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What is wrong with the way we design chips now?

Modern System-on-Chip circuits ...

m Contain millions of transistors

m Require clock rates exceeding 100s of MHz
m Include 100s of subblocks
[

Use 10s of different clock domains

GALS System Design kgf, Integrated Systems Laboratory (IIS)



What is wrong with the way we design chips now?

Modern System-on-Chip circuits ...

m Contain millions of transistors, trend increasing

m Require clock rates exceeding 100s of MHz, trend increasing
m Include 100s of subblocks, trend increasing
u

Use 10s of different clock domains, trend increasing
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What is wrong with the way we design chips now?

Modern System-on-Chip circuits ...

m Contain millions of transistors, trend increasing

m Require clock rates exceeding 100s of MHz, trend increasing
m Include 100s of subblocks, trend increasing
u

Use 10s of different clock domains, trend increasing

... are not easy to design

m The clock signal must be distributed to an increasing number
of elements with increased precision

m Many independently designed components must be combined
to a large system.

m All subsystems must be able to reliably exchange data
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Globally-Asynchronous Locally-Synchronous Design

GALS is a methodology to enable the design of complex digital
systems on chip.

m System is divided into smaller GALS modules

m Each module works synchronously

m Interconnected modules communicate asynchronously
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Globally-Asynchronous Locally-Synchronous Design

GALS is a methodology to enable the design of complex digital
systems on chip.

System is divided into smaller GALS modules

Each module works synchronously

Was first developed by D. Chapiro in 1984

[
[
m Interconnected modules communicate asynchronously
[
m First chip implementation by J. Muttersbach in 1999
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Globally-Asynchronous Locally-Synchronous Design

GALS is a methodology to enable the design of complex digital
systems on chip.

System is divided into smaller GALS modules

Each module works synchronously

Was first developed by D. Chapiro in 1984

|
|
m Interconnected modules communicate asynchronously
|
m First chip implementation by J. Muttersbach in 1999

GALS implementations differ in:

m synchronization method between blocks

m specific asynchronous communication protocol used
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Basic GALS Structure

Data
Synchronous Synchronous
Block Block
A B
Clk Clk

Synchronous system

Two large functional blocks of a synchronous system
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GALS Structure

Basic GALS Structure

/GALS Module A h ( GALS Module B\
DataQUT DataIN
Locally Locally
Synchronous Synchronous
Island Island
A B
Lelk Lak
- J . J

Local clock generators

GALS modules are formed by adding a local clock generator for
each functional block
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GALS Structure

Basic GALS Structure

/GALS Module A h ( GALS Module B\
DataQUT DataIN
Locally Locally
Synchronous Synchronous
Island Pen Req [ ]._Pen Island
A 5 J 5 B
Ta < Ack | Ta
Lelk Lak
Ri Ri
- J . J

Port controllers are added to regulate data transfers between GALS
modules
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GALS Works

GALS at IIS

m J. Muttersbach
First implementation

m T. Villiger
m S. Oetiker
m F. K. Giirkaynak
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GALS Works

GALS at IIS

m J. Muttersbach

m T. Villiger
Multi-point
interconnect

m S. Oetiker
m F. K. Giirkaynak
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GALS Works

GALS at IIS

m J. Muttersbach
m T. Villiger
m S. Oetiker

Local clock
generators

m F. K. Giirkaynak

GALS System Design kgf, Integrated Systems Laboratory (IIS) 6 /48



GALS Works

GALS at IIS

m J. Muttersbach
m T. Villiger
m S. Oetiker

m F. K. Giirkaynak
Design and test flow

v
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Why GALS ?

Advantages

m No global clock distribution problems
m Modular design flow
m Potential for low-power design

m Offers new possibilities for designers
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Cryptography 101

. ALICE | 0SCAR | BOB |
Plain-text —'——> Cipher-text —‘—'—' Plain-text

Cipher-key Cipher-key

Private key ciphers

m Alice encrypts plain-text information
by using a cipher-key.

m Bob can decrypt the resulting cipher-text
only if he has access to the same cipher-key.
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Cryptography 102

" ALICE . o0scAr | BOB

Plain-text —> Encryption ——> Cipher-text —-—> Decryption — Plain-text

Cipher-key Cipher-key

Oscar wishes to obtain the plain-text

[
m Oscar knows everything about the cryptographic algorithm
m Oscar can observe/modify the cipher-text

m but..

