
VARIABLE DELAY RIPPLE CARRY ADDER WITH CARRY CHAIN INTERRUPT
DETECTION

Andreas P. Burg, Frank K. Gürkaynak, Hubert Kaeslin, and Wolfgang Fichtner

Integrated Systems Laboratory, ETH-Zurich

ABSTRACT

Various implementations are known for the efficient implementa-
tion of adders. As opposed to traditional optimization techniques
a statistical approach using early termination detection is used in
this article to obtain efficient implementations for large operands.
The completion detection logic is described and the efficiency of
the approach is shown and analyzed analytically and through com-
puter simulations. The technique is based on area and routing effi-
cient ripple carry adders, which is are especially desirable proper-
ties for very long word length.

1. INTRODUCTION

Addition is one of the fundamental and most essential functions
used in VLSI design. Finding fast and efficient implementations
for this operation is therefore one of the major challenges. A de-
tailed overview on the various adder architectures and their com-
parison is given in [1]. All presently known adder architectures
suffer from a so called “curse of the carry”: For all adder archi-
tectures that implement an n bit binary addition, there exists a set
of inputs A and B, where the MSB bit of the output Sn depends on
the LSB of the inputs: a0 and b0. In other words, the worst case
timing of a binary adder architecture is strongly related to the carry
propagation path.

Using standard synchronous design techniques, the adder circuit
must be designed with the worst case timing constraints in mind.
While there will always be a set of inputs that will stimulate the
longest path of a given adder, it can be shown that under a nor-
malized distribution of its inputs, such occurrences are extremely
rare. The probability that the longest uninterrupted carry run l
is equal or longer than R stages in an adder with B bits is only
P
�
l � R ��� B � �

1 � 2 � R � 1. As an example for a 16-bit standard rip-
ple carry adder (RCA) architecture only 3% of all inputs will result
in a carry propagation chain of length 8 or more. Especially with
very wide operand lengths B � 64 this results in an on average
overly pessimistic timing constraint for the adder operation.

As opposed to synchronous design, self-timed design utilizes func-
tional modules that are capable of signaling the completion of their
operation. Completion detection for self timed adder architectures
is a well researched topic [2, 5, 4, 3]. These implementations are
mainly based on detecting the completion of the carry-propagation
with the help of additional circuitry.

In the synchronous domain, speculative execution based methods
have been used [6]. Such methods usually employ a two-cycle

operation. The addition is started in the first cycle, and the result
is assumed to be correct. A parallel carry propagation network
checks whether or not the operation has long carry paths. Should
this be the case, the system is stalled for the duration of an addi-
tional clock cycle where the original addition operation has suffi-
cient time to finish execution.

We present a method to design large operand adders with vari-
able latency, suitable to use in Globally-Asynchronous, Locally-
Synchronous (GALS) modules as described in [7] or in any other
synchronous designs. We define a general form where an n-bit
binary adder is divided into D divisions of equal length. A par-
tial carry propagation detection of length Q is performed on the
boundary of all but the last of these divisions. The cumulative
result of all detections is used to select between D different la-
tency values for the execution. While the method is similar to
the one described in [2] for fully asynchronous designs, we use a
more general approach applicable to a standard synchronous de-
sign methodology. We also analyze the influence of the number
of divisions and of the detection circuit depth on the delay and the
efficiency (AT 	 product) of the circuit and give an approximate
analytical expression for the performance gain.

2. EARLY COMPLETION DETECTION

2.1. Carry Propagation

A simple full adder is shown in Figure 1. Its worst-case delay is
determined by the ripple carry chain and therefore by the time a
carry generated at the LSB full-adder needs to propagate to the
MSB. The carry propagation in each of the full adders is described
as:

cn � anbn
 ancn � 1
 bncn � 1 (1)

It is obvious that cn only depends on cn � 1when only one of the
inputs anor bn is set. When both are zero the carry propagation will
be stopped at the nth Full Adder stage, while a carry-out is always
generated directly from anand bnwhen both are one. Consequently
the carry chain is interrupted and propagation in the subsequent
stages can start immediately without having to wait for the result
of the preceding stages. The operation of the independent partial
carry chains is hereby fully parallel. If only a single pair of bits is
considered this favorable event has a chance of occurrence of 50%.

