily be expressed as:

Carryi = gi + pi · Ci−1 (6.4)

Likewise the ith sum, Sumi, can be calculated by:

Sumi = pi ⊕ Ci−1 (6.5)

This is the task of the postprocessing step. This leaves only the Carry Propagation (Carry Looka-
head) problem that needs to addressed. The carry propagation problem can be expressed in terms
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of a so called prefix problem where for a set of binary inputs (xi : i = 0, 1, 2, .., n) the outputs
(yi : 0, 1, 2, .., n) are defined by the help of an associative binary operator ∆ as:

y0 = x0 (6.6)

yi = xi ∆ yi−1 (6.7)

The most important factor in this expression is that the ∆ operator is associative:

x1 ∆ (x2 ∆ (x3 ∆x4)) = (x1 ∆x2) ∆ (x3 ∆x4) (6.8)

This sort of hierarchical organization brings in sub products which can be denoted as: Y k
i:j , where

k is the level within the hierarchy and i and j define the range that this sub product covers. For
the carry propagation problem let us define the sub-product couple (G,P ) such that:

(G,P )0
i:i = (gi, pi) (6.9)

(G,P )ki:j = (G,P )k−1
i:q+1 ∆ (G,P )k−1

q:j (6.10)

Where the desired

Carryi = Gi:0 (6.11)

regardless of the number of levels necessary to cover the range i : 0. Given the two adjacent
ranges a and b, the ∆ operator performs the following logical operation:

(G,P )k+1
a∪b = (G,P )ka ∆ (G,P )kb (6.12)

Gk+1
a∪b = Gk

a + P k
a ·Gk

b (6.13)

P k+1
a∪b = P k

a · P k
b (6.14)

These equations reveal the following:

• As long as the ranges of two partial products are adjacent a new partial product term can
be generated by the way of a single common operator.
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• The required Carryi signal will be part of the partial product covering a range from 0 to
i.The order or the number of levels to cover this range does not effect this result.

The graph representation of this problem provides a much clearer view of the algorithm. Two
main symbols are used in the graph representation of prefix algorithms are given in Figure 6.7.

∆ OperatorPass-through Cell
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Figure 6.7: Two main blocks of prefix algorithm graph representations.

As a simple example, let us express the Ripple Carry Adder structure as a prefix problem. Figure
6.8 shows a prefix graph representation of a 16- bit Ripple Carry adder.
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Figure 6.8: Prefix graph representation of a 16-bit Ripple Carry Adder.

With the figure of the Ripple carry adder in mind we can easily define some performance mea-
sures for prefix adders:

• The number of processing elements (∆ operators), is a direct measure of the size of the
block.

• The depth of the graph, which is the number of levels required to generate all Carry
signals, directly relates to the speed of operation.
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• Fan-out’s of processing elements should not be very high, as high fan-out nodes will need
extra buffers to be able to drive the extra load at the same speed.

• Simple connections will require less routing overhead and generate more compact layouts.

The Sklansky parallel prefix algorithm is one of the fastest adder architectures, the graph repre-
sentation is given in figure 6.9.
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Figure 6.9: The graph representation of Sklansky Parallel Prefix Adder.

The main problems in the Sklansky Parallel Prefix Adder is that some nodes have pretty high
fan-outs. Another alternative could be the Brent-Kung Parallel Prefix Adder which is shown in
Figure 6.10.

0123456789101112131415

0

1

2

3

5

6

4

Figure 6.10: The graph representation of Brent-Kung Parallel Prefix Adder.

The Brent-Kung Parallel Prefix Adder is slower than the Sklansky Parallel Prefix Adder, but has
less processing nodes as well as a much lower maximum fan out.

6.1.4 Negative Numbers

A generalized filter architecture must be able to cope with positive as well as negative coeffi-
cients. It is true that the hardware itself does not make distinctions according to the content of
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the data, thus performs the same operation regardless of the ’defined signs’ of the operands. The
problem however lies on the range boundaries of the number system used. The Two’s Comple-
ment representation of negative numbers require a fixed data-length for proper operation. This
accounts for extra complexity in shifted addition circuits where all operands have the same bit
length but are shifted with respect to each other. The missing digits to the left of less significant
operands have to be completed according to the sign of the operand. Luckily, this problem is
easily solved as the last digit of any operand can be replicated to fill in the missing digits. A sim-
ple structure shown in Figure 6.11 controls this replication operation Aries, to enable a higher
dynamic range for coefficients that consists of positive numbers only.
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Figure 6.11: Adder Subtractor enhancement for the Systolic Adder.

6.1.5 Design of the Systolic Adder

The Carry Save Adder structure discussed earlier is the faster alternative for the Multiple Operand
Adder used in the Systolic adder block. An operand bit length of 10 was found to be adequate for
the design. As the capability to operate on negative numbers is also desired, the adder-subtractor
enhancement discussed earlier was added to fill-in the missing digits. As a result of the negative
number processing capability, the Carryout of the whole block can safely be ignored which
simplifies the design to some extend. The overall schematic of the Systolic adder is given in
Figure 6.12.

The traditional Ripple Carry Adder scheme to calculate the final result from the two Carry
and Sum vectors was replaced by a (modified) 10-bit Brent-Kung type Parallel Prefix Adder.
It differs from a standart 10-bit adder in that the last Carryout signal is not required and the
carry propagate block is the same of that of a 9-bit adder. The general schematic of the modified
Brent-Kung Parallel Prefix Adder is given in Figure 6.13.
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Figure 6.12: Schematic of the Systolic Adder.
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Figure 6.13: Schematic of the modified Brent-Kung Parallel Prefix Adder.

Please note that on both of the blocks the last Carry signals are left unconnected. The prepro-
cessing blocks can be realized by simple half adders and the postprocessing block is a simple
XOR gate. The “Delta” block actually performs the operation given in Equations 6.13 and 6.14,
for which the schematic is given in Figure 6.14.

Figure 6.14: Schematic of the Delta block.

The final layout of the Systolic Adder including the pipeline registers is given in Figure 6.15.
The adder dimensions, excluding the routing block at the bottom, are 320µm x 300µm in total.

Figure 6.16 shows a behavioural simulation showing the operation of the systolic adder. The four
input vectors are named A,B,C and D respectively. The simulation starts with an initialization
phase with all input vectors having a value of 0. At 10 ns four vectors are introduced to the
systolic adder. All of these numbers are interpreted as positive numbers (operation mode is un-
signed) and the result is calculated. At 20 ns, the vectors remain the same but the operation mode
is changed from unsigned to two’s complement. The first two vectors A = (11 1111 1000)2,
B = (11 1111 1100), are interpreted as negative numbers and have corresponding weighted dec-
imal values of A = −8 and B = −8. The result of this operation is 0. At 30 ns the first two
vectors are changed to positive values. The result remains the same even after the mode of oper-
ation is changed to unsigned, since all vectors have the same value irrespective of the operation
mode. The vector set which is applied at 50ns provides an interesting result. Although during
both of the operation modes the result remains the same, the nature of operation in both cases is
different. For the unsigned operation mode there is an overflow while for the two’s complement
operation the result is indeed 0. At 70ns a similar case with different vectors is tested, this time
there is no overflow and the result is displayed correctly.
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Figure 6.15: Final layout of the Systolic Adder.
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Figure 6.16: Behavioural simulation result of the systolic adder.
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6.2 Accumulator

As described earlier in Section 4.1, Aries uses time domain multiplexing to simplify the hard-
ware. While operating on 8-bit image data, the first 4-bit (nibble) is processed first and the result
is stored in the accumulator. The same procedure is repeated for the second nibble. The accumu-
lator adds this number to the stored result. As the second result is obtained from the higher-order
nibble the result this time is actually 24 = 16 times the value it was calculated. Therefore, the
second result has to be shifted by four digits to left prior to the final addition. The adder used
in the accumulator is a 13-bit Brent-Kung Parallel Prefix Adder and was quickly designed by
enhancing the Carry Propagation block for the additional bits. Once again a simple structure is
used for negative coefficients compatibility. The schematic of the accumulator is given in Figure
6.17.