GALS System Design kgf, Integrated Systems Laboratory (IIS)



Cryptography 102

- ALICE . oscAR | BOB

Plain-text —> Encryption ——> Cipher-text ——> Decryption —> Plain-text

Cipher-key i Cipher-key

Oscar wishes to obtain the plain-text

Oscar knows everything about the cryptographic algorithm
Oscar can observe/modify the cipher-text

but.. Oscar does not know the cipher-key
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Crypto AES

Advanced Encryption Standard (AES)

Plaintext
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Crypto AES

Advanced Encryption Standard (AES)

RoundKey
m by NIST 2001 s o gl 5 50 Gl o i [ [ ) [0 [
m 128 bit data r = ;
m 128 bit key A‘ﬁ%;" > o 0 0 0 o) o) o) o o O
| 10/12/14 rounds ] [uur] [ Lo E ur] [uor] o] o] [owr] [uor]
Al |a

= ShiftRows & Exjé]
s AddRoundKey iaiai Hi
fEaeee
AR T

Ciphertext
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Crypto AES

Advanced Encryption Standard (AES)

Plaintext

AES Standard sia ii

m by NIST 2001
m 128 bit data
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Crypto AES

Advanced Encryption Standard (AES)

Plaintext

AES Standard i : ii

m by NIST 2001
m 128 bit data I
m 128 bit key

m 10/12/14 rounds
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Side-Channels

Once an otherwise secure algorithm is implemented in either
Hardware or Software it gains physical properties that can be
observed:

Time required to finish the operation

Power consumption

Heat dissipation

u
u
m Electromagnetic Radiation
u
m Sound

These properties are called Side Channels

Side-Channel Attacks

In 1996, P. Kocher showed that it is possible to obtain additional
information on the cipher-key by observing these side-channels.
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Crypto DPA

e ™
Diff ial P Analysi (DPA)
ITferential Power Analysis —
Select a subkey and a target S —
. Model of
opera tion Cryptographic
Hardware

Use a simple model to predict
the power consumption for S
input vectors

S vectors

GALS System Design kgf, Integrated Systems Laboratory (IIS)



Crypto DPA

- N
Differential Power Analysis (DPA) —
Select a subkey and a target Simple Power
operation Cryptographic
Hardware

Use a simple model to predict
the power consumption for S

input vectors
K subkeys

predict the power consumption

.« Hyo

. o
for all K subkey permutations 9 - He
§ . Hvt,z
/)]
. Hes
N J
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Crypto DPA

Differential Power Analysis (DPA)

Select a subkey and a target

Cryptographic
operation i)
i ; Attack 4
Use a simple model to predict 4
the power consumption for S S etormation

input vectors Measurement

I

predict the power consumption
for all K subkey permutations

S vectors

Measure the power :
consumption using the same S P
input vectors
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Crypto DPA

Differential Power Analysis (DPA) h

Select a subkey and a target
operation

Use a simple model to predict
the power consumption for S
input vectors

predict the power consumption K subkeys
for all K subkey permutations .
X " .
Measure the power % ~§ - :
. . > > .
Fonsumptlon using the same S o o
Input vectors *r B
Determine if one of the power
hypotheses shows a Statistical
. . . . Evaluation
distinctively higher of Model and
. Measurement
correlation to the L )
measurement.
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Acacia Block

("ACACIA Clock Handshake J ] ,i.éi_gma B

Ab INTERFACE‘
Block Diagram o

The GALS implementation is
called Acacia. SoLATH ‘
m Operations are divided |
between a 128-bit ;
- . Memory |
Goliath and a 32-bit !
David unit i
32
DAVID
.
> N J
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Acacia Block

("ACACIA Clock Handshake J ] l
INTERFACE‘

Block Diagram

The GALS |.mplementat|on is GOLIATH_GALS F—EE:]
called Acacia. L
GOLIATH
m Operations are divided == i

between a 128-bit
Goliath and a 32-bit
David unit i
m David and Goliath are
separate GALS modules

DBAVID_GALS

DAVID

32-bit Reg

Local Clock Generator
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Acacia Block

("AcAciA Clock Lb Fandshake J ] ,i.(,’igm N
Block Diagram INTERFACE|
The GALS implementation is S
. GOLIATH_GALS —
called Acacia. FE;;’]

GOLIATH

m Operations are d'ivided
between a 128-bit . _
Goliath and a 32-bit rrcryd

David unit

a David and Goliath are ]

separate GALS modules

. . DAVID_GALS lfAVID GALS I
m There is a second David - -

unit running in parallel.

m One round of AES
requires 1 Goliath and 4
David operations.