To improve the carry chain interrupt detection (CCID) probabil-
ity a group of bits an � m � bn � m with m � 0 �C 	 1 can be con-
sidered. By computing the partial sum of only the operands in

a0
b0

a1
b1

a2
b2

a3
b3

a4
b4

a5
b5

a6
b6

FA0FA1FA2FA3FA4FA5FA6

a0
b0

a1
b1

0
0

a3
b3

a4
b4

1
1

a6
b6

FA0FA1FA2FA3FA4FA5FA6

1 0

Figure 1: 2 Operand Ripple Carry Adder

CCID CCID

maximum runlength
detector

r0 r1

Completion
Signal

Figure 2: Adder Partitioning

the GOB: Sn ��� an � an � C � 1 �
 � an � an � C � 1 � a decision can be
made whether the carry out in the full adder chain at FAn � C � 1 will
depend on the carry in of FAn or not:

CarryOutn � C � 1 �
�� � f

�
CarryInn � � Sn � 2C 	 1

0 � Sn � 2C 	 1
1 � Sn � 2C 	 1

(2)

The probability that the carry at the output of a PA is known a
priori has now increased to 1 	 1

2C .

2.2. Partitioning

To use this efficiently the complete L 	 Bit adder is subdivided into
D partial adders (PA) of which each is Q � L

D bits wide. A logic
to detect an interruption in the carry propagation chain is placed at
the last C bits of all but the last groups as shown in Figure 2. They
will reliably detect if the carry-out of the partial adder d is constant
(rd � 1) or if it depends on the preceding carry chain (rd � 0).

Herewith an upper bound for the time needed to assure that all
outputs of the adder have settled for the given set of inputs can be
derived. It is determined by the maximum number of subsequent
PAs that will propagate the carry which is given by the longest run
of subsequent zeros in r0 � � �C � 2: MRL and by the delay of a partial
adder TPA.

3. ANALYSIS AND OPTIMIZATION

3.1. Model

A mostly technology independent estimate of the efficiency of the
proposed approach is obtained through an analysis of the expected

PA 1

PA 2

1
0

1
1

1
1

0
0

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

T
i
m
e

a:
b:

CCID 0CCID 1
PA 0

Figure 3: Timing (MRL � 1)

average delay gain and the AT 	 Product. The optimization pa-
rameters are the number of partial adders D and the number of bits
used in the CCID: C. While in principle any adder architecture
can be chosen for the PAs our analysis focuses on the implementa-
tion using ripple-carry architectures as they have the smallest area
and excellent regularity/routability and are therefore the most in-
teresting for extremely large operands. Furthermore the following
reasonable assumptions are made:

1. The inputs a and b are normally distributed in � 0 � 2B 	 1 	
2. Delay and area for an n-bit addition using ripple-carry

architecture are chosen according to [1]: TAdd
�
n ��
 2n,

AAdd
�
n ��
 7n

3. Time and area for adding two n bit numbers and checking
them for 2n 	 1 in the CCID is assumed to be TCCID

�
n �

1
 log2
�
n � and ACCID

�
n ��
 3 � n

4. The time and area required to find the maximum runlength
MRL are negligible

Herewith outputs of a all PAs whos preceding CCID indicates no
carry propagation will settle after a carry that has potentially been
generated within the range of the preceding CCID has been prop-
agated and after the delay of the partial adder itself:

TAdd
�
C �
 TAdd

�
Q � (3)

The remaining PAs add an additional delay of MRL � TAdd
�
Q � as

shown in figure 3 and the overall expected delay becomes

T � TAdd
�
C �
 TAdd � L

D � �

������
1

D � 1

∑
t � 0

t � P
�
MRL � t �� ��� �

E �MRL �
������� (4)

As the delay of the CCID is significantly smaller than the propa-
gation delay through each of the subadders it does not contribute
to the critical path. This is shown in Figure 3.

When the principle is applied to a synchronous circuit the variable
delay of the adder translates into a variable number of cycles be-
tween 1 and D, required to complete the operation. The cycle time
is lower bounded by Equation 3 and a slightly degraded perfor-
mance characteristic is obtained:

T � � TAdd
�
C �
 TAdd � L

D ��� � �
E MRL !
 1 � (5)

The analytical evaluation of the above equation requires an expres-
sion for the expected value for the longest run of carry propaga-
tions across PA boundaries E MRL ! . This is known as the “longest
run of heads” problem. In our case “head” in an unfair coin-tossing
experiment with D 	 1 trials represents the case where a possible
carry propagation is detected by a CCID. The corresponding prob-
ability for this event is has been shown to be 1

2C . To our knowledge
an exact analytical solution for the problem is not known. How-
ever a pessimistic approximation can be given as:

E MRL ! � ln � � D 	 1 � ��� 1 	 1
2C ���
 0 57721

C � ln
�
2 � (6)

Figure 4 plots the expected number of cycles versus the normalized
cycle time for a 128-bit ripple-carry CCID adder on a logarithmic
scale. The former was evaluated using the approximation from
Equation 6 and through computer simulations. For comparison the
leftmost diagonal represents the delay of an equivalent standard
fixed delay ripple-carry implementation. Five different configura-
tions for the CCID-adder were analyzed in which the full length of
the operation was divided into 2, 4, 8, 16 and 32 partial adders. An
almost 2 fold speedup was achieved with only two stages. Each
additional stage reduces the total delay further, resulting in a more
than three and five fold gain for four and eight partial adder stages
respectively. For each configuration the prediction parameter C
of the CCID stage was varied between 2 and the total number of
bits per subdivision. From the figure it can be seen that increasing
C initially improves the performance significantly as the probabil-
ity to detect an early termination increases asymptotically to one.
However when more than 5 to 6 bits are used the linearly increas-
ing delay TAdd

�
C � prevails and the delay of the overall circuit in-

creases again. This is especially pronounced in a synchronous en-
vironment where Equation 5 applies and TAdd

�
C � has a more sig-

nificant influence on the overall timing than in the asynchronous
case. The analytical approximation matches the simulation only
qualitatively, however the general trend can still be observed and
the model might be used to derive an estimate for an appropriate
choice of the parameter D to obtain a desired performance gain.
Thereto 5 is substituted into 6. This estimate is an upper bound
and therefore the minimum delay with respect to the parameter C
is obtained first from the delay equation, considering L and D as
constants:

T �
2

�
ln ��� D � 1 �	� 1 � 1

2C
�
 � 0 � 57721

ln � 2 �
 C

ln � � D � 1 �� � 1 � 1

2C
�
 � 0 � 57721

C � ln � 2 � L
D
 L

D � (7)

After removing constant factors and offsets 1 and after approx-
imation of the logarithmic functions as ln

�
D 	 1 � the first term

also becomes independent of C and does not contribute to the opti-
mization. Deriving the result by C and setting it to zero yields the
following expression for the near optimum choice of C :

1As the absolute delay is not of interest this is a perfectly legal simpli-
fication

0.1 1
1

Cycle Time

C
yc

le
s

D=2 (Model)
D=4 (Model)
D=8 (Model)
D=16 (Model)
D=32 (Model)
D=2 (Simulated)
D=4 (Simulated)
D=8 (Simulated)
D=16 (Simulated)
D=32 (Simulated)

2

3

4

5

0.50.05

Standard Ripple-
Carry Adder

2x Speedup

4x Speedup

8x Speedup

Predicted
Speedup
(D=8)

Predicted
Speedup
(D=4)

Predicted
Speedup
(D=2)

Figure 4: Timing of the CCID-adder

Copt
�
L � D � ��� ln

�
D 	 1 �
 0 57721

ln
�
2 �

L
D

(8)

This result is substituted into the equation for the delay, again with
the approximation for the logarithmic terms. After dividing by
the delay of the original ripple-carry adder without CCID (2L) and
after removing the insignificant terms for large L this leads to an
equation for a pessimistic estimate of the expected performance
gain:

TCCID

TRCA
� 2 � ln

�
D 	 1 �
 0 57721

ln
�
2 � � 1

LD
 1
D

(9)

The complexity of the early termination adder grows slowly over
the regular ripple carry adder with the number of PAs and with the
number of bits used in the CCID stages. It is described as:

A � AAdd
�
L �

�
D 	 1 � � ACCID

�
C � (10)

Figure 5 shows the normalized AT-diagram of the circuit. Because
of the strong influence of the number of bits in the CCID-stage
(C) on the timing when C is small the reduction of the delay ini-
tially clearly outweighs the area increase. This is reflected in a sig-
nificant gain in the AT-product. It is also observed that the point
with the shortest average delay is close to the optimum AT-product
which is a very desirable property. The original fixed-delay imple-
mentation is marked with a circle for comparison.