Figure 6.17: Schematic of the Accumulator.

The layout of the Accumulator block is shown in Figure 6.18, the layout dimensions are 340µm
x 200µm in total.

Th registers within the accumulator block have different clocking signals. The systolic adder
calculates a vector at every cycle, and the pipeline register samples this result at every cycle. The
register within the accumulator block needs to sample the output of the pipeline register every
two cycles when the result corresponding to the first four bits of data arrives. The result will be
available at the end of next cycle. This result is sampled by the pipeline register following the
accumulator stage. This timing is described in Figure 6.19

This operation scheme has the disadvantage that some redundant calculations are made, specif-
ically when the result from of the least significant 4-bitplanes are waiting to be sampled by the
internal register they are shifted by four and summed up with the previously sampled sum of four
least significant bitplanes. The result of this redundant operation is not sampled by the pipeline
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Figure 6.18: Layout of the Accumulator.
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Figure 6.19: Block diagram and timing of the Accumulator.
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register. Needless to say this operation has no practical purpose and is totally redundant. To pre-
vent the redundant calculations (and save power), a buffer stage could be used at the expense of
silicon area, but as the redundant calculations do not produce any erroneous results this solution
was not adopted for Aries.

To support negative numbers, the same solution that has been used in the systolic adder is em-
ployed. The last bit of the lower order operand is repeated to fill-in the missing bits. The only
difference is that only one operand with four missing bits has to be filled instead of three operands
with varying fill lengths. A simple AND gate is used to add a selective negative number process-
ing capability.

The output of the accumulator is 17 bits long. In the earlier design phases it was decided that a
barrel shifter be used to truncate this number to 8 bits. While this solution is ideal for a single
block, it complicates the addition of partial results in the system level as outputs with different
shifts have to be normalized before addition. Therefore, a unique high precision output is chosen.
The least significant bit of the result is ignored in order to have a commonly used output of 16 bits.
This truncation introduces some errors. Ignoring the least significant bit rounds positive numbers
down while negative numbers are rounded up. This complicates the issue of correcting the error,
since the error not only depends on the number system used but on the result as well. Table 6.2
summarizes all possibilities regarding the operands and the results and lists the corresponding
error.

Table 6.2: Errors introduced by truncating the least significant bit.

Number System 1stoperand 2nd Operand Result Error
unsigned positive positive positive −1

2

two’s complement positive positive positive −1
2

two’s complement positive negative positive −1
2

two’s complement positive negative negative +1
2

two’s complement negative negative negative +1
2

At first sight the error seems to depend solely on the result, but negative numbers are only a
consequence of the different numbering system (two’s complement). Any negative result in two’s
complement number representation format (a result with a MSB of logic “1”) can be interpreted
as a positive number in the unsigned number representation. The error caused by the truncation
of the LSB will be different for both cases. Any rounding and/or truncation has an associated
rounding error, but the error described above is an additional error to the conventional truncation
error.

Since at any time all of the factors contributing to this error are exactly known (the result and the
number system) it is possible to correct the truncation error. This correction can feasibly take
place within the next stage, which is the Final Adder block. The overall Carry-In of the Final
Adder can be used to compensate for the sign based rounding errors. Yet this approach was not
used in Aries because the result of the accumulator can also be sent off-block by the output stage.
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Figure 6.20 shows a simulation demonstrating the basic operation of the Accumulator. Both the
input and the internal registers can be seen in the plot.

6.3 Output stage

The output stage is not an internal block of Aries. It is intended to be used together with the final
adder, to generate pipelined adder arrays to sum up the results of a number of Aries blocks. The
details of combining several Aries blocks is discussed in detail in Section 7.3. The output stage
determines the second operand of the Final Adder (the first operand of the Final Adder is always
external), in which it decides:

• whether the output of the accumulator should be delayed by one clock cycle or not,

• and whether this accumulator output, or an external input will be used for the final addition.

The general block schematic of this stage is given in Figure 6.21.

Two 2:1 multiplexers are used in the design. The first multiplexer controls the delay of the output
while the last one selects either the internal data bus or an external data bus as the second operand
for the final addition stage. Each of the multiplexers are controlled by a single bit giving four
operational modes that are given in Table 6.3.

Table 6.3: Four different operating modes of the output stage.

MUX 1 MUX2 Operation Mode
Delay Select Input Select Accumulator Delay, Final Adder Operand

0 0 No delay, Internal result
0 1 No delay, External result
1 0 1 pipeline stage delay, Internal result
1 1 1 pipeline stage delay, External result

6.4 Final Adder

A very simple ripple carry adder structure is used as the final stage adder. The main purpose of
this block is to allow cascading of Aries blocks to form a larger filter array. Since the output
of the main Aries block is limited to 16 bits, a 16-bit adder structure is used within this block.
Note that a simple ripple carry adder was used for the adder, as this block operates at half the
speed of the internal adders. Initially the design of Aries consisted of a barrel shifter within
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Figure 6.20: Simulation result of the Accumulator.
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Figure 6.21: Block diagram of the output stage.

the accumulator block which would provide 8-bit results. This solution was later given up to
increase the resolution in the adder chains. Still, a simple ripple adder structure is sufficient to
meet the speed requirements of the adder. The 16-bit sum of two operands has to be calculated
in a pipeline stage within 20 ns which can easily accomplished by a ripple carry adder using the
FA cell used throughout the design.

The Figure 6.22 shows the layout of the output block with the final adder and all associated
pipeline registers. The layout was designed and optimized for a 8-bit output stage in mind, and
can not accommodate a 16-bit computation block. therefore the block is broken down to two
8-bit pieces. This scheme can be easily employed, as the ripple-carry adder used in the last
stage can be broken down into two pieces without complicating the routing extensively (only the
Carryout signal of the last stage needs to be connected to the Carryin of the subsequent stage).
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Figure 6.22: The layout of the output stage with the final adder.
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Chapter 7

Final Layout and Implementation of the
Aries Block

7.1 Final Layout

The final layout of the Aries architecture can be seen in Figure 7.1. The layout occupies an
area of 1.26mm x 1.13mm (1.425mm2). Please note how closely this final layout conforms
to the initial floorplan given in Figure 4.3. The lower part of the layout comprises of the two
shift register blocks. the space between these blocks is reserved for clock buffers and SRAM
read/write circuitry. The two Dual-Port SRAM blocks dictate much of the circuits size. Three
stages of adders are placed in between these rows.

7.2 Operation of Aries

Aries has two main operation modes: Initialization Mode and Computation Mode. The operation
of Aries relies on pre-computed co-efficients that comprise the filtering kernel. Prior to compu-
tation mode these values have to be loaded into the RAM blocks. The Initialization Mode serves
this purpose. The Computation Mode is the general operation mode where at each clock cycle
a new data is read and the result in the current pipeline is send to the output. The Computation
Mode can be interrupted by a Initialization Mode to update the co-efficients.

7.2.1 Initialization Mode

An Aries block is expected to operate mostly in the Computation Mode. The Initialization Mode
is necessary to load the values of the co-efficients after the chip has been powered-on. The



84 CHAPTER 7. FINAL LAYOUT AND IMPLEMENTATION OF THE ARIES BLOCK

Figure 7.1: Final layout of the Aries architecture.
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same mode can be used to update the values of co-efficients during normal operation. Intelligent
adaptive filtering algorithms fine tune the coefficients during operation to obtain better results.
The process of updating the coefficients will cause an interruption of processing, for some signals
like images this would not be a real problem as most of the image signals have a blanking
time where no actual signal is present. Figure 7.2 shows the general block diagram during the
Initialization Mode
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Figure 7.2: General block diagram during the Initialization Mode.