DAVID DAVID

32-bit Reg 32-bit Reg
SubBytes SubBytes

Local Clock Generator

Local Clock Generator
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Acacia Basic

Implemented Countermeasures

501‘502‘503‘504 5 505‘506‘507‘508 s 510‘511‘512 8 513‘514‘515‘516
= = =
= = =

MixC 4

AddKey / ShiftR

Normal Operation

The attacker will normally target a single operation, and will
measure the power consumption of this particular clock cycle.
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Acacia Dummy

Implemented countermeasures

Q
=
=

Dummy
Dummy
MixC 2

So1 DD S03(S04 E' S05|S06 DD
-
a

F 575 e

D ‘513‘514‘515‘516‘ D Z
=
=

Dummy Oper.
Dummy Oper.
AddKey / ShiftR

MixC 3

Inserting dummy operations

Inserting random dummy cycles will confuse the attacker, since the
targeted operation will not always be executed at a specific clock
cycle. Unfortunately, this also increases the run-time.
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Acacia Re-order

Implemented Countermeasures

Dumnmy
MixC 1

: §16| D ‘514‘515‘513‘ D : D 504‘502‘ D SDS‘SOI‘ E' S12‘S1BM D D m
g = ,  EN
£ B e R e

Dummy Oper.
Dummy Oper.
AddKey / ShiftR

Change ordering of operations

Independent operations can be re-ordered arbitrarily. Contrary to
inserting dummy cycles, this does not increase the run-time.
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Implemented Countermeasures

MixC 2
Dumniy

Dummy Oper.
Dummy Oper.

MGC 3

[l o sulor] o ] ¢ 5[] o o o ol
5 £

< a

d

Q m ‘514‘315‘513‘ D S$12|8 D D 511

3

<

MixC 4 | Dum

Parallelization

Executing operations in parallel creates more activity at the same
time, this appears as noise for the attacker.
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Acacia Parallel

Implemented Countermeasures

s08 D

$07(S05

$14813

Dummy Oper.
Dummy Oper.
MixC 4 | Dummy

AddKey / ShiftR

s15| D

Parallelization

Executing operations in parallel creates more activity at the same
time, this appears as noise for the attacker.
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Implemented Countermeasures
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Variable Cloc

Acacia

Implemented Countermeasures
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Chip Photo

Acacia

m UMC 0.25 pm CMOS

Interface
Reference Design

Cobebaba bbb

S

| This part of the

2 wJH 4l chip occupied

m Total area 1.75 mm 8 | by two
m David 0.221 mm? | (& independent
m Goliath 0.687 mm? :g | AES designs:

m Sync. 0.584 mm? "Ml - Baby ana

m Rate 177.7 Mb/s F_’ﬂmp_?ﬁS_ ;
m Energy 1.232 mJ/Mb

GALS System Design kgf, Integrated Systems Laboratory (IIS)



Conclusions

Conclusions

m A novel GALS based crypto ASIC implementing the AES
algorithm was presented.

m In addition to traditional DPA countermeasures, the chip also
includes GALS modules that use randomly varying clocks
which make known attacks extremely difficult

m The GALS design methodology was refined. The presented
design was designed using mainly standard EDA tools.

m A combination of functional and scan-chain based testing
allows a stuck-at-coverage of more than 99.8%.
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Conclusions

Conclusions

m A novel GALS based crypto ASIC implementing the AES
algorithm was presented.

m In addition to traditional DPA countermeasures, the chip also
includes GALS modules that use randomly varying clocks
which make known attacks extremely difficult

m The GALS design methodology was refined. The presented
design was designed using mainly standard EDA tools.

m A combination of functional and scan-chain based testing
allows a stuck-at-coverage of more than 99.8%.

| \

Is this really secure?

We don’t know yet. The security has to be evaluated by
cryptanalysts.
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Results Final

QUESTIONS ?
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Timing Diagram

Locally

Synchronous
Island

Receiving
GALS
Module

Ack N
§ L T A B
3§§| T —m———
oLl
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1 GALS port is activated by the Pen signal, which enables Req
|
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Timing Diagram
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85a
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Timing Diagram

( N\
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Timing Diagram
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Timing Diagram

Local clock is paused

Clock

ra _/ -
. T

Locally

Synchronous
Island

Receiving
GALS
Module
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- Ri / A\~ |
8gs Fp e
o9 |
20§ ¥ S
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(3]

All handshake signals return to their initial values, local clock is releasedJ
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Timing Diagram

Local clock is paused
Clock

Pen _/

Locally

Synchronous
Island

Receiving
GALS
Module

S| = /
o i \
85t
o9
<0
8| ai /—\—

Normal operation resumes, Ta remains active until the Pen is reset

(o2}
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Clock

Local Clock Generator

Ri Ai Ri Ai LCIk DelCntrixS|
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G Mutex