4. EXPERIMENTAL RESULTS

In this section actual implementation results are shown. Various
realizations for a 128 and a 256 bit wide adder were implemented

0.9 1 1.1 1.2 1.3 1.4 1.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Area

D
el

ay

D=2 (Model)
D=4 (Model)
D=8 (Model)
D=16 (Model)
D=32 (Model)
D=2 (Simulated)
D=4 (Simulated)
D=8 (Simulated)
D=16 (Simulated)
D=32 (Simulated)

AT-Product=1

AT-Product=1/4

Standard Ripple-
Carry Adder

AT-Product=1/2

Figure 5: AT-Product of the CCID-adder

Table 1: Area and Timing

CCID MaxRL PA CCID MaxRL PA
Area [µm2] Delay [ns]

RCA:128/4 261 150 4055 0.24 0.27 6.88
RCA:128/8 261 2890 2027 0.24 1.31 3.46
CLA:128/4 261 150 5750 0.24 0.27 3.95
CLA:128/8 261 2890 2898 0.24 1.31 2.04
RCA:256/4 261 150 8110 0.24 0.27 13.7
RCA:256/8 261 2890 4055 0.24 1.31 6.88
CLA:256/4 261 150 14723 0.24 0.27 5.45
CLA:256/8 261 2890 5750 0.24 1.31 3.95

in VHDL and mapped to a 0 25µm technology using a standard
synchronous design methodology. Figure 6 and Table 1 summarize
the results after synthesis. For the CCID-adder results are shown
for 4 and 8 subdivisions, each using 4 bits for early termination
detection. A lookup table is used for the realization of the maxi-
mum run-length detection. Straight forward logic optimization in
the synthesis tool leads to sufficiently good implementations with
an area overhead of about 2800µm2 and a delay below 1 5ns for 7
CCIDs. The initial implementation of the partial adders is based on
a ripple-carry structure. A significant average speedup is obtained
by using the CCID technique while the low area requirement of
the ripple-carry adder is maintained. This is reflected in an almost
fourfold gain in the AT 	 product as opposed to the traditional im-
plementation. To further increase the throughput the number of
partial adders can be increased or other adder architectures can be
used. The results when a carry-look-ahead adder is used instead
are also shown in the figure.

When even faster architectures, such as fast carry-look-ahead or
Brent-Kung tree adders are being used the performance gain sat-
urates. This is because the delay of the CCID stage and of the
maximum run-length detection circuit become larger than the de-
lay of a single PA stage.

5. CONCLUSION

In this paper the design and application of a variable delay adder in
a fully synchrnous design or as a synchronous island in a globally

10
4

10
5

10
0

10
1

10
2

Area [µm2]

T
im

e
[n

s]

128 Bit

256 Bit

Carry Look-Ahead
Fast Carry Look-Ahead
Ripple Carry
Ripple Carry Select
Brent-Kung

4 PAs

8 PAs

4 PAs

8 PAs

Figure 6: Implementation (AT-product diagram)

asynchronous, locally synchronous system was described. An an-
alytical analysis of the achievable performance gain was presented
and it was shown that a significant speedup can be achieved with
only little area overhead. The technique is especially suitable for
extremely large operands where very low area implementations are
most desirable.

6. REFERENCES

[1] R. Zimmermann, Binary Adder Architectures for Cell-Based
VLSI and their Synthesis, Konstanz: Hartung-Gorre Verlag,
Series in Microelectronics Volume 73, 1998.

[2] S. M. Nowick, K. Y. Yun, A. E. Dooply, and P. A. Beerel,
“Speculative Completion for the Design of High-Performance
Asynchronous Dynamic Adders”, In Proc. 3rd International
Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC ’97), Eindhoven, The Netherlands, April
1997, pp 210-223.

[3] V. A. Bartlett, and E. Grass, “Completion-detection technique
for dynamic logic”, Electronics Letters, October 1997, vol 33,
no 22, pp 1850-1852.

[4] A. De Gloria, and M. Olivieri, “Statistical Carry Lookahead
Adders”, in IEEE Tran. on Computers, March 1996, vol 45,
no 3, pp 340-347.

[5] A. De Gloria, and M. Olivieri,”Completion-detecting carry se-
lect addition”, IEE Proc.-Comput. Digit. Tech., March 2000,
vol. 147, no 2, pp 93-100.

[6] Y. Kondo et al., “An Early-Completion-Detecting ALU for a
1GHz 64b Datapath,” in IEEE Int. Solid-State Circuits Conf.
(ISSCC) Dig. Tech. Papers, 1997. pp 418-419, 497.

[7] J. Muttersbach, T. Villiger, and W. Ficthner, “Practical Design
of Globally-Asynchronous, Locally-Synchronous Sytems”, In
Proc. 6th International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC), Eilat, Israel,
April 2000, pp 52-59.