A single bit controls the mode of operation. The RAM blocks within Aries require an idle state
between write and requests. The single bit drives the aforementioned (see Figure 5.13) RAM
control block. This control block inserts an idle state after the first clock (the fast clock is used
within the RAM blocks). All four RAM blocks within Aries need to have exactly the same
information. As two dual port RAM blocks are used only two blocks need to be written. Once
the write signal has been issued by the control block, the Multiplexers at the end of the shift
registers select the same external address lines. The total control for the write operation has now
been transfered to an external source.

The write operation is not clocked, any value in the write bus is written to the row addressed
by the address lines. The circuit ensures that the total decoding and writing will take less than
10 ns. After all the co-efficients have been loaded the mode control bit can be changed to the
Computation Mode value of logic “0”. Figure 7.3 shows the timing of the Initialization Mode.

A simple external counter can be used to update all the coefficients within the Aries block.
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Figure 7.3: Timing of the Initialization Mode.

7.2.2 Computation Mode

For most of the time the Aries block is expected to run in the Computation Mode. This is the
mode that actually performs the convolution. Only a few control signals have to be set for proper
operation:

• The mode bit must be low to indicate computation mode

• Each Aries block must have the appropriate setting for the output mode. These are set by
two bits which are covered in detail in Section 6.3.

Aries is a fully pipelined design which causes a certain latency in the output (depending on
the adder tree and the mode selections the latency may change). It must be noted that all five
data registers must have valid values before the first value can be calculated. This initial value
problem can be addressed in which the first value is fed five times to fill up all the registers with
a known value.

Another important issue is that overflow within the internal adders is not propagated to the output.
Overflows within the addition blocks (especially when two’s complement number representation
is used) can cause erroneous output. An overflow flag would not be of much use as there is
no practical way to re-calculate the whole value (the pipeline will contain partial results for
subsequent operations, that has to be cleared first). For fixed co-efficient applications the co-
efficients can be chosen accordingly, to ensure that there is no overflow within the block. For
adaptive applications the co-efficient dynamics can be kept within certain bounds (notice that
the limitations will depend on the number representation system and in any case will cause only
slight restrictions on the co-efficient dynamics).
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7.3 Implementation

Aries is designed as a basic building block to be used in the design of higher order 1-D and
2-D signal filters. A number of identical Aries blocks can be used to generate the desired kernel
size. This section documents how a number of Aries blocks can be combined to form a complete
filter. As 1-D kernels can be considered as a special case of a 2-D architecture (where y = 0) this
section only concentrates on the design of 2-D kernel structures. Figure 7.4 shows the general
structure used to combine a number of Aries blocks.

5 x 1 Aries Block

D D D D

Computation

5 x 1 Aries Block

D D D D

Computation

5 x 1 Aries Block

D D D D

Computation

5 x 1 Aries Block

D D D D

Computation

5 x 1 Aries Block

D D D D

Computation

5 x 1 Aries Block

D D D D

Computation

8 bit data

8 bit data

RESULT

Figure 7.4: General structure used to combine a number Aries Blocks.

Each Aries block can be used as a 5 x 1 filter kernel. Using an appropriate number of blocks
any size of filter kernel can be realized. Scaling in the Y direction is relatively easy, as the data
in every row is independent of each other, it is enough to add a new data input line and repeat
the structure used for X axis alongside the row. The results of different rows have to be added at
the end. Scaling on the X axis is a little more tricky. The length of the kernel along the X axis
actually corresponds to the number of subsequent samples that have to be processed. This time
delay is realized by the input registers in Aries. At every rising edge of the clock a new data is
read and the remaining data are pushed deeper in the shift register chain. To be able to scale in
the X axis this pushed data has to be transferred to the next stage. Aries uses a separate bus to
transfer the outputs of the shift registers to the next stage.

A design with n Aries blocks will generate n independent results each clock cycle. These results
need to be added to form the final result. As these results are independent of each other, they can
be added in any order. The final adders (see Section 6.4) within the Aries block can be used to
perform this addition. Using a binary tree structure theoretically nnumbers can be summed up
using at most n− 1 adders. As there are n Aries blocks, there are enough adders present to form
a binary tree. For a binary adder tree with exactly 2n operands it is possible to create a pipeline
without any problems. Figure 7.5 shows an adder tree that adds up 17 results . Although still 16
adders are required for the operation notice that the result of block 17 is added to the combined
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sum of the first 16 blocks which are calculated in a four level adder tree.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 7.5: A binary tree adder for 17 numbers.

For a pipelined architecture this is not acceptable, as the result of the 17th block needs to wait
for four adder delays. A pipeline structure would require that fouradditional delay elements be
used for the result of the 17th block. This problem is solved by the output stage of Aries which
is described in Section 6.3. This arrangement has two modes: one where the result is available
directly and another one where the result is delayed by one pipeline stage. Both of these results
can either be fed to the internal final adder or redirected to output. It can be shown that any
number of operands can safely be implemented with this arrangement.
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Figure 7.6: Three Aries output block configured for pipelined addition, block diagram (left) and
detailed schematic (right).

As a simple example let us consider the addition of three results, Figure 7.6 shows three Aries
blocks and their output modes. Notice that all three modes are used in this arrangement. The
only restriction of this methodology is that the output can only be delayed by one cycle. All these
delays have to be introduced at the first level of the adder tree. To construct such an adder tree
it is necessary to start from the last stage where a single adder will be used. The total number
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of operands are divided into two halves so that the result will be two equal numbers for even
numbers and two consecutive integers for odd numbers. This process is repeated until blocks
of either two or three operands are reached. Thenafter the arrangement shown in figure 7.6 is
used for a three operand addition. If any three operand additions exist (which is the case when
n is not a power of two), all two operand additions have to be delayed by one clock. This is
accomplished by setting the delay on both of the blocks, which will pass the results through the
additional pipeline register before the final adder.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

D D D D D D D D D D D D D D D

Figure 7.7: Fully pipelined binary tree for 17 operands using Aries blocks.

Figure 7.7 shows the arrangement for a pipelined 17operand adder. On the first level there are 7,
2 operand additions and only one 3 operand addition. As a result all of the operands of the two
operand adder have to be delayed by one cycle. From the second level on it can be seen that all
results can be calculated within the same clock cycle.
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Figure 7.8: General arrangement of 5 Aries blocks to realize a 5 x 5 filter.

The general arrangement for a 5 x 5 filter would be like the one illustrated in Figure 7.8. Filters
of any dimensions can be realized with the configuration shown. Another approach for building
large filters would be to include a small RISC processor core to help programming the weights
of all Aries blocks as well as add intelligent scaling algorithms for the results. The general block
diagram of a large filter array that uses a RISC processor core is given in Figure 7.9.
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Figure 7.9: A large filter realization using Aries blocks with an embedded RISC processor core
to update weights.



Chapter 8

Design Methodology: A Case Study

This section presents the design methodology used for the design of various blocks within the
Aries architecture, with a specific focus on full custom design of high-performance arithmetic
units.

A successfull design has to satisfy a number of performance criteria as described in a so called
“design specification”. A design specification typically describes and sets minimum/maximum
limits for the following performance criteria:

• Speed of operation

• Power consumption

• Silicon area

• Design time and cost

and defines a set of functions that the finished design is required to realize. As long as these
requirements are met the design is said to be successful. If the design specifications are set
in a conscientious manner, there should be no need to further improve any of the performance
criteria beyond the limits described by the specifications, especially since this improvement will
typically be at the expense of extra design time. Thus, a design that could operate at faster speeds
than the given specifications is not necessarily more successful than a design that works within
the limits specified.

The increasing improvements in integrated circuit manufacturing technology have resulted in
smaller and faster circuits to an extent where the parasitic interconnection delays have equalled
the delays of the blocks they are connected to. As a result, the dominance of aggressive speed
and area requirements tends to diminish in modern designs. The high integration trend is also
followed at the system level where an ever increasing market for portable devices has emerged
which has increasingly contributed to the power specifications of a design.

91
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In the 1990’s the design time has established itself as one of the most dominant factors in any cir-
cuit specification. Most companies that develop integrated circuits need constant enhancements
in their product line to meet the constant demand of the market. If the design is not ready on
time for the market, a product from another company may address the demands and as a result
the design will have missed the market.