Mutual exclusion element
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Design flow for GALS (as used in Shir-Khan

Logic Gate Level
Equations Netlist
Gate Level
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AES implementations at IS

Riddler Fastcore Baby / Pampers

2 x 128 bit parallel 128 bit 128/ 32 bit 16 bit

2.16 Gb/s (pipelined) 2.12 Gb/s 1.15 Gb/s (128 bit) 0.285/ 0.230 Gbit/s
37.8 mm? (0.6 um) 3.56 mm? (0.25 um) 1.2 mn? (0.25 um) 0.35/0.58 mn? (0.25 un
En/Decryption (ECB) En/Decryption (all) Encryption (ECB/OFB) | Encryption (ECB/OFB)
Parallel Datapath Independent Enc/Dec | Includes masking Plain / Countermeasure
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SubBytes determines AES performance

| Datapath width | 8bit | 16-bit | 32-bit | 64-bit | 128-bit |
Parallel SubBytes units 1 2 4 8 16
Complexity (gate eq) 5,052 | 6,281 | 7,155 | 11,628 | 20,410
Area (normalized) 1 1.266 | 1.472 | 2.432 | 4.269
Clock cycles for AES-128 160 80 40 20 10
Critical path (normalized) | 1.349 | 1.341 | 1.206 | 1.133 1
Total time (normalized) 21.580 | 10.729 | 4.825 | 2.227 1
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Countermeasures against DPA attacks

Protect your weak spots

m DPA measures power consumption
Add Noise (unrelated switching activity) to confuse the
measurements

m DPA targets a specific operation
Change the operation order by inserting Random Operations

m Power consumption of CMOS is data dependent
Use Alternative Logic Styles

m There are direct operations between input and output
Prevent direct operations by Masking the key with random
data

GALS System Design kgf, Integrated Systems Laboratory (IIS)



C DPA

DPA attacks work

025
0.2~

015} Key 0x73

o
o o
& =
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o
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1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Setup

DPA attack setup
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Area overhead of GALS

David Goliath
Area pm? 183,007 | 92.98% | 551,194 | 96.66%
Area pm?-LSFRs 26,928 | 13.68% | 73,512 | 12.89%

Area pm?-ClockGen 7,579 3.85% 7,626 1.34%
Area pm?-Ports 6,225 3.16% | 11,412 2.00%

Area pm2-GALS 196,811 | 100.00% | 570,233 | 100.00%

Area pm2-TOTAL 963,855

GALS System Design kgf, Integrated Systems Laboratory (IIS)



Latency overhead of GALS

‘ ‘ Synchronous H GALS+DPA

David | Goliath || David | Goliath
Critical path (ns) 5.43 5.84 3.98 5.27
Latency (cycles) 3 1 4 2
Clock freq. (MHz) 170.96 250.8 | 189.6
Enc(clock cycles) 7 8 2
Enc time (ns) 40.88 42.38

GALS System Design kgf, Integrated Systems Laboratory (IIS)



David

Block diagram of David
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Goliath

Block diagram of Goliath
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A G2s

Goliath to Synchronous Interface
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Goliath to David
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A D2G

David to Goliath
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A

Scan-test configuration

GALS Module GALS Module
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Leclk
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Coveraj

Stuck-at-fault test coverage

Stuck-at-fault testing

m [here are a total of 154.604 stuck-at faults in the entire
circuit

m Only 182 of these faults are within the asynchronous finite
state machines

m A straighforward test vector generation using TetraMax fails
to detect 3.089 faults

m Using a simple encryption/decryption operation 2.796 of
these faults were detected by simulation.

m The total test coverage obtained by combining these two
methods exceeds 99.8%.

GALS System Design kgf, Integrated Systems Laboratory (IIS)



Distribution of the first SubBytes operation
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Simulation result

Interface
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Operation modes of Acacia

Operation I/O Clock Encr. | Throughput Energy
Mode [MHz] [ns] [Mb/s] | [mJ/Mb]
Acacia - 00 50 720.0 177.7 1.232
Acacia - 01 50 880.0 145.4 1.362
Acacia - 10 50 | 2,440.0 57.1 2.704
Acacia - 11 50 920.0 139.1 1.198
Synchronous 150 779.2 164.2 0.976
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Clock period versus delay-line settings

Acacia Local Clock Generator Period (Chip #1)
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R Freq
Clock frequency versus delay-line settings
Goliath Clock Generator Frequency (Chip #1-Chip #14)
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Power consumption vs maximum GALS module frequency

Acacia Power Dissipation
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Power consumption of different operation modes

Acacia Power Dissipation with Different Operation Modes
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