There are various methods for designing circuits, each with its own set of advantages and disad-
vantages. The correct methodology for a design is based on many factors like:

• Specifications of the circuit

• Available CAD tools

• Experience of the design team in the design methodology

8.1 Overview of Design Methodologies

Integrated circuit design is the process of mapping a functional description of a problem on
silicon so that it satisfies a set of performance criteria. The design methodology may concentrate
on any level of abstraction defined within this process: From the design of actual layout masks
to the high level behavioural description of the circuit. Recent literature on digital integrated
circuits describe a number of distinct methodologies. All of these methodologies can be grouped
into two mainstreams that differ in design philosophy:

• Top-down approach (Behavioural)

• Bottom-up approach (Physical)

The Top-down approach starts the design process from high-level, behavioural descriptions of
blocks that will realize certain functions ,while in the Bottom-up approach the low-level elemen-
tary building blocks of the circuit are designed and combined to realize the desired function.

The logic synthesis methodology is a good example for the Top-down approach. Initially devel-
oped as a common language to describe the behaviour of digital blocks, the VHDL description
of a digital circuit has soon become a widely used method for automatic synthesis of such cir-
cuits, based on a library of standart cells. This approach successfully shields the designer from
the complexities of physical design and thus, speeds up the process. Yet, a number of issues
such as carefull speed optimization and area minimization/management can not be addressed by
a straightforward top-down design methodology.

Full-custom, mask-level design of elementary building blocks, on the other hand, is a good
example of the bottom-up design strategy. This approach is also limited by the fact that the
overall design complexity quickly becomes very difficult to manage in larger VLSI designs.
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For most efficient results, the design of complex VLSI chips should employ a combination of
bottom-up and top-down strategies which is also called the “meet-in-the-middle” approach.

8.2 Full Custom Design Methodology

Full Custom design is probably the most time consuming and detailed of all the available design
methodologies. It comes at an enormously high price: costly design time. Any designer attempt-
ing to employ a Full Custom design methodology must be able to provide a satisfactory answer
to the following question:

“Why do I have to design this Circuit (or block) in Full Custom ?”

The usage of this costly method must be fully justified. Most common reasons for employing a
Full Custom design methodology include:

• Speed requirements

• Area requirements

• Lack of support for other methodologies.

Full custom design gives the designer the freedom to modify every aspect of the design to in-
crease the performance of the circuit. While more freedom in design parameters provides ground
for more optimum solutions, it also complicates this optimization process considerably. A clear
focus on design goals is of much more importance in Full Custom design than in any other design
style.

Even for the most simple circuit (e.g. an inverter) with pre-set electrical parameters (such as the
ratios of transistors), the designer will be confronted with a lot of options on:

• How to place the transistors,

• The external aspect ratio of the block,

• Which metal layers to use for the distribution of power and signals,

• Where to place the input and output pins.

The designer must be able to realize the significance of his/her decisions and maintain a contin-
uous picture of the design status in his/her mind to be able to refine these decisions.
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8.2.1 Signal Flow

The design of a layout starts with the definition of the signal flow. The signal flow defines on
which layer and in which direction all the input, output, clock and power lines will be laid out.
This flow will give the basic guidelines for the actual design of the layout. A good signal flow
minimizes the connections for the block and ensures an overall compact layout.

As a simple example let us consider the signal flow for a simple inverter that will be used to
invert and/or buffer a 32 bit bus running vertically in Metal-1 in a double metal process. Figure
8.1 shows an example signal flow.

Vdd

Gnd
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ig
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a
l
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e
ta
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1

Metal-2

Metal-2

Figure 8.1: Signal flow for a simple inverter.

The reasoning behind that signal flow is simple. The main aim is to buffer or invert the bus
signals so the input must follow the direction of the bus and should preferably be on the same
layer as the signal. Every cell will need power and ground connections, a different layer (Metal-
2) is chosen to avoid intersections with the signal line. A narrow block is more desirable as this
block will be repeated along the X axis. Figure 8.2 shows three different layouts for the inverter
cell.

Notice how many different solutions we can come up with for a design with fixed electrical
characteristics and signal flow. The first layout in Figure 8.2 is what we can call a traditional
design. The second layout has the same structure and still is in accordance with the signal flow
(only the input is still in Poly not in Metal-1) the only difference is that the power connections
have moved toward the center of the cell. The third layout is a radical approach, in an attempt
to make a narrower cell. The third cell does not follow the signal flow exactly, as the power
connections are in Metal-1 instead of Metal-2. Although at first sight this seems to be against
the aforementioned signal flow rules, it is not a crucial infringement. In fact, the signal flow
picture can be refined, noting that: (“It is also possible to use Metal-1 for the supply connections
if layout three is used”). Notice that the wider pMOS transistor of the inverter in the third layout
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Figure 8.2: Three different inverter layouts based on the signal flow shown in Figure 8.1.

has been realized by a parallel connection of two small pMOS transistors.

At this stage, the third layout seems to be a better candidate, as the width of the layout is clearly
less than the other two. Let us continue and try to build the inverter block.

Figure 8.3: 32 inverters placed side by side..

Figure 8.3 shows four different arrangements of the inverters. The first row is a simple repe-
tition of the first layout. It is the largest of all solutions with dimensions of 285µm x 23.5µm
(6697.5µm2). This area can be reduced using the following trick: A close inspection of layout
1 (and layout 2) reveals that the VDD and GND connections of the layout is on the left. These
connections can be shared between two adjacent cells by simply mirroring the second cell. The
second row in Figure 8.3 shows the result. The combined-cell consisting of a normal and a mir-
rored cell is shown at the end of the row. Notice that the inputs are not evenly spaced on this
row. The second occupies less than 80% of the area of the first row with dimensions: 225µm x
23.5µm (5287.5µm2). The third row is generated by using the second layout. This cell is very
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similar to the first layout and can use the same mirroring scheme. The inputs which were in Poly
in the single cell however have a higher degree of freedom and are placed afterwards evenly on
this row. Although the second and third rows have the same width, the base cell of the third row
is slightly smaller and as a result the third row occupies less area than all the others 225µm x
21.5µm (4837.5µm2). The last row shows the placement of inverters from the third “narrow”
layout. This row of inverters is by far the most narrow of all, but with the dimension of 190µm
x 30.5µm (5795µm2)occupies more area than all but the first row.

Let us continue our example in which we develop a 32-bit parallel buffer, where each buffer
element consists of two cascaded inverters. The layouts of three buffer rows based on three
different inverter designs can be seen in Figure 8.4.

Figure 8.4: Three different layouts of 32-bit buffers, based on the inverters shown in Figure 8.2.

The first row is generated with the first inverter layout and has dimensions of: 225µm x 40.5µm
(9112.5µm2). The reason for the reduction in height is again a mirroring trick: The ground
connection that was running at the bottom of the cell was shared between the first and second
inverter. This required a small re-arrangement in the input and output pins. The second row uses
the second layout and is slightly larger with dimensions of: 225µm x 44.5µm (10012.5µm2).
The mirroring trick could not be employed here as the basic cell of the second row does not have
common lines at the bottom or top of the cell. The third row is still the most narrow block but
occupies more area than the two other rows: 190µm x 61µm (11590µm2). It seems that despite
the overall larger area, Next we demonstrate that the area occupied by interconnection lines may
also play a very important role. Figure 8.5 shows a 32-bit minimum width Metal-1 bus that is
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connected to a row of inverters, placed side-by-side. The area used to match the bus to the inputs
of the inverters is almost twice the size of the inverter block, 55µm x 190µm (10450µm2) !

Figure 8.5: 32-bit Metal-1 bus connecting to a row of inverters placed side-by-side.

Most of the time the signal connections and routing will have a high impact on the overall area.
Especially for blocks that have large number of connections the area required for signal routing
might be even larger than the active area itself. Following the example we can deduct some basic
guidelines for the layout of basic building blocks:

• A basic signal flow graph showing the main signal directions and their preferred layers
needs to be created.

• The signal routing overhead needs to be minimized. This requires proper placement of
input and output signals. The more connections a block has the more the block has to be
oriented to the signal connections.

• For cells that will be used in an array, sharing of common signals and blocks (substrate
contacts) can save significant area.

• Different variations of a basic cell could be reconsidered for the usage in certain parts.
This may look like extra design effort, but for the design of a good cell block probably a
few alternatives of the basic cell needs to be (roughly) designed. These other alternatives
could prove to be more advantageous in certain parts of the design.

8.2.2 Design Rules

A full custom designer actually designs the layout masks that will be used in the manufactur-
ing of the chip. All layers in the process have some restrictions on their size, aspect ratio or
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separation, as a result of different physical, chemical, lithographic process limitations as well as
electrical properties of the device. These rules are defined in design rules. Basically, the process
manufacturer guarantees that the layers will be manufactured correctly only if these rules are
followed.

Different processes have slightly different rules for their technology which makes it difficult to
find unique guidelines for compact layouts. Depending on the technology, one or more of the
following items (rules) may impose the most restrictive limits in a full-custom design.

nMOS-pMOS separation: Two transistors of different characteristics need to be manufactured
on a common substrate in CMOS design. Depending on the substrate type one, (or even
both) of these transistors are manufactured in a well that has the appropriate doping con-
centration. As a result the pMOS and nMOS transistors usually need to be separated by
a large distance margin. Traditional cell design places all pMOS transistors in a common
well and all the nMOS transistors below an imaginary line separating both regions. Gen-
erally speaking, all CMOS designs have a large connectivity between nMOS and pMOS
transistors. In order to have a more compact layout, two or more of these pMOS-nMOS
rows could be stacked on top of each other. As pMOS-nMOS spacing is more than the
spacing between same-type transistors a common trick, is to change the ordering of the
rows (resulting in a nMOS-pMOS-pMOS-nMOS configuration). Both of these alterna-
tives can be seen in Figure 8.6.

Figure 8.6: Two alternatives of nMOS-pMOS transistor placement in a cell: Traditionalplace-
ment where all pMOS transistors are grouped on top and all nMOS transistors are grouped on
the bottom (left), Stacked placement where alternating rows of nMOS and pMOS transistors are
placed on top of each other (right).

Substrate Contacts: The substrate on which the transistors are manufactured must be kept at
certain voltage levels for proper operation, and in particular, to avoid latch-up problems.
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An N-well (or substrate) in which pMOS transistors are realized, needs to be biased at the
most positive voltage (VDD for example) while a P-well (or substrate) needs to be biased at
the most negative voltage (GND for example). The structures that connect the supply lines
to the substrate are called substrate contacts. These contacts, depending on the technology,
could require a considerable area especially for small designs. A good solution is to try to
share these substrate contacts underneath the supply connection with neighbouring cells.

Interlayer connections: There are a number of conduction layers in any technology (such as
polysilicons, Metal-1 and Metal-2). These layers are separated with insulating SiO2 layers.
Any connection between these layers requires a vertical link (hole) through the insulator
which are called via’s (for inter-Metal connections) or contacts. Both layers must cover
this hole to a certain extent. Combined with the width of the contact or via hole and the
required extension, the area needed to make a transition from one layer to the other can be
much larger than the minimum drawing widths of the conduction layers. Similarly, making
multiple connections between three or more layers may result in severe area penalty, unless
the technology allows stacked via’s. Additional problems arise when these contacts are
required to have a certain distance to other layers. For cell design, the basic problem is
to connect the terminals of a number of transistors. As only Metal-1 is used for drain and
source contacts, and all signals to the gates must be connected to poly lines, almost all
signals have to be carried down to these layers. The restrictions might make using other
layers for intercell routing unfeasable.

Varying pitch of metal lines: For a given technology, different Metal layers may have different
pitches (pitch = minimum repetition distance of a layout pattern). Combined with the
problems described for interlayer connections, this would require that busses that are going
to be routed using these layers will have a pitch that is dictated by the pitch of the widest
layer.

45 degree routing: The majority of automatic tools and algorithms are based on orthogonal (i.e.
x- and y-direction) connections only. Yet, it is also evident that if signal connections could
be made as a straight line from one point to the other, the connection distance and all as-
sociated parasitics would be minimized. Drawing structures with free angles that conform
to the design rules is an extremely complicated task and the computational complexity for
Design Rule Check (DRC) programs increases to impractical levels. 45 degree routing is a
trade-off between these two extremes: for some connections the connection distance could
be much shorter and following rules is not much complicated than the orthogonal rules.
Most technologies allow the designer to use 45 degree features, at least in the conduction
layers. While using 45 degree features could reduce the area of a cell to some degree, it is
not completely problem-free. Especially for technologies where contacts and/or via’s are
not allowed to have 45 degree features, this technique is severely limited. Another inter-
esting aspect is that the area that has been saved by the 45 degree features can (for most of
the time) only be utilized by other blocks that also have 45 degree features.
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8.2.3 Common Pitfalls

A typical Full Custom design cycle for a block starts with the circuit-level schematic of the
design. Repeated transistor level simulations are used to satisfy all functional and electrical
requirements for the block. The designer then draws the most efficient layout (which is expressed
in terms of design time, area and speed). The electrical devices and parasitics are then extracted
from this layout, which is simulated to see if the design goals were indeed met. The post-layout
simulation is considered to be the most accurate verification of the design, prior to manufacturing,
as it contains all the parasitic effects associated with the particular layout of the circuit. While
these simulations are more detailed than the pre-layout simulations, the input data provided by
the circuit extraction program which has some known limitations.

The extraction algorithms typically use very simple algorithms to measure the size of specific
structures. The extraction of device parameters is no exception. Figure 8.7 shows three different
transistors.

Figure 8.7: Three different transistors with the same extracted parameters.

Even the most advanced extraction algorithms would extract these three transistors with the same
parameters (W = 18µm, L = 1µm), as the algorithm simply calculates the overlap of poly
line with the diffusion pattern. Yet, these transistors will have radically different behaviours in
real life. The first transistor (left) is a proper 18µm transistor where the channel current will
flow strictly across the channel . For the second transistor (middle), the effective channel will
be narrower and longer than the one that the geometry suggests Since the carriers (electrons)
must travel a longer distance through the channel, following a diagonal path from source to the
drain contact. The third example (right) shows another extreme condition. Here the majority
of the current will flow in an effective channel that is much smaller. At any case, the actual
electrical behaviour of these transistors will be quite different from each other, but the post-
layout simulations will fail to reveal these differences and treat all three transistors the same.
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8.2.4 Schematic Level Enhancements for Efficient Layouts

The design of the circuit schematic is usually based on electrical requirements and is an opti-
mization process. The most important tool during this optimization is the simulation. The result
of the optimization is a schematic that has defined values for the active devices. The layout is
then drawn to convert this schematic into an actual circuit.

The full custom design methodology gives the designer a great level of freedom during the de-
sign. This freedom should also be exploited during the conversion of a schematic into a layout.
For example, it is not very efficient to draw many transistors of different size. This is true espe-
cially for transistors of the same type that are connected to each other. Attention must be given to
reflect the dimensioning of the schematic as close as possible, but especially for digital circuits,
there is no good reason for trying to stick to exact, pre-defined numbers.

The choice of the circuit schematic can be very important. For some common blocks there are
many different alternatives with varying advantages and disadvantages. As an example, XOR
and MUX type circuits are hard to realize in standart CMOS logic whereas in Pass transistor
logic their realization is quite simple. A very interesting design style for efficient layouts is the
branch based logic style [4]. The branch based logic style is a special case of the standart static
CMOS designs where both the nMOS and pMOS block of the circuit are designed using parallel
branches of series-connected transistors between the VDD (or GND) and the output node. An
example circuit schematic comparing the Static CMOS logic to the Branch Based Logic is given
in Figure 8.8

Note that both circuits perform the same logic function

out = BC ·
(
AC + AD

)
(8.1)

At first sight the Branch Based logic realization (right) does not look like an optimum solution
as it needs more transistors than the standard static CMOS (left) version. When we compare the
layouts of both blocks shown in Figure 8.9, the advantages of the Branch Based Logic can be
seen more clearly.

The structure of the Branch Based Logic is very simple and does not have any exceptions. All
blocks have a single power line and a single common output line. The most important property
is that the diffusion region does not have any interruptions. The pMOS network of a Branch
Based Logic realization is not the topological dual of the nMOS network, but it is very easy to
calculate the two networks from a simple Karnaugh map as shown in Figure 8.10. Note that both
the nMOS and the pMOS block functions are minimized strictly in the sum-of-products form.

The nMOS networks is generated by using the sum of products representation from the Karnaugh
map by selecting the “0” cubes. The pMOS network is selected by a similar way but the “1” cubes
are selected, but as a pMOS transistor is turned on by a logic “0” on its gate, all the variables are
inverted.
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Figure 8.8: Schematic comparing the static CMOS logic to the Branch Based Logic.

Figure 8.9: Layouts comparing static CMOS logic to the Branch Based Logic.
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Figure 8.10: Karnaugh map for Branch Based Logic realization.

8.3 Case Study: Design of the Systolic Adder

This section will discuss some aspects of the design of the Systolic Adder in detail to illustrate
the design methodology employed throughout the design of the Aries architecture.

8.3.1 Functional Verification

The first step after having a complete functional description is to come up with a functional
schematic. The schematic given in Figure 6.12 was the first schematic designed to test different
components, especially the final carry propagate adder. This gate level schematic is repeated
in Figure 8.11 for reference. The whole schematic consists of standart cells and gives a good
overview of the connections and complexity. The concept and some difficult test cases can be
simulated to verify the functionality. The final carry propagate adder is designed as a separate
subblock which can be replaced on the top-level schematic easily. The same schematic is also
usefull while evaluating the post-simulation results and generating test cases.

8.3.2 Design of the Full Adder

The basic building block of the systolic adder block is the one-bit FA, therefore an area efficient
and high-speed FA cell is the key to the fast systolic adder. As the whole block is expected
to perform an operation within 10ns, initial studies showed that a delay of little over 1ns. per
FA was needed. In order to avoid potential difficulties of syncronization and timing a dynamic
CMOS alternative was ruled out at the outset.
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Figure 8.11: Schematic of the Systolic Adder.
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8.3.2.1 Schematics

There are many different realizations of the static CMOS one-bit FA. The alternatives can be
classified into two main groups, i.e., adders based on Pass Transistor Logic and adders based
on conventional (standart CMOS) logic.. As the FA structure uses XOR based functions, it
is well suited to Pass Transistor logic. The pass transistor logic alternatives indeed produce
some compact solutions [22] but the outputs may produce more glitches than standart CMOS
alternatives. Additionally, as all the remaining parts were to be designed using the conventional
static CMOS logic, it was decided not to use pass transistor logic based adders.

There are two basic standart CMOS realizations of the FA. The one shown in Figure 8.12 has
some logic optimization to use a Carry in the calculation of Sum and is faster than the standart
alternative which consists of two separate sub-circuits for the realization of Carry and Sum.

Figure 8.12: Circuit schematic of the CMOS FA.

The first step in creating an optimized schematic is to draw a circuit that only uses minimum-
width transistors and investigate the response. It is not always very easy to calculate a worst
case for a given circuit. A well designed FA has a worst case delay when both of its outputs
change. This happens when the number of logic “1” inputs change from 2 to 1 or from 1 to
2. The optimization problem is not only the problem of minimizing this delay, but also making
sure that the conditions for the worst-case remain the same in the optimized circuit. Figure 8.13
shows simulation results of a FA circuit consisting of minimum-size transistors.

It can be seen that the worst case delay is almost 2 ns (please note that the delay of Carryout is
much shorter). This delay can now be optimized (reduced) iteratively, by running a number of
simulations and adjusting the transistor sizes according to the simulation results. We know that
in all static CMOS circuits, a rising output transition is caused by one of the pMOS branches,
where a falling output transition is always caused by one of the nMOS branches. The delay
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Figure 8.13: Transient operation of a CMOS FA consisting of minimum-size transistors.

associated with a certain transition is dictated by the strength (or weakness) of the corresponding
branch. Thus, with the help of some simulations, the designer can identify which branches are
responsible for particular outputs. This will enable the designer to modify the dimensions of only
the relevant transistors. There some simple rules of thumb that should be followed:

• The pMOS transistors, due to the lower mobility of holes, have a gain factor that is 2 to
3 times lower than that of an nMOS transistor. For the same current driving capacity the
pMOS transistor should have channel width that is roughly 2 to 3 times wider than an
nMOS transistor.

• Larger transistors have larger current driving capability, making them faster. The problem
is that larger transistors also have higher input capacitances and higher drain parasitics
which slows down overall operation speed.

• Transistors within the same branch are usually drawn side-by-side on the same active area.
Thus, they should have the same size to simplify the layout.

The dimensions listed in Table 8.1 were used for the optimized FA circuit.

The Carry block has larger transistors since the output of this block also drives the Sum block.
The simulation result shown in Figure 8.14 shows that the design goals are indeed met by these
dimensions.
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Table 8.1: Transistor sizing for the FA .

nMOS pMOS
Carry block 5.3µm 10.8µm
Sum block 4.2µm 6.4µm

Inverters 4.0µm 8.4µm
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Figure 8.14: Transient operation of the optimal FA circuit.
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The worst case delay is close to 1 ns, almost 50% less than that of FA circuit with minimum-size
transistors.

8.3.2.2 Layout of the Full Adder Cell

The first step of the layout is to create a signal flow graph that shows the connection directions
and the general layout of the cell. A number of factors need to be taken into account:

• The basic usage of the FA will be in Carry Save blocks (for the arrangement please see
Figure 6.3) where the carry signal is passed to the neighbouring cell to the left and on the
row below. This suggests that the Carryout signal should be placed to the left bottom part
of the block

• Another usage of the FA would be in a Ripple Carry Adder chain where theCarryout signal
is passed to the Carryin signal of the FA to the left. This would require a Carryout signal
on the left edge of the block and a corresponding input on the right edge (as practically all
the inputs are interchangeable it does not need to be a specific input) that could easily be
connected to this Carryout signal when necessary.

• The Systolic adder will consist of two rows of FA’s of 12 and 11 adders respectively. A
structure that is as narrow as possible is desirable.

• The floorplan (see Figure 4.3) suggests that the systolic adder will be placed between the
two RAM blocks which have horizontal Metal-2 lines for VDD and GND. The same
scheme could be adapted by the FA’s to reduce the power routing complexity.

After creating the signal graph, the transistors have to be placed. The emphasis is to have a block
that is as narrow as possible. It usually does not pay off to break up transistor blocks that form a
branch. In the FA layout, the branch for the sum calculation produces the widest diffusion block.
This gives a limit for the minimum width of the block, as it is not possible to make a narrower
block without breaking up that branch. Next, the other branch blocks are placed. Since the FA
uses mostly the three input signals for all of its blocks it is possible to put two nMOS and two
pMOS blocks one after another (generally a mirroring approach illustrated in Figure 8.6 is used).
The output inverters which are totally separated from the remaining blocks are placed at the very
bottom of the block in a mirrored scheme. Another alternative is to place them to one side of the
Adder, which would increase the width of the block.

The third step is to make the connections and finalize the layout. All three steps of the adder
layout are shown in Figure 8.15 The complete layout of the FA cell has dimensions of 60.2µm x
24.4µmand occupies an area of 1468µm2.

The circles on the final layout show the connection points for a ripple carry configuration. During
the design of the final layout, a few additional enhancements were made:
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Figure 8.15: The signal flow graph(left), rough placement(middle) and final layout(right) of the
FA.
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• The first row of FA’s will receive three 10 bit inputs from the neighbouring RAM cells
horizontally in Metal-2. Metal-2 lines (with provision for via’s) have a pitch of 3µmwhich
sums up to a considerable amount when used with 30 lines. If the cells could be designed
to allow a bus of Metal-2 lines to be routed on top, the routing area could be reduced
dramatically. For this reason one of the inputs received a Metal-2 connection, and the top
VDD line was reduced to a simple contact to allow more freedom. The space between the
the Metal-2 connection for VDD and the Metal-2 connection for GND is 39µm, which is
more than enough to accommodate a 10 bit Metal-2 bus.

• The transistors of the inverters were split into two parallel transistors to use the whole
width of the current block and save from height.

Figure 8.16: Placement of the designed FA cells within the second row of the systolic adder
array.

Figure 8.16 shows a close-up view several FA’s as they are placed in the systolic adder array. The
figure shows four FA’s and neighbouring structures on the second row of the systolic adder array.
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The carry-save connections from the bottom of the row, the connection and sharing of the VDD
lines between two cells (the cells are placed upside down) and the bus running over the cell are
clearly visible.

A post layout simulation result of the FA is shown in Figure 8.17. The results differ only slightly
from the simulation results obtained by using the schematic representation. The worst case delay
is still around 1 ns.
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Figure 8.17: Transient operation of the optimized FA circuit, post-layout simulation.

8.3.3 Design of CPA Section

The first two FA rows of the systolic adder produce two 10 bit numbers that need to be added
for the final result. After it was decided that a Ripple Carry Adder was not suitable for this task,
a number of alternatives were evaluated. The Brent-Kung Parallel Prefix Adder structure was
found to be the most suitable adder structure for this application.

Although the Adder operates on 10-bits, due to the negative number processing enhancements,
the final Carryout signal is not required, thus the adder effectively uses the carry propagation
scheme of a 9-bit Parallel Prefix Adder. Figure 8.18 shows the graph representation of the (semi)
10-bit Brent-Kung Parallel Prefix Adder.

The schematic for this arrangement was drawn first. An alternative schematic that used alternat-
ing And-Or-Invert (AOI) and Or-And-Invert (OAI) gates for ∆cells was also evaluated. These
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Figure 8.18: Graph representation of the (modified) 10 -bit Brent-Kung Parallel Prefix Adder.

gates are simpler to build with static CMOS, but they were not very suitable for this particular
application. Each AOI based ∆cell had to be followed by a OAI based ∆cell, if the outputs of
two different ∆cells (one AOI and one OAI) drive another ∆cell (which is the case for some of
the ∆cells) two inverters are necessary to correct the p and g signals. On a second note, for the
majority of the cases a static CMOS gate with a built-in inverter performs better than a static
CMOS gate without an output inverter.

As discussed earlier, a parallel prefix adder consists of three main parts: The preprocessing stage
which is essentially a NAND gate and a XOR gate, the post Processing stage which is a simple
XOR gate (the pipeline DFF was also added to this stage), and the carry propagate stage which
consists of a network of ∆cells. These three blocks need to be designed separately.

8.3.3.1 Preprocessing Stage

This stage consists of two simple gates. The AND stage is quite straightforward, but the XOR
function is more complicated. The basic CMOS realization of the XOR gate requires 10 transis-
tors, and both the input signals and their complements. A novel XOR gate with only 6 transistors
(including the output inverter) was used instead of the static CMOS alternative [26]. Figure 8.19
shows the circuit schematic of this XOR gate.

Figure 8.19: Circuit schematic of the Wang XOR gate.
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Since the preprocessing stage drives more stages, all transistors in this stage are designed to
allow faster operation. These cells are placed on top of a row of FA cells. It is very important
that the pitch of these cells matches the pitch of FA cells. Otherwise, each block would need to
be connected separately and the resulting routing would have significant area overhead.

8.3.3.2 The ∆ Cell

The basic graph of the 10-bit parallel prefix adder in Figure 8.18 shows that four rows of delta
functions would be necessary to realize the carry propagate function. It was also considered to
use only three rows (as two rows only needed 2 ∆cells while the remaining two rows used 4
cells). The problem lies in that the output of these cells have to be fed into the next stage. When
the ∆cells are not placed in their rows this would mean re routing the signal backwards. It was
found that this solution would work for certain cases (it was used in the accumulator which uses
four rows instead of the required five ) but would complicate the routing and generality of the
circuit too much. As at most 4 blocks per row are used, these blocks are designed to be two times
as wide as the preprocessing blocks and their height was minimized.

8.3.3.3 The Postprocessing Cell

This cell again must match the width of the FA cells. It consists of the same XOR that is used
for the preprocessing stage (with smaller transistor dimensions) and a pipeline register which is
the same DFF that is used throughout the design with slight modifications to have the required
width.

Figure 8.20 shows the layouts of the three basic cells that are used in the Parallel Prefix Adder.

Figure 8.20: Layouts of preprocessing cell(left), ∆cell(middle), postprocessing cell (right) of the
Parallel Prefix Adder.
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8.3.4 Coping With Negative Numbers

The problem with the negative numbers and the solution was discussed in Section 6.1.4. The
necessary logic cells (AND gates) can easily be added to the circuit and do not require any
special design effort. Figure 8.21 shows the 3 AND gates that have been placed in front of the
first row of FA’s.

Figure 8.21: Blocks inserted for negative numbers.

The Metal-2 lines to the bottom of the picture are the data inputs while the Metal-2 lines covering
the AND gates are used to connect the Clk, Read and Read signals of the Sense amplifiers
between the two RAM blocks cells as well as the VDD and GND connections.

8.3.5 Comparison with HDL

The systolic adder has also been described simulated and synthesized by a top down approach
using VHDL (VHSIC Hardware Description Language) . The code below was written for this
purpose:
l i b r a r y IEEE ;
use IEEE . s t d _ l o g i c _ 1 1 6 4 . a l l ;

−− some l i t t l e p r o c e d u r e t o h e l p me

package BASIC i s
procedure HA(

A, B : in STD_LOGIC_VECTOR(8 downto 0 ) ;



8.3. CASE STUDY: DESIGN OF THE SYSTOLIC ADDER 115

SUM,COUT: out STD_LOGIC_VECTOR(8 downto 0)
) ;

procedure FA(
A, B , C : in STD_LOGIC_VECTOR(8 downto 0 ) ;
SUM,COUT: out STD_LOGIC_VECTOR(8 downto 0)

) ;
end BASIC ;

package body BASIC i s

procedure HA(
A, B : in STD_LOGIC_VECTOR(8 downto 0 ) ;
SUM,COUT: out STD_LOGIC_VECTOR(8 downto 0)

) i s
begin

SUM := A xor B ;
COUT := A and B ;

end ;

procedure FA(
A, B , C : in STD_LOGIC_VECTOR(8 downto 0 ) ;
SUM,COUT: out STD_LOGIC_VECTOR(8 downto 0)

) i s
begin

SUM := A xor B xor C ;
COUT := (A and B) or (A and C) or (B and C ) ;

end ;
end BASIC ;

−− The a c t u a l program

l i b r a r y IEEE ;
use IEEE . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use IEEE . s t d _ l o g i c _ a r i t h . a l l ;
use WORK. BASIC . a l l ;

e n t i t y s y s t _ a d d e r i s
port (

a , b , c , d : in s t d _ l o g i c _ v e c t o r (9 downto 0 ) ;
sum : out s t d _ l o g i c _ v e c t o r (12 downto 0)

) ;
end s y s t _ a d d e r ;

a r c h i t e c t u r e b e h a v i o u r of s y s t _ a d d e r i s
s i g n a l qs : UNSIGNED(8 downto 0 ) ;

begin
p r o c e s s ( a , b , c , d , qs )

v a r i a b l e L1a , L1b , L1i : s t d _ l o g i c _ v e c t o r (8 downto 0 ) ;
v a r i a b l e L1s , L1c : s t d _ l o g i c _ v e c t o r (8 downto 0 ) ;
v a r i a b l e ssum : s t d _ l o g i c _ v e c t o r (3 downto 0 ) ;

begin

−− f i r s t l e v e l i n p u t s

f o r I in 0 to 8 loop
L1a ( I ) := a ( I + 1 ) ;
L1b ( I ) := b ( I ) ;

end loop ;
ssum ( 0 ) := a ( 0 ) ;

−− c a l l t h e HA_stack

HA( L1a , L1b , L1s , L1c ) ;
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f o r I in 0 to 7 loop
L1a ( I ) := c ( I ) ;
L1b ( I ) := L1s ( I + 1 ) ;
L1i ( I ) := L1c ( I ) ;

end loop ;
L1a ( 8 ) := c ( 8 ) ;
L1b ( 8 ) := b ( 9 ) ;
L1i ( 8 ) := L1c ( 8 ) ;
ssum ( 1 ) := L1s ( 0 ) ;

−− c a l l t h e FA_s tack
FA( L1a , L1b , L1i , L1s , L1c ) ;

f o r I in 0 to 7 loop
L1a ( I ) := d ( I ) ;
L1b ( I ) := L1s ( I + 1 ) ;
L1i ( I ) := L1c ( I ) ;

end loop ;
L1a ( 8 ) := d ( 8 ) ;
L1b ( 8 ) := c ( 9 ) ;
L1i ( 8 ) := L1c ( 8 ) ;
ssum ( 2 ) := L1s ( 0 ) ;
−− c a l l t h e FA_s tack
FA( L1a , L1b , L1i , L1s , L1c ) ;

−− t h e f i n a l l i n e up
f o r I in 0 to 7 loop

L1a ( I ) := L1s ( I + 1 ) ;
L1b ( I ) := L1c ( I ) ;

end loop ;

L1a ( 8 ) := d ( 9 ) ;
L1b ( 8 ) := L1c ( 8 ) ;
ssum ( 3 ) := L1s ( 0 ) ;

−− now add t h i s as f a s t as p o s s i b l e
−− t r y t o adap t a CLA;

qs <= UNSIGNED( L1a ) + UNSIGNED( L1b ) ;
sum (12 downto 4) <= STD_LOGIC_VECTOR( qs ) ;

sum (3 downto 0) <= ssum ;

end p r o c e s s ;
end b e h a v i o u r ;

There are different methods for describing a behavioural model. The most simple one would
involve the shifting and addition of four 10-bit numbers. The resulting code includes registers
for individual operations so this description is not very useful. A more hardware level approach
would be to describe the connections of various components which would correspond to literally
describing the schematic. The method chosen here uses variables to force the synthesiser to
generate a layout that performs these operations one after another without using registers to store
intermediate results.

The circuit was simulated, verified and synthesized. The basic core area occupied by the synthe-
sized standart cells is 500µm x 420µm (210.000µm2)which is more than double the size of the
full custom solution. This comparison may still not be very fair for a few reasons:
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• The synthesized block does not include the pipeline registers.

• The synthesized block does not have the enhancement for negative numbers.

• Most important of all the synthesized block does not have the signal routing completed.
40 input and 13 output signals need to be routed to specific locations. Considering that the
pitch of the Metal-2 lines is 3µm the signal routing can account for a considerable area.

There are important advantages of the synthesis approach. Designing the adder using the synthe-
sis approach takes about one tenth of the time used to design a Full Custom Block. Furthermore,
process migration is much simpler in the synthesis approach, changing a simple option within
the synthesis environment is enough to map the design to a new technology (provided that stan-
dart cells exist for that technology). These two arguments are commonly used to describe the
superiority of the synthesis approach.

For random logic structures, the synthesis- approach is simply unbeatable. For regular structures
such as datapaths, systolic arrays and storage elements the verdict is not so clear. While the
algorithm is mapped much faster into a gate level netlist, the actual placement and routing of
these standart cells is much more complicated in a synthesized design. A full custom block is
always designed with the signal flow and overall floorplan in mind, and the cells are designed to
fit into the floorplan. The syntesized gate netlist on the other hand, contains no information and
optimization about the signal flow and shape of the block. A second EDA tool has to be used to
make the placement and routing of the actual design. The designer does not have direct access to
the design (as the gate level netlist would not mean very much to the designer) and has to rely on
this high level tool to make the routing. For a high performance design, the placement and routing
step can take much longer design effort than writing the hardware description. New design tools
try to address this problem in which sophisticated expert systems try to determine a-near optimal
floorplan, automatically breaking the design into sub-blocks and setting optimization parameters
for the synthesis of these blocks.

Full Custom design (for the design of regular structures) is not as difficult as some sources
suggest it to be. As an example, the whole Aries block consists of the following design elements
(only cells that are introduced in the stage are listed) :

• Input Registers

– 3:1 MUX

– DFF

• RAM

– DualPortRAM Cell

– Sense amplifier



118 CHAPTER 8. DESIGN METHODOLOGY: A CASE STUDY

– Write circuitry

– Precharge circuit

• Address Decoder

– Inverter

– 3 input NOR gate

– 2 input AND gate

• Systolic Adder

– Full Adder

– ∆Cell

– 2 input XOR

• Output Stage

– 2:1 MUX

This makes a total of 13 different blocks. The most complicated block that is listed here is the FA
which has 28 transistors, all of the remaining blocks are much smallerwith respect to transistor
count (at least five of the blocks described above can be called elementary blocks). Furthermore,
any designer that employs a full custom design technique has most likely designed a number
of different variations for most of the basic cells, thus only a few blocks have to designed from
scratch. Even the cells that need to be re-adjusted to fit a certain area or meet a speed constraint,
benefit from the design experience from earlier (similar) designs.

Speed optimization is another issue. First of all, the full custom designer has complete con-
trol over the design, and can make any adjustment that he/she feels necessary and can therefore
determine all the critical factors that affect the operation speed such as block placement, inter-
connection and device sizing, precisely. As for the majority of the circuits, only a few cells (the
ones that are on the critical path) need to be optimized for speed, this is also not a very difficult
task.

Overall, for the design of regular structures the full custom layout design technique is not as
obsolete as many sources would suggest. It offers the highest performance both in terms of area
and speed, and the design time for high performance designs is comparable to that of synthesized
designs, which have typically much lower performance.
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Results

In this thesis, a programmable LSI macro-block for Digital Signal Processing applications is
presented. The proposed Aries architecture occupies a silicium area of less than 1.5mm2 and
can be used to construct digital filters of any dimensions (both 1D and 2D). An additional final
adder can be used to form a pipelined adder chain that can accumulate the results of different
Aries blocks. Aries can operate on data rates of up to 50 MHz, enabling it to be employed even
in the most demanding high-resolution image filtering applications.
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Counter Circuit Based on Capacitive Threshold-Logic Gates”, IEEE Journal of Solid State
Circuits, vol SC-31, pp.1177-1183, August, 1996.

121



122 BIBLIOGRAPHY

[11] Y. Leblebici, F. K. Gürkaynak, and D. Mlynek, “A Compact 31-Input Programmable Ma-
jority Gate Based on Capacitive Threshold Logic,” accepted for presentation at the 1998
IEEE International Symposium on Circuits and Systems.

[12] T. Huisman, “Counters and Multipliers with Threshold Logic,” Master’s Thesis, Labora-
tory of Computer Architecture and Digital Techniques (CARDIT), Faculty of Electrical En-
gineering, Delft University of Technology, 1-68340-28(1995)08, May, 1995.

[13] E.E. Swartzlander, “Parallel Counters,” IEEE Trans. Computers, vol. C-22, pp 1021-1024,
September, 1973.

[14] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol 34, pp. 349-356,
May, 1965.

[15] R. Minnick, “Linear Input Logic”, IRE Trans. on Electronic Computers, vol:EC-10,pp. 6-
16, March, 1961.

[16] W. H. Kautz, “The Realization of Symmetric Switching Functions with Linear Input Log-
ical Elements,” IRE trans. on Electronic Computers, vol:EC-10, pp. 371-378, September,
1961.
